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ABSTRACT 

This paper examines the problem of locating a new facility amongst existing 
facilities when distances are rectilinear and the axes of the system may be rotated. 
Following a result by Wesolowsky, it is shown that only a finite number of angles of 
rotation needs to be considered to find the optimal location of the new facility. A 
worked example is solved to illustrate a procedure for exploiting this property. 

* To whom correspondence should be addressed. 
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SINGLE FACILITY LOCATION WITH RECTILINEAR DISTANCE 
AND ROTATED AXES 

INTRODUCTION 

Consider a set of m distinct points Pi' i = 1, ... , m 
in the plane that represent the locations of existing 
facilities. It is required to determine the point q for 
the location of a new facility in order to minimize 
the total transportation cost of the system when 
the distances are assumed to be rectilinear. Let 
q (x,y), Pi (a j , bJ, and Wi a positive real number 
denoting the weight associated to the existing facility 
i. The weight Wi represents the transportation cost 
between the new facility and the existing ith facility. 
Then the problem, to be denoted by PI, may be 
stated as the minimization of f(x, y), such that 

m 

f(x, y) = L Wi ( I x - ail + I y - b i I), (1) 
i= 1 

where the use of the . rectilinear (or Manhattan) 
metric assumes that movement is always parallel to 
one or other of the coordinate axes. 

Problems expressed as PI arise in a variety of 
situations. Typical examples are in the layout of 
machines on a factory floor or in an urban situations 
when the movement of materials follows aisles of 
street laid out in a rectangular grid pattern. Problem 
PI has t 'n extensively examined in the literature 
and sever. 'llgorithms have been proposed. See for 
example: Francis and White [1] or Love, Morris, and 
Wesolowsky [2]. In this paper we will examine an 
extension of problem PI which arises when the axes 
of the system may be rotated through some angle a. 

In the next section we shall discuss problem PI in 
the context of optimally rotating the coordinate axes. 
This combined problem (denoted P2) is shown to 
possess the same structure as the problem of locating 
a median line for a set of weighted points on a plane 
which was studied by Wesolowsky [3]. 

ROTATING, THE AXES 

It is simple to demonstrate that there could be cost 
advantages in terms of the optimal value of f in 
problem PI through optimal rotation of the coordi
nate axes. Consider a point P = (x, y) with the original 
alignment of the axes. The rectilinear distance 
between P and the origin is x + y. If, however, the 
axes were rotated through an angle a such that the 
location of P under the new axes X' and Y I is (x' , 0), 

then the new rectilinear distance between P and the 
origin is x'. This is less than the original distance. 

We now define problem P2. The locations of 
existing points under the new axes X I and Y 1 are 
denoted pI = (a;, b;), i = 1, ... , m; where 

Problem P2 is to minimize f'(x',y', a), where 

m 

f'(x',y',a) = L wi(lx'-ajcosa-bjsinal 
1 

Applications of P2 exist in cases where the 
realignment of the axes can feasibly take place. This 
can be difficult to apply when aisle are already 
defined for a fixed physical layout. However, at the 
design stage of the shop floor, the implementation of 
the solution to P2 would provide the optimum layout. 

The earliest mention of problem P2 is believed to 
be by Hurriot and Perreur [4] who generalized the 
earlier problem PI to include the rotation of the axes 
amongst other alternatives. Hurriot and Perreur 
show that the set of optimal locations is made up of 
arcs of circles. Since at least one optimum location 
with a given a is on the abscissa Xi of an existing point 
Pi and the ordinate Yj of an existing point Pj (possibly 
the same point), the optimal location forms the third 
point of a right triangle with hypotenuse P iPj. For 
exposition we assume i =1= j. As long as the rotation 
leaves the point (xj,y) as optimum, this point will 
take the form of an arc whose diameter is Pi Pj' as 
illustrated in Figure 1. Once the optimal point takes 
on the coordinates of points other than Pi and Pj' 
then the path of the optimal locations will take the 
form of an arc defined by the new points. Areas of 
indifference, which occur when the optimal location 
is not a unique point, will alter in a similar fashion. 
Hurriot and Perreur do not propose any procedure 
for determining the optimal angle of rotation. 

Benkherouf and Watson Gandy [5] showed that 
problem P2 can be reduced to a concave quadratic 
programming problem which can be used as a 
heuristic since global optimality is not guaranteed. 
Next we shall propose a numerical method for 
solving problem P2. 
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Figure 1. Locus of the Optimum Point as the Axes are Rotated. 

Let gee) = f*(x*(e),y*(e), e) denote the optical 
objective value in relation (2) for a given value of e, 
where x* (e) and y* (e) are the optimal values of x 
and y, respectively, for that value of e. It can be 
shown graphically that a piecewise concave pattern 
emerges from the curve. This suggests that the 
optimal location for a fixed value of e is also optimal 
for a continuous range of e. This range corresponds 
to the value of e where the function gee) is concave. 
Moreover, this range corresponds to the arc men
tioned by Hurriot and Perreur where the solution 
remains unchanged. 

A related problem was investigated by Wesolowsky 
[3] and Morris and Norback [6], when they consid
ered the problem of locating the median line for a set 
of weighted points on a plane. They employed a 
procedure involving the rotation of the axes. 
Wesolowsky suggested a computational procedure 
for finding the optimum median line which requires 
considering only a finite number of possible angle 

rotations. We shall show in the next section that the 
Wesolowsky approach can be generalized to cater 
for problem P2. 

GENERAL RESULTS 

In this section we shall follow Wesolowsky's 
approach to show that only a finite number of angles 
of rotation e needs to be considered to solve problem 
P2. To do that we initially assume that e is known 
and drop the primes (') from the notation. It follows 
that problem P2 reduces to two independent 
problems, denoted problem P3: 

m 

minimize fl(X, e) = I w;(lx-aicose bisinel), 
;=1 

(3) 
and problem P4: 

m 

minimize f2 (y , e) I Wi ( I y + a i sin e b i cos e I)· 
;=1 

(4) 
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Expression (4) is equivalent to the problem inves
tigated by Wesolowsky [3] and Morris and Norback 
[6]. 

It turns out that the optimal solutions of problems 
P3 and P4 are very much related as the following 
Lemma shows. 

Lemma 1. If the solution to problem P3 is known for 
6 E [0°, 180°], then the solution to problem P4 is 
easily deducible from the solution to problem P3. 

Proof. If 6 E [0°,90°] (6 E [90°, 180°]), then problem 
P3 is equivalent to problem P4 for 6 + 90° (6 - 90°). 
This can be easily seen by writing 

-ajsin 6 + bi cos 6 ajcos (6 +90°) + bi sin (6 +90°), 

and 

aj sin 6 - bi cos 6 = aj cos (6 - 90°) + bi sin (6 - 90°). 

Suppose that f1 (x * (6 + 90°),6 + 90°) is the opti
mal solution to problem P3 for 6 E [0°, 90°], 
then it clear that y*(6) = x*(6 + 90°) and 
f2(y*(6),6) = fl(X*(6+900),6+900) is the 
solution to P4 for 6 + 90°. Similarly, 
f2(y*(6), 6) fl(-X*(6-900),6 90°) and 
y* (6) = - x*(6 - 90°) is the solution to P4 for 6 
larger than 90°. D 

As a consequence of Lemma 1, we need only solve 
problem P3 to solve problem P2. Next we shall 
present a computational procedure which is basically 
that suggested by Wesolowsky. 

Let Aill aj cos 6 + b j sin 6. For a given 6, arrange 
the A ie'S in an increasing order. Hereafter, we will 
use superscript j to refer to the data (abscissa ai' 
ordinate bi , and weight wi) related to the point 
placed at the jth position in the ordering of the Aie'S. 

After arranging the A;e's in an increasing order, the 
objective function of problem P3 becomes 

fl(X, 6) = f wilx-Ajl· 
i=l 

For a given 6, 

afl (x, 6) 
ax 

where w 

Therefore, the solution x*(6) to P3 (see also 
Wesolowsky [3]) can be found as follows 

x* (6) = A;*, where k * is the smallest k such that 
condition 

k* 

(C1) : 2 L wi w> 0 holds, 
j= 1 

k* 

(C2) : 2 L w j 
- w 0 is true. 

j= 1 

Next, we will show that the point placed at the 
k*th position after the rearrangement will define the 
solution to problem P3 for a continuous range of 6 
values. This is in fact what Wesolowsky showed (see 
also Love, Morris, and Wesolowsky [2]) and we 
repeat the development here (with changes in nota
tion for the purpose of clarity) only for completeness. 

Lemma 2. The point that leads to the solution of 
problem P3 under conditions (C1) or (C2) is 
unchanged for a continuous range of 6 values. 

Proof Note that condition (C1), if valid for a given 6, 
will continue to hold for a range of values of 6 where 
the ordering of the Aie'S is unchanged; that is, 

for all j < k *, Aj ~ A!', or equivalently 

(b i - bk *) sin 6 ~ (a k * - a j
) cos 6, (5) 

and for all j > k *, A j ;:::: A r, or equivalently 

(bk
* - bi ) sin 6 :5 (a j 

- ak *) cos 6. (6) 

So, as long as 6 satisfies the (k* -1) inequalities of 
relation (5) and the (m - k*) inequalities of rela
tion (6), the point at the k * th position will still 
satisfy (C1). 

On the other hand condition (C2) will remain valid 
for a range of values of 6 if t!:te ordering of the A;e's is 
unchanged. Therefore, for all j < k *, A j :5 A; *, or 

(bj-bk*) sin 6:5 (a k* -a j
) cos 6, (7) 

and for all j > k * + 1, At;:::: A r + t, or 

(b k * t 1 bi) sin 6:5 (a j - ak * t 1) cos 6, (8) 

and finally, A~*:5 Ar tl
, or 

(b k*-b k *tl)sin6:5(ak*tl ak*)cos6. (9) 

Hence, for 6 satisfying relations (7), (8), and (9), 
condition (C2) will continue to hold for the point 
placed at the k * th position. D 
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Note that by Lemma 2 we can determine all of the 
ranges of 9 over which the solution to problem P3 
remains unchanged. The ranges over which the solu
tion to problem P4 is not altered can also be deduced 
from those of problem P3 using Lemma 1. Indeed, if 
9 E [0°,90°] (9 E [90°, 180°]) is an endpoint of a 
given range for problem P3, then 9 + 90° (9 - 90°) is 
an endpoint of a range for problem P4. 

It can easily be shown that f(x, 9) is concave in 9 
within the range of values that satisfy relations (5) 
and (6) under Condition (C1) or relations (7), (8), 
and (9) under Condition (C2). Consequently, a 
minimum of f(x,9) must occur at one of the 
endpoints of the ranges obtained by using Lemma 2. 

Based on the above, it is straightforward to show 
that the following algorithm solves problem P2. 

Algorithm 

O. Set t = 1 and 9xt = O. 

1. Order the A;aX/'s in an increasing order, such that 
A! :sA~ :s ... :sA~ . 

U'XI UXI "XI 

2. Find the smallest superscript k* such that (C1) 
or (C2) is satisfied. 

3. If (C1) holds for k*, then find the range 
[9xp 9xt+d of values of 9 that satisfy relations (5) 
and (6). 

If (C2) holds for k*, then find the range 
[9 x I' 9 x t + d of values of 9 that satisfy relations 
(7), (8), and (9). 

4. Compute x*(9xt ) and fl(X*(9 xt ),9xt ). 

5. If 9xt + 1 = 180°, then go to step 6, 
and otherwise increment t and go to step 1. 

6. Let 9x1 , ... , 9xr be the endpoints that are smaller 
or equal to 90°, and 9xr + 1 , ... , 9xt be the endpoints 
that are larger then 90°. 

The endpoints of the ranges relative to P4 are: 

9y! = 9xt + l - s - 90° for s = 1, ... , t- r, 

9ys = 9xt + l-s + 90° for s = t - r + 1, ... , t. 

7. Compute y *(9yJ and f2(Y *(9ys ),9ys ) for 
s = 1, ... , t. 

8. Let 91 ,92 ,,,,, 9q the endpoints obtained after 
arranging the 9x t's and the 9y/s in an increasing 
order and such that 9 q :s 90°. 

9. The optimal objective value of P2 is: 

f* = Min{fl (x *(9;),9;) + f2(Y *(9J,9;), 

= 1, ... , q}, 

the optical angle rotation is 9 * = 9 i' , 

the optimal x coordinate is x * = x * (9 i. ), 

and the optimal y coordinate is y * = y * (9 i. ), 

where 

In steps 0 to 5, the algorithm finds the ranges of the 
angles of rotation for problem P3. In Step 4, the 
optimal x-coordinate as well as the optimal objective 
value for problem P3 are computed for each endpint 
of the different ranges of the angles of rotation. 
Then, in Step 6 the implied angles of rotation for 
problem P4 are obtained using Lemma 1. In Step 6, 
the optimal y-coordinate and objective value for 
problem P4 are calculated for each endpoint. Next, 
in Step 8 the algorithm combines the two ranges 
obtained in the previous steps to find the ranges for 
problem P2. Note that we did not consider the 9's 
that are larger than 90° since the solution to problem 
P2 is symmetric about 90°. Indeed, f(x(9 + 90°), 
y(9 + 90°),9 + 90°) = f(y(9), -x(9), 9). Finally, in 
the last step the algorithm finds the minimum objec
tive value for problem P2 over all possible 9 that are 
smaller or equal to 90°. The optimal x and y coordi
nate are the ones corresponding to the 9 that led to 
the optimal objective value. 

WORKED EXAMPLE 

The following is a worked example of the above 
algorithm. 

Consider the problem of locating one new machine 
with respect to five existing facilities that are located 
as follows: PI (3,4), P2 = (2,8), P3 (4,5), 
P4 = (9, 3), P5 (10,2). The travel between facilities 
is assumed to be along a rectilinear aisle structure. 
The number of trips per day between the new 
machine and each existing facility is given as WI = 6, 
W 2 = 3, W3 2, W 4 = 4, W5 = 5. The main concern is 
to find the location of the new machine that would 
minimize the daily distance traveled between the 
new machine and the existing facilities. 

The optimal location using the median method 
(see Francis and White [1] is x* = 4, y* 4, with 
a total distance traveled of 90. 
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Table 1. Results of Problem P3. 

1 2 3 

6 0 33.69 53.13 

x*(6) 4 6.1 7.6 

fl(X*(6),6) 62 37.3 18.8 

Starting with ax1 0°, we get the following points 
ordering: (P2, PI' P3, P4, Ps)· For this ordering, con
dition (C1) is satisfied for k* = 3. Hence, 
x*(OO) = a3 4 and 11 (x*(OO), 0°) 62. Then, the 
use of relations (5) and (6) will yield the following. 
four inequalities: 

j 1: (8 - 5) sin a:::; (4 2) cos a, or tan a :::; 2/3, 
j = 2: (4 - 5) sin a :::; (4 - 3) cos a, or tan a ~ -1, 
j 4: (5 - 3) sin a:::; (9 - 4) cos a, or tan a :::; 5/2 , 

j = 5: (5 - 2) sin a :::; (10 - 4) cos a, or tan a :::; 2. 

The largest a that still satisfy all of the above four 
inequalities is 33.69°. Therefore, the first range of a 
values over which x * (0°) = 4 remains unchanged is 
[0°,33.69°]. 

Next, for ax2 = 33.69° the ordering of the points is 
changed to (Pl1P3,P2,P4,P5)' Again, condition (C1) 
is satisfied for k* 3 with x*(33.69°) a2 =6.1 
and 11 (x * (33.69°),33.69°) = 37.3. The four 
inequalities obtained by using (5) and (6) are: 

j = 1: (4 8) sin a:::; (2 3) cos a, or tan a ~ 1/4 , 

j = 2: (5- 8) sin a :::; (2 - 4) cos a, or tan a ~ 213, 
j = 4: (8 - 3) sin a :::; (9 - 2) cos a, or tan a :::; 7/5 , 

j 5: (8 2) sina:::; (10-2) cos a, or tana:::;o/3. 

The largest a for which all the above inequalities 
are satisfied is 53.13°. Hence, the second range is 
[33.69°,53.13°]. 

The preceding and remaining computations 
required to find all the ranges for problem P3 are 
presented in Table 1. 

The ranges of the angles of rotation, the optimals 
y-coordinates and I-values for problem P4 are 
obtained by ~xecuting steps 6 and 7. Finally, the 
optimal solution to P2 is: 

a * = 74.05° 

x* 4.7 (with respect to the new axes X' and yl) 

y * = -2.5 (with respect to the new axes X' and yl) 

1* = 82.5. 

Finally, a simulation study was conducted to 
invesigate the relative effect of the rotation on the 

4 5 6 7 8 

63.44 74.05 80.54 90 135 

6.3 4.7 4.4 4 0.7 

15.4 15.7 17.8 28 62.1 

cost. The above algorithm was applied to a sample of 
420 problems generated randomly. The number n of 
existing facilities was varied from 5 to 25. The x 
and the y coordinates were chosen from a uniform 
distribution [1, 100]. The weight Wi were generated 
from a uniform [1, 1000]. Further, for each fixed 
number of existing facilities we took 20 replications. 
Table 2 summarizes the computational results of the 
simulation. It shows the variation of the cost savings 
as a function of the number of facilities. It can be 
observed from the. table that an average saving of 
27.29% can be achieved by rotating the axes. This 
supports the fact that a substantial saving can be 
gained by applying our proposed algorithm. 

Table 2. Variation of the Cost Saving as a Function of 
the Number of Facilities. 

Number of 
Depots 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Overall 

Maximum 
Cost Saving 

34.69 

35.84 

34.33 

32.55 

33.11 

32.69 

33.05 

34.98 

33.50 

34.16 

35.66 

33.32 

35.37 

35.00 

35.76 

34.51 

35.16 

34.21 

34.62 

36.06 

35.61 

36.06 

Average 
Cost Saving 

21.91 

22.61 

22.72 

23.31 

26.57 

25.12 

25.49 

26.67 

28.32 

27.65 

27.56 

29.53 

28.99 

27.32 

30.27 

29.57 

29.98 

28.98 

30.07 

29.85 

30.63 

27.29 
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Note that it has been observed that the cost saving 
increases as the range of the generated data in
creases. This means that this cost is obviously data 
dependent. Therefore, no general conclusion about 
the cost performance of the rotated axes algorithm, 
can be drawn from this simulation study. In other 
words, it is impossible to put an upper bound on this 
performance measure. 

CONCLUSION 

The problem of finding a single new facility loca
tion assuming rectilinear distances and optimal 
rotation of the coordinate axes was investigated. 
An optimizing method was suggested based on 
Wesolowsky's method for the location of the median 
line for a set of weighted points on a plane. 

It would be of interest to see how the procedure 
suggested can be extended to a multi-facility location 
problem. 

REFERENCES 

[1] R. L. Francis and J. A. White, Facility Layout 
and Location: An Analytical Approach, 2nd edn. 
Englewood Cliffs, N.J.: Prentice-Hall, 1990. 

[2] F. Love, J. G. Morris, and G. O. Wesolowsky, Facil
ities Location: Models and Methods. New York: 
North-Holland, 1988. 

[3] G. O. Wesolowsky, "Location of the Median Line 
for Weighted Points", Environment and Planning A, 
7 (1975), p. 162. 

[4] J. M. Hurriot and J. Perreur, "Modeles de Localisa
tion et distance rectilineaire", Revue d' Economie 
Politique, 83 (1973), p. 640. 

[5] L. Benkherouf and C. D. T. Watson Gandy, "A Note 
on the Depot Location Problem with Rectilinear 
Distances and Rotating Axes", Journal of Indian 
Statistical Society and Operations Research, 13 
P992), p.47. 

[6] J. G. Morris and J. Norback, "A Simple Approach 
to Linear Facility Location", Transportation Science, 
14 (1980), p. 1. 

Paper Received 26 November 1991; Revised 30 June 1992. 

July 1993 The Arabian Journal for Science and Engineering, Volume 18, Number 3. 349 


