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ABSTRACT 

The concept of compactness modulo an ideal was first intro~uced by Newcomb 
in 1967 and investigated by Hamlett, Rose, and Jankovic in 1990. In this paper we 
give some new characterizations and properties of I-compact subsets. By using this 
notion, we introduce a new class of functions, called IC-continuous functions, 
which contains the class of continuity and is contained in the class of H-continuity. 
Some characterizations and several properties of this new type of function are 
presented. Relationships between IC-continuity and other corresponding notions 
are studied. 
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ON 	I·COMPACT SUBSETS AND IC·CONTINUOUS FUNCTIONS 

1. 	INTRODUCTION AND PRELIMINARIES 

Throughout the present paper (X, T) and (Y, (1) 
(or simply X and Y) are topological spaces on which 
no separation axioms are assumed unless explicitly 
stated. The closure (resp. interior) of any subset S of 
X will be denoted by Cl(S) (resp. Int(S)). First 
recall that a set Sk (X, T) is regular open [1] if 
S = Int(Cl(S)). A subset S of (X, T) is said to 
be semi-open [2] (resp. a-open [3], preopen 
[4]) if Se Cl(lnt(S)) (resp. Selnt(Cl(lnt(S))), 
Selnt(Cl(S))). The complement of a semi-open set 
is called semi-closed [5] and the intersection of all 
semi-closed sets containing S is called the semi­
closure [5] of S and denoted by s-Cl(S). Sex is said 
to be regular semi-open [6] if there exists a regular 
open set V such that ve S e Cl (V). A subset S of a 
space (X, T) is called locally closed [7] if S = V n F, 
where VET and F is closed in (X, T). A subset 
S of a space (X, T) is said to be an H-set [8] or 
quasi H-closed (QHC) [9] (resp. N-closed [10], 
S-closed [11], s-closed [12], RS-compact [13]) 
relative to X if for every cover {Va I a E.d} of S by 
open (resp. open, semi-open, semi-open, regular 
semi-open) sets of X there exists a finite subset 
.do of .d such that S e U {Cl (Va) I a E .do} (resp. 
SeU{Int(Cl(Va))laE.do }, S eu {Cl(Va)laE.d o}, 

S eu {s-Cl(Va))laE.do}, S eu {Int(Va)laE.do}). 

A space (X, T) is said to be quasi H-closed, abbrevi­
ated QHC, iff any open cover of X has a finite 
subfamily, the closures of whose members cover X. 
A space is said to be H-closed iff it is Hausdorff and 
QHC. A space X is said to be extremely disconnected 
(abbreviated as ED) if the closure of every open set 
in X is open. A function f: (X, T)~(Y, (1) is called 
precontinuous [4] (resp. LC-continuous [14]) if 
the inverse image under f of each open set in Y is 
preopen (resp. locally closed) in X. f: (X, T)~(Y, (1) 
is called C-continuous [15] (resp. H-continuous [16], 
N-continuous [17], L-continuous [18], S-continuous 
[19], s-continuous [20], RS-continuous [21]) if for 
each xEX and each open set ve Y containing f(x) 
having compact (resp. H-closed, N-closed, Lindel6f, 
S-closed, s-closed, RS-compact) complement, there 
exists VET containing x such that f (V) e V. Given 
a set X, a collection I of subsets of X is called an 
ideal [22] on X if the following hold: 

1. 	 If A EI and BkA, then BEl (heredity), and 
2. 	 If AEI and BEl, then AUBEl (finite addi­

tivity). 

An ideal is called a (1-ideal if the following holds: 

3. 	 If {Anln 1,2,3, ...... } is a countable subcollec­
tion of I, then U{Anln = 1,2,3, ...... }EI 
(countable additivity). 

If X r:;. I then I is said to be a proper ideal, if XEI 
then I is called an improper ideal. If I is a proper 
ideal then {A IX - A E I} is a filter. Hence proper 
ideals are sometimes called dual filters. The notation 
(X, T, I) denotes a nonempty set X, a topology T on 
X, and an ideal I on X. If (X, T, I) is a space, we 
denote by T* (I) the topology on X generated by the 
basis ~ (I, T)={V- EI VET, EEl} [23]. The closure 
operator in T* (I), denoted by Cl*, can be described 
as follows: For AkX, Cl* (A)=AUA* (I,T) where 
A* (I, T) = {xEXI VxnA r:;.I for every VxEN(x)}, 
where N(x) = {VET,xEV}. A*(I,T) is called the 
local function of I with respect to T on A [24]. Recall 
that Ak(X,T,I) is T*(I)-closed if A*(I)kA [25]. 

2. ON I·COMPACT SUBSETS 

Compactness with respect to an ideal (I-compact­
ness) has been studied in references [26-28]. In this 
article, we introduce some results about I-compact 
subsets relative to a space. 

Definition 2.1. [27] A subset S of a space (X, T, I) 
is said to be I-compact relative to X if for every 
cover {Va I a E.d} of S by open sets in X there 
exists a finite subfamily {Va j Ii = 1,2,3,...... ,n} such 
that S-U{Vajli = 1,2,3, ...... ,n}EI. 

Remark 2.1. One can easily verify that for a subset 
S of a space (X, T, I), the following are equivalent: 

(i) 	 S is a compact subset. 
(U) 	 S is a {<l>}-compact subset relative to X. 
(iii) 	S is an If-compact subset relative to X, where 

If denotes the ideal of finite subsets. 

Theorem 2.1. If SiJ i = 1, 2 are I-compact subsets 
relative to a space (X, T, I), then SI US2 is an 
I-compact subset relative to X. 

Proof Straightforward. 

The following result is an immediate corollary. 

Corollary 2.1. The intersection of two open sets 
having I-compact complement is also open having 
I-compact complement. 
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Theorem 2.2. A subset S of a space (X, T, I) is 
I-compact relative to X iff for every cover {Va Ia E A} 
of S by preopen and locally closed sets in X there 
exists a finite subfamily {Vaili = 1,2,3, ...... ,n} such 
that S-U{Vaili = 1,2,3, ...... ,n}EI. 

Proof. Follows immediately from Definition 2.1 and 
Theorem (2) of [14]. 

Corollary 2.2. A subset S of a space (X, T, I) is 
I-compact relative to X iff for every cover {Va Ia E A} 
of S by a-open and locally closed sets in X there 
exists a finite subfamily {Vaili = 1,2,3, ...... ,n} such 
that S-U{Vaili = 1,2,3, ...... ,n}El. 

Theorem 2.3. Let (X,T,I) be a space, and let S~X 
be I-compact. Then for every cover {Va Ia E A} of S 
by preopen sets (resp. regular open sets) of X there 
exists a finite subfamily {Vaili = 1,2,3, ...... ,n} such 
that S-U{Int(CI(Va))li = 1,2,3, ...... ,n}EI (resp. 
S-U{Vaili= 1,2,3, ...... ,n}E l. 

Proof. This is obvious. 

Theorem 2.4. Let (X, T, I) be a space, and I be an 
ideal on X with I~I. If S is an I-compact subset 
relative to (X, T, I), then S is a I-compact subset 
relative to (X, T, I). 

In [27], Newcomb defines an ideal I on a space 
(X, T) to be T-boundary if Tn 1= {<j>}. 

Theorem 2.5. Let (X, T, I) be a space. If S~X is an 
I-compact subset relative to X and I is T-boundary, 
then S is an H-subset relative to X. 

Proof. Assume that {UalaEA} is a cover of S 
by open sets of X. By hypothesis there exists 
a finite subfamily {Uaili = 1,2, ...... ,n} such that 
S-U{Ua;li = 1,2,3, ...... ,n} = EEl, since I is 
T-boundary. Then Int(E) = 0 and hence S is an 
H-subset relative to X. 

The proofs of the next two results are straight­
forward. 

Theorem 2.6. Let (X, T, I) be a space with In the 
ideal of nowhere dense subsets of X (S E In iff 
Int(CI(S))=0). If In~I and S is an H-subset relative 
to X, then S is an I-compact subset relative to X. 

Theorem 2.7. A subset S of a space (X, T) is an 
In-compact subset relative to X iff S is an H-subset 
relative to X. 

Corollary 2.3. Let X be ED. Then for a subset S of 
X the following are equivalent: 

(i) S is In-compact relative to X. 
(ii) S is quasi H-closed relative to X. 
(iii) S is S-closed relative to X. 
(iv) S is N-closed relative to X. 
(v) S is RS-compact relative to x. 
Proof. Follows directly from Theorem 2.7 and 
Lemma 4.2 of [13]. 

Lemma 2.1. [27] Let (X, T, I) be a space. If S~X, 
then S is an I-compact subset of (X, T) iff S is an 
I-compact subset of (X, T* (I)). 

The following result is useful in studying the 
preservation of I-compactness by certain types of 
functions. 

Lemma 2.2. [26] Let f: (X, T, I)~(Y, 0') be a func­
tion. Then 

f(1) = {f(E) lEE I} is an ideal on Y. 

A bijection f: (X, T, I)~(Y, 0') is called a 
* -homeomorphism [29] with respect to T, I and 0' if 
f: (X, T* (I))~(Y, 0'* (f(1))) is a homeomorphism. 

Theorem 2.S. Let f: (X, T, I)~(Y, O',f(1)) be a 
*-homeomorphism. Then G ~X is I-compact rela­
tive to X iff f(G) is f(1)-compact relative to Y. 

Proof. Follows directly from Lemma 2.1 and Lemma 
2.2. 

Theorem 2.9. Let f: (X, T, I)~(Y, 0') be a precon­
tinuous and LC-continuous surjection. If G ~ X 
is an I-compact subset relative to X, then f( G) is 
f(I)-compact relative to Y. 

Proof. This follows from Theorem 4 (iv) of reference 
[14] and Theorem 2.2 of reference [26]. 

Lemma 2.3. [26] If f: (X, T)~(Y, 0', I) is an injec­
tion, then f-l(I) is an ideal on X. 

Theorem 2.10. Let f: (X, T)~(Y, 0', I) be an open 
bijection. If G is an I-compact subset relative to Y, 
then f-l(G) is f- 1(I)-compact relative to X. 

3. IC-CONTINUOUS FUNCTIONS 

In this article, we define the class of IC-continuity 
as a generalization of C-continuity, H-continuity, 
and N-continuity. Some characterizations and 
properties of this concept are obtained. 

Definition 3.1. A function f: (X, T)~(Y, 0', I) is said 
to be an IC-continuous function if, for each x EX 
and each open set VC Y containing f(x) and having 
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I-compact complement, there exists an open set 
U e X containing x such that f (U) e v. 

We now offer several characterizations of 
IC-continuity. 

Theorem 3.1. For a function f: (X, T, J)~(Y, (1, I) 
the following are equivalent: 

(i) 	 f is IC-continuous. 

(ii) 	 If V is (1 *(I )-open and has an I-compact 
complement, then f-I(V) is T*(J)-open. 

(iii) 	 If Fe Y is (1* (I)-closed and an I-compact set, 
then f-I(F) is T*(J)-closed. 

(iv) 	 For each xEX and each net {Xa}aEIl which 
converges to x, the net {f(Xa)}aEIl is eventually 
in each open set containing f(x) and having an 
I-compact complement. 

Proof. (i) implies (ii), and (ii) implies (iii) are clear 
from Definition 3.1. (iii) implies (i): Let x E X and 
VE(1 containing f(x), and Y - V is I-compact, then 
x ftf-l(y - V) =X -f-I(V), which is T*(J)-closed. 
Therefore f-I(V) is T*(J)-open containing x. By 
setting U = f-\V), then f( U) e V. (it) implies (iv): 
Let {xa} be a net in X which converges to x and let 
VE(1 containing f(x) such that (Y - V) is I-compact. 
Then xEf-I(V) ET*(J)-open and therefore {xa} 
is eventually in f-I(V). Hence {f(xa)} is eventually 
in V. 

(iv) implies (it): Let V be (1*(I)-open having 
an I-compact complement. To show that f-\V) 
is T*(J)-open, consider the converse, i.e., let 
xEf-\V) such thatf-I(V) ftN(x). Thus, there is a 
net {x a } in X which converges to x and missesf-I(V) 
frequently. Then the net {f(xa)} misses V fre­
quently, which leads to contradiction. 

Remark 3.1. Observe that if I {<f>} or I = It in the 
previous theorem, we obtain the standard character­
izations of C-continuity. 

Lemma 3.1. [27] Let (X, T, I) be a Hausdorff space. 
If S~X is I-compact, then S is T*(I)-closed. 

Our next result follows easily from Theorem 3.1 
and Lemma 3.1. 

Theorem 3.2. A function f of a space (X, T, J) into a 
Hausdorff space (Y, (1, I) is IC-continuous iff the 
inverse image of each I-compact subset of Y is 
T* (J)-closed in X. 

Lemma 3.2. It is easily seen that an H-subset is an 
In-compact subset, and the converse is not true as 
shown by the following example due to Hamlett and 
Jankovic [26]. 

Example 3.1. [26] Let (R, T) denote the reals with 
the usual topology and let C denote the Cantor set 
in [0,1]. Let A «0, l)nC)U[l, 2] and define 
Un = (lin, 3). {Unln = 1,2,3, ...... } is an open cover 
of A and if {Un;li = 1,2, ...... ,k} is any finite sub-
collection, let m min{nili 1,2, ...... ,k}. Then 
CI(Un)~[llni" 3]~[1Im, 3] for each nj and 
hence A g: U {Un J Thus A is not an H-subset. 
However, if {Ua I(l E a} is any open cover of A, there 
exists a finite subcover {Ua;li 1,2, ...... ,r} of [1, 2] 
and A - U{UaJ~CEln. Thus A is an In-compact 
subset of R which is not an H-subset. 

Remark 3.2. The following implications give the 
connection between InC-continuity and other 
corresponding types. 

InC-continuity ~ continuity ~ L-continuity 

H-continuity ~ N-continuity ~ C-continuity 

S-continuity ~ s-continuity ~ RS-continuity 

Theorem 3.3. A function f: (X, T)~(Y, (1, I) is 
ltC-continuous iff f is C-continuous. 

Recall that a subset of a space is said to be meager 
(or of first category) if it is a countable union of 
nowhere dense sets. Clearly the collection of all 
meager subsets of a space is a (1-ideal. We denote 
this ideal by 1m. 

Lemma 3.3. [26] Let (X, T) be a space and let 1m 
denote the ideal of meager (first category) subsets 
of X. If Tnlm {<f>} and (X, T) is Hausdorff, then 
(X, T) is 1m-compact iff (X, T) is H-closed. 

Theorem 3.4. Let f: (X, T)~(Y, (1, 1m) be a func­
tion, (1 n 1m {<f>} and (Y, (1) is Hausdorff, then f is 
ImC-continuous iff f is H-continuous. 

Proof. Follows from Lemma 3.3. 

Theorem 3.5. Let f: (X, T)~(Y, (1, I) be a function. 
Then ltC-continuity, C-continuity, N-continuity or 
NC-continuity [30], and continuity are equivalent if 
(Y, (1) is compact. 
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Proof. Follows directly from Corollary 3 (iv) of 
reference [31]. 

Lemma 3.4. [13] Let X be ED. Then for a subset W 
of X, the following are equivalent: 

(i) 	 W is RS-compact relative to X. 
(ii) 	 W is S-closed relative to X. 
(iii) 	W is N-closed relative to X. 
(iv) 	 W is QHC relative to X. 

Theorem 3.6. If f: (X, T)~(Y, 0', I) is a function, 
(Y,a) is compact and ED, then the following are 
equivalent: 

(i) 	 f is IfC-continuous. 
(ii) 	 f is continuous. 
(iii) 	f is C-continuous. 
(iv) 	 f is H-continuous. 
(v) 	 f is N-continuous. 
(vi) 	f is RS-continuous. 
(vii) f is s-continuous. 

Proof. By using Theorem 3.5 and Lemma 3.4. 

For any topological space (Y,a) we may take all 
open sets having In-compact complements as a base 
for a new topology 0'1 on Y. Likewise, the collection 
of all open sets having H-closed (resp. N-closed, 
S-closed, s-closed, compact) complements may be 
used as a base to generate other topologies 0' * 
(resp. rr, as, cr, 0.) on Y. 

Remark 3.3. One can notice that: 

(i) 	 0. C rr C 0'* C 0'1 C 0'. 

(ii) 	 cr C 0: C 0'* C 0'1 C 0'. 

(iii) 	cr C as C 0'* C 0'1 C 0'. 

Remark 3.4. It is clear that spaces (Y,a), (Y,a 1
), 

(Y,a*), (Y,rr), (Y,as) and (Y,cr) as shown in 
Figure 2 represents a complete distributive lattice. 

(Y, a) 

(Y,aI ) 

(Y, as (Y, cr) 

(Y, a"') 

Figure 2. 

The proofs of the following results are straight­
forward. 

Theorem 3.7. A function f: (X, T)~(Y, 0', I) is IC­
continuotIs iff f: (X, T)~(Y, 0'1) is continuous. 

Theorem 3.8. Let f: (X, T)~(Y, 0', I) be IC-con­
tinuous. If f: (X, T)~(Y, 0'1) is closed (resp. open, 
then f: (X, T)~(Y, 0', I) is closed (resp. open). 

Theorem 3.9. For any function f: (X, T)~(Y, 0', I), 
we have: 

(i) 	 If f is IC-continuous, and A C X, then f IA is 
IC-continuous. 

(ii) 	 If {ValuEd} is an open cover of X and 
fa fl Va is IC-continuous for each uE d, 
then f is IC-continuous. 

Theorem 3.10. Let f: (X,T)~(Y,a,I) and 
g: (Y, a)~(Z, f, J) be functions, where I and J 
are two ideals on Y and Z respectively, Then the 
following statements hold. 

(i) 	 If f is continuous, and g is IC-continuous, then 
gof is IC-continuous. 

(ii) 	 If f is surjective (open or closed) and gof is 
IC-continuous, then g is IC-continuous. 

(iii) 	 If f is a quotient function, then g is IC­
continuous iff gof is IC-continuous. 
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