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ABSTRACT 

This paper presents an alternative numerical procedure for the analysis of free vibrations 
of three dimensional bars. First, for a specified geometry the twelve governing differential 
equations of equilibrium and deformations are presented within the framework of linear 
elasticity. Then the method of variation of parameters and the method ofdynamic stiffness 
matrix are outlined as two alternative methods for solving the resulting equations. Finally, 
the dynamic stiffness matrix procedure is introduced as a more practical numerical 
procedure to solve the boundary value problem. The procedure is developed starting from 
the dynamic transport matrix and is used to develop a true helicoidal finite element. This 
procedure is outlined by performing the analysis of free vibrations of helicoidal circular 
bars and the results are compared to those of a general finite element code. 
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A NUMERICAL SOLUTION FOR THE DIFFERENTIAL EQUATIONS GOVERNING THE 
FREE VIBRATIONS OF SPACE HELICOIDAL BARS 

INTRODUCTION 

Uses of space bars are common in many structural applications for a wide variety of reasons ranging from necessity to 
practicality and even for aesthetic reasons. Examples of such applications include, but are not limited to, rectilinear staircases, 
helical staircases, and helical springs. Also, from a structural point of view, the efficient design of such structures is possible 
only with the availability of robust method(s) of analytical and/or numerical analysis. The availability of adequate methods 
of analysis will render the assessment of structural response under any conceivable set of forcing functions quite manageable 
at a reasonable cost and time. 

The literature on the general subject of analysis and design of space bars includes several studies which have been 
devised to address fundamental issues of static and dynamic aspects of these structures. Some of these studies [1-7] have, 
however, been limited to either one of few particular cases including: (a) simplified structural geometry; (b) simple loading 
conditions; (c) particular boundary conditions; (d) static cases; or (e) free vibrations of simplified cases of geometry. The 
objective of this paper is twofold. First, the general case of a space bar (see Figure 1) is presented in a unified procedure 
(starting from a differential element level) that would make the process of analysis easily tractable considering the three 
dimensional nature of the problem. Second, the procedure is then specialized by developing a numerical solution to assess 
the characteristics of free vibrations of circular helicoidal bars. 

BASIC RELATIONSHIPS OF GEOMETRY AND STRUCTURAL ANALYSIS 

1. Geometry and Transformation 

A general form of space bar is depicted in Figure 1 (a and b). In this form, it is seen that the space location of any material 
point is readily defined by a space position vector R(s). This position vector may be expressed in rectangular, polar or 
spherical coordinates, depending on bar geometry, but its key importance and relevance to the process of structural analysis 
remains the same [8]. Specifically, as a typical procedure of structural analysis undertakes the task of determining the state 
vectors (i.e. deformations and stress resultants under specified set of external effects), it is found that a concise description 
of local and global coordinates systems is essential. Once this description is clearly defined, an analyst can readily assess 
the dual relationship between state vectors in local and global coordinate systems by the construction and repetitive use of 
angular transformations matrix 1tlo. This concept is easily illustrated with reference to the case of a circular helicoidal bar 
shown in Figure l(c). For this particular bar geometry, it is readily seen [9] that for a specified opening angle a, and helix 
angle 0:, the description of R(s) in rectangular coordinates and the use of Frenet's formulas [10], lead to the following 
matrix relationships: 

(1) 

where UI is a state vector in local system and UO is a state vector in global system while the transformation vector el is 
obtained through the application ofFrenet's equations. Based on this, it is readily found that Equation (1) takes the following 
form: 

(2) 

where the angular transformation matrix is given as: 

(3) 

in which: c= cosO:; S= cosO:; C = cos a; and Sa = sin a . a 
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Figure 1. Geometry o/Typical Space Beams. (a) Continuous helicoidal element; (b) Discretized helicoidal element; 
(c) Typical helicoidal finite element. 
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2. Comparison of Methods ofAnalysis 

The methods of structural analysis are generally classified as analytical or numerical depending on how the solution for 
a specified problem is obtained. And with the multitude of possible structural geometries, material properties, boundary 
conditions and/or load cases, very often analytical solutions cannot be practically developed even for the modest combination 
of structural configurations and/or external effects [8, 11]. Within the scope of this paper, the inherent limitations of analytical 
procedures are outlined by deriving the mathematical relationships governing the characteristics of free vibrations of a 
circular helicoidal bar. These limitations necessarily lead to the development ofpractical numerical procedures which make 
the process of structural analysis relati vely simple. For this purpose and as a prelude to later developments and/or extensions, 
the dual relationships between the transport matrix method and the stiffness method are reviewed witi~ reference to the 
respective sign conventions of deformations and stress resultants described in Figure 1 for a generic bar segment LR. For 
this bar segment and within the framework of linear elasticity, the conditions of equilibrium and deformations are used to 
relate state vectors at ends Land R in their respective local coordinate systems. This results in the development of the 
transport matrix ~1L [8] such that: 

(4) 

includes stress resultants and deformations in vector H at either end, while matrix T:J: is function of bar geometry and is 
independent of boundary conditions. 

It is implicitly assumed in Equation (4) that scaling factors can be introduced to overcome the numerical difficulties 
which may arise due to large disparities in magnitudes of elements of the absolute matrix Ttl. The scaled matrix ~1L may 
be further written in the following partitioned form: 

(5) 

in which: external-effects-dependent vectors corresponding to stress resultants and deformations are designated, respectively, 
as G sand G~ ; submatrices ~s' ~~, flu' are all of order (6 x 6) and form a concise representation of the conditions of 
equilibrium and compatibility. 

The development of Equation (4) for a general space bar segment, in the form of Equation (5) is of key importance to 
ensuing analysis. Its importance is easily seen by noting that, as compared to the stiffness matrix method, the sign,convention 
ofdeformations remains the same while the sign convention of stress resultants is related by the following matrix relationship: 

(6) 

in which: SL and SLR are scaled stress resultant vectors at end L according to the sign convention of the transport matrix 
method and the stiffness matrix method, respectively. 

Using Equation (6) directly into Equation (4) and its inverse (assuming a case of free vibrations) leads to the following 
matrix equation: 

- ] [-)-1 - : ][- ] 
(7)~~~ = ~~~.. ,~~..L................ ~~ 


- -)-1: -)-1 - - ,[
SRL T~s: -T~s TM t1R 

which is easily seen to be the required stiffness matrix equation. This matrix may be written in a short form as: 

S=KA, (8) 

and the comparison between Equations (7) and (8) immediately leads to the physical make-up of the respective submatrices 
of the stiffness matrix K for a true helicoidal finite element bar. 

186 The Arabian Journalfor Science and Engineering, Volume 23, Number 2A. July 1998 



Saeid A. Alghamdi and Amin A. Boumenir 

EQUATIONS OF FREE VffiRATIONS AND SOLUTIONS 

A differential segment of a circular helicoidal bar is a typical segment of a space bar for which the analytical description 
of geometry is possible as shown in Figure 1. With reference to a differential segment, the following geometric and statical 
parameters are defined: 

1=R sec a: ex. = cos a ~ =sin a: 

(9) 

Moreover, the following scaling parameters are written in terms of helix length aL and height ah as 

J: _ Elz • (10)~l- hL ' 

These scaling parameters are used to express forces, moments, deformations, and mass, respectively, as follows 

F =~lF 

(11) 

where: Jl is mass per unit length and p is mass polar moment of inertia; L\1 and L\2 are generic names for either one of 
(u ; v ; w) displacements and either one of (<p; 9; 'V) slopes, respectively. Then based on the superposition of modal shapes, 
the normal modes of vibrations for displacements and slopes are expressed as: 

00 

X(a,t) = IXm exp (iromt) . (12) 
m=l 

Equation (12) is incorporated in the conditions of eqUilibrium and deformations of a differential segment and the results are 
a set of twelve frrst order differential equations [9] which may be written in a matrix form as: 

(13) 

In Equation (13), submatrix Ml (6x6) is essentially a geometric matrix based on the equilibrium of a differential element, 
M2 (6x6) is used to express the force-deformation relations for the bar, and the submatrix M3•m is a scaled mass matrix 
which describes the mass content of the bar and is written as: 

M-- = (R sec -ex.)4 ro2 [I.... , ~ ...0] (14)
3,m EI m 0: 0 ' z . 

where: I is a (3x3) unit matrix and 0 is a (3x3) zero matrix; and rom designates a particular modal frequency. 

As the full forms of sub matrices Ml and M2 have been reported elsewhere [6], a close scrutiny ofEquation (13) indicates 
that they are highly coupled. An attempt is made here to decouple these twelve equations [12]. The decoupling process is 
quite lengthy and laborious but the use of scaling parameters of Equations (11) has made the intermediate and final forms 
relatively easy to handle and to report. The resulting set of four differential equations represents the first stage of the 
decoupling process (in terms of scaled displacements ii, ii, lV, and scaled axial rotation (j») as: 
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(15-1) 

(15-2) 

(15-3) 

(15-4) 

in which the parameters rt to n, <x, and ~ have all been defined in Equation (9). 

It is here noted that Equations (15) will reduce to the equations of free vibrations for the case of a circular bar or straight 
bar when ~ = O. 

Further attempts to decouple Equations (15) have been undertaken in a previous research [13]. The result is a twelfth 
order differential equation in Ii and its even derivatives with respect to opening angle a with the coefficients uniquely 
defined for each modal shape based on the assumptions implied in Equation (12). The use of this equation to determine the 
corresponding eigenvalues and eigenvectors is, however, limited by practical and computational requirements. Moreover, 
analysis of Equations (15) indicates that practical solutions to extract natural frequencies are quite impossible and one has 
to resort to a numerical scheme. For this purpose, two alternative solutions are presented in the sequel as follows. The first 
method of solution starts by analyzing Equation (13) for the eigenvalues and eigenvectors of its coefficient matrix when the 
submatrix M3• is identically zero. This analysis then leads to developing a perturbation-method [10] based solution. Then m 

the dynamic stiffness procedure is presented as a second more viable method of solution using the dynamic counterpart of 
Equations (4) and (5) [9] and the developments outlined in Equations (6-8). 
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Perturbation Method Solution 

The solution of Equation (13) can be presented as a perturbation of the solution to the same equation with submatrix 
M3•m being identically zero. For this purpose, the equation is rewritten in the following two forms: 

(:a -M ) H(a) =Cll~ PH(a) , (16-1) 

dB -- -­- = MH+PH (16-2)
da ' 

in which the matrix P is a modified scaled mass matrix P such that: 

(17) 

is a (12xI2) matrix. It is here noted that with a suitable discretization of domain of the bar (using, for example, the method 
of finite differences [lO] or the method of finite elements [11]), Equation (16-1) leads to an algebraic eigenvalue problem 
which can be solved numerically for ro!. 

On the other hand, using the method of variation of parameters the solution based on Equation (16-2) is written in the 
form of an integral Equation such that: 

D(a) =exp (Ma) Do + J:exp (M(a -s» PH(s) ds , (18) 

in which: Do =D(a = 0). 

It is noted that Equation (18) is a Volterra integral equation and is written in a condensed form using an integral operator 
T[H]. The equation then becomes: 

D(a) = exp (Ma) Do + T[D] (a) , (19-1) 

in which: 

T[D] =L~Xp(M(a-s»PD(S) ds . (19-2) 

This integral operator has the following iterative property 

(20) 

for all n ~ 1. This property is then used to obtain the solution of Equation (16-2); and the solution is written as: 

00 

D(a) =exp(Ma) Do + LTn[exp(Ma) Do] . (21) 

n=1 

Further, in order to complete the analysis it is necessary to study the eigen-structure of matrix M. This matrix is found to 
have only three distinct eigenvalues; namely: 0; +H; .but each one has a multiplicity offour. The corresponding 
eigenvectors are obtained as follows: 

(M - A: I) 'Pi) ='Pi)-1 (22) 

where: 'Pio = 'Pi ; I ~ i ~ 4 ; I ~ j ~ n - I with n = r2 =2 correspond to the zero eigenvalues. while n =4 and r4 = 4 

correspond to the complex eigenvalues +H and -P,respectively; and 'Pi are the independent eigenvectors which are 
explicitly known in terms of the elements of matrix M. 
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It is then found that the solution of Equation (16) with Ii being identically zero matrix can be written as: 

H*(a) 

(23) 

or as: 

4 ,;-1 
j

H*(a) =L LCij'Pjja exp(A.:a) , (24) 
j=1 j":::::O 

in which the twelve constants Cij are to be detenruned depending on the boundary conditions and the superscript *corresponds 
to the static case (i.e. unperturbed case) and is used to distinguish this solution from the general solution given in 
Equation (19). This solution procedure - despite its mathematical elegance - is numerically quite involved for engineering 
applications when submatrix M3,m is not identically zero. For this case, the mathematical structure of eigenvectors 'Pi is 
quite complicated and involved and more work is still being developed by the authors. 

Dynamic Stiffness Matrix Solution 

The dynamic stiffness matrix solution requires the construction of dynamic stiffness matrix K [14]. This matrix is 
symbolically shown in Equation (7) and is noted to include the dynamic transport sub matrices T/}.s and fM which are also 
constructed numerically [9]. 

Once the dynamic stiffness matrix K is constructed for a typical space bar (i.e.: a true helicoidal bar), Equation (7) can 
be written in a partitioned form as: 

(25) 

in which each scaled sub matrix is oforder (3x3). This matrix equation is specific for a given geometry but its correspondence 
to a particular boundary condition is yet to be specified. A typical example, for this purpose, is the case of a cantilever bar 
with AR 0, and the rr.sulting reduced matrix equation: 

(26) 

can be solved to extract the corresponding natural frequencies rom using a modified bisection algorithm [14, 15]. 

NUMERICAL EXAMPLES AND DISCUSSIONS 

As the numerical procedure outlined in Equations (4-8) results in the construction of a dynamic stiffness matrix using a 
dynamic transport matrix, it can be used to perform free vibration analysis of a three-dimensional space element. And since 
a true circular helicoidal bar is a typical structural space element where its geometry is defined completely by geometric 
parameters R, a, a, and A, the procedure can be easily adapted to the analysis with relative ease and less computational 
efforts as compared to a typical finite element method (FEM) code. This numerical procedure is applied to the analysis of 
free vibrations of typical circular helicoidal bars for selected boundary conditions and the results obtained are compared to 
those obtained using the finite element procedure [11, 16] capabilities of the FEM code GT STRUDL [17]. 

Two cases of a helicoidal beam are analyzed for the natural frequencies and the results are reported in Tables 1 and 2. 
These sample results indicate the practical efficiency of the numerical procedure developed and outlined herein as compared 
to the FEM with regard to the required number of finite elements, CPU time, and accuracy obtained for a particular 
discretization of the structure. 
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Table 1. Natural Frequencies of a Circular Helicoidal Beam*. 

Case: Fixed-Free Boundaries 


a= 360°; a= 10°; R=4m; h = 0.5 m; A=1 


Dynamic Stiffness Method Finite Element Method [17] 

(true helical elements) (IPQS elements) 

No. of CPU Time No. of CPU Time' 
n con(rad/sec) n con(rad/sec) %-Diff.

Elements (sec) Elements (sec) 

14.062 40.153 185.5 

5 2 36.221 1.5 36 2 49.655 7.05 37.1 

3 91.607 3 83.119 -9.3 

13.866 28.181 103.2 

15 2 30.382 3.0 72 2 34.287 15.04 12.9 
! 

3 79.121 3 68.250 -13.7 

13.866 14.259 2.83 

20 2 30.382 4.5 144 2 31.956 40.04 3.52 

3 79.121 3 73.056 -7.67 

*Including shear defonnations but neglecting rotary inertia; E 210 GPa; v = 0.3; p = 7992 kg/m3. 

Table 2. Natural Frequencies of a Circular Helicoidal Beam*. 

Case: Fixed-Free Boundaries 


a= 360°; a= 10°; R=4m; h = 1.0 m; A = 0.25 


Dynamic Stiffness Method Finite Element Method [17] 

(true helical elements) (IPQS elements) 

No. of CPU Time No. of CPU Time n %-Diff.n co ( rad/sec) conCrad/sec)nElements (sec) Elements (sec) 

5.822 10.848 86.3 

5 2 11.362 1.5 36 2 14.732 9.00 29.7 

3 34.700 3 40.037 15.4 

4.364 7.580 73.7 

15 2 7.590 3.0 72 2 10.067 17.01 32.6 

3 17.376 3 26.264 51.2 

4.364 4.862 11.4 

20 2 7.590 4.5 144 2 8.194 44.03 7.9 

3 17.376 3 17.927 3.2 

*Including shear defonnations but neglecting rotary inertia; E= 210 GPa; v 0.3; P = 7992 kg/m3. 
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Comparison of the results indicates that the dynamic stiffness matrix method (developed herein using the dynamic transport 
matrix) is quite efficient for two principal reasons. First, the number of structural elements required by the method is much 
less than that required by the FEM, and this means less computational costs and errors. The other key consideration which 
represents a prime advantage of this numerical procedure is the simple form of generating the structural mesh using only the 
geometric parameters R, a, ex, and A. These two traits qualify the numerical code developed (based on the procedure) a 
potential candidate subroutine that can be adapted to automatically generate the dynamic stiffness matrix of a true helicoidal 
bar. This code can be easily interfaced with a general package of the FEM and thus allowing for the use of helicoidal beams 
(e.g.: staircases) without the need to approximate the true helicoidal bar by straight segments of a space beam in the form 
shown in Figure I-b. 

The numerical results obtained for the two cantilever bars were compared to the results obtained using a space bar 
idealization of the geometry. It was found that for the case with A =0.25, the values of the first three natural frequencies 
were, respectively, 4.364, 7.590, 17.376 rad/sec as compared to the values reported in Table 2. This favorable comparison 
with the results of this numerical procedure is, unfortunately, more of an exception than a rule. And in a more general case 
of cross section proportions (with higher values of A), the type of a general FE should be selected very carefully and the 
analysis must be repeated enough number of times to ascertain that an acceptable level ofconvergence has been obtained. 
The dynamic stiffness matrix procedure (leading to a true helicoidal FE) greatly simplifies the analysis at minimal 
computational costs. The efficiency of the proposed procedure is manifest in the required number of finite elements, the 
required CPU time and the convergence rate in addition to the amount of pre-processing required to solve a problem. The 
comparison is made here with reference to a typical compatible finite element (IPQS [17, 18]) having a quartic displacement 
field within and along the edges of the element. 

CONCLUDING REMARKS 

Development of the dynamic stiffness matrix procedure is presented, based on the dynamic transport matrix TIf method, 
as a viable practical numerical procedure to perform free vibration analysis of a general space bar. The procedure is general 
in nature once the TIf is available in analytical or numerical form. It was shown, however, that analytical solutions for 
cases of space bars are beyond all practical means. This has been confirmed, herein, by considering the special case of a 
simple space geometry of a helicoidal beam. For this case, the resulting equations [Equations (15.1-15.4) and (19-24)] are 
highly coupled and any further decoupling does not lead to a practical method of solution for engineering applications. 

The numerical procedure has been implemented in a computer code to generate the dynamic stiffness matrix K for a true 
helicoidalfinite element geometry. The code can be used to generate the stiffness matrix of a helicoidal finite element and 
the resulting structural contributions to the global stiffness matrix of a specified structure are easily identified through the 
assembly process of the finite element method. The results obtained for two typical helicoidal beam cases lead us to believe 
that the effectiveness of the procedure developed herein is quite high and will be further evaluated in a future work. 

ACKNOWLEDGEMENTS 

The authors would like to express their gratitude to the anonymous reviewers for their constructive remarks made on the 
initial draft of the paper. The results reported herein have been obtained using the computer facilities at King Fahd University 
of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia. 

REFERENCES 

[1] 	 E.D. Panayotonnakos, "Statically Indeterminate Helical Beams Fixed at Both Ends", Technica Chronica (Athens), 1950, p. 310. 

[2] 	 Y.F. Young and AC. Scordelis, "An Analytical and Experimental Study of Helical Girders", J. Struct. Div., ASCE, 84 (1958), 
pp.l-29. 

[3] 	 AM.C. Holmes, "Analysis of Helical Beams Under Symmetrical Loading", J. Struct. Div., ASCE, 83 (1957), pp.I-37. 

[4] 	 A Abdu1-Baki and D. Bartel, "Analysis of Helicoidal Girders", Engng. Journal, 1969, pp. 84-99. 

[5] 	 S.A Alghamdi and J.1. Tuma, "Static Analysis of Helicoidal Bars", Proceedings. 4th Int. Con! on Civil & Structural Engng. 
Computing, London, 1989, p. 247. 

[6] 	 S.A. Alghamdi, "A Computer Algorithm for the Static Analysis of Circular Helicoidal Bars", Arabian Journal for Science and 
Engineering, 17 (1992)... 35-42. 

192 The Arabian Journalfor Science and Engineering. Volume 23, Number 2A. 	 July 1998 



Saeid A. Alghamdi and Amin A. Boumenir 

[7] 	 W.H. Wittrick, "On Elastic Wave Propagation in Helical Springs", Int. 1. Mech. Sci., 8 (1966), pp. 25-47. 

[8] 	 J.1. Tuma, Space Structural Analysis, Schaum sSeries. New York: McGraw-Hill, 1982. 

[9] 	 S.A. Alghamdi and A.M. Shazali, "HLXVIB - A Computer Code for Free Vibration Analysis of Circular Helicoidal Bars", Int. 1. 
Compo & Structures, 59(6) (1996), pp.1095-1105. 

[10] 	 F.B. Hildebrand, Methods ofApplied Mathematics, 2nd edn. Englewood Cliffs, New Jersey: Prentice-Hall, 1965, pp. 259-279. 

[11] 	 K.1. Bathe, Finite Element Procedures, Englewood Cliffs, New Jersey: Prentice Hall, 1996. 

[12] 	 P.S. Theocaris, "A Theorem on the Decoupling of Higher Order Linear Differential Systems with Variable Coefficients", Industrial 
Math., 33 (1983), p. 33. 

[13] 	 S.A. Alghamdi, M.A. Mohiuddin, and H.N. AI-Ghamedy, "Free Vibration Characteristics of Helicoidal Beams", Int. 1. Engng. 
Comp., 15(1) (1998), pp. 89-102. 

[14] 	 S.A. Alghamdi and B.O. Elbedoor, "Dynamic Stiffness Matrix ofa Circular Helicoidal Bar", CE-Report (unpublished), Department 
ofCivil Engineering, King Fahd University ofPetroleum and Minerals. Dhahran. Saudi Arabia, 1992. 

[15] 	 G.B. Forsythe, M.A. Malcolm, and c.P. Moler, Computer Methods for Mathematical Computations, Series in Automatic 
Computations. Englewood Cliffs, NJ: Prentice Hall, 1977. 

[16] 	 R.D. Cook, Concepts and Applications ofFinite Element Analysis, 2nd edn. New York: John Wiley & Sons, 1981. 

[17] 	 GT STRUDL - Dynamic Analysis, User Manual, vol. 3(2.4), Atlanta, Georgia, 1993. 

[18] 	 L.B. Aparicia and J.1. Connor, "Isoparametric Finite Element Displacement Models", Research Report R70-39, MIT, Department of 
Civil Engineering, 1970. 

Paper Received 27 January 1997; Revised 24 November 1997, 1 March 1998; Accepted 30 March 1998. 

July 1998 	 The Arabian loumalfor Science and Engineering. Volume 23. Number 2A. 193 


