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ABSTRACT 

The problem considered in this paper is the single product deterministic and 
discrete time-varying demand inventory lot-sizing problem with finite horizon. 
Although several heuristics have been proposed, the effort devoted to reviewing 
and comparing these heuristics is still relatively modest. In this paper we present an 
extensive review of the current literature related to the above problem and propose 
new simple heuristics that are based on straightforward modifications of existing 
heuristics. We conduct an extensive assessment of the effectiveness, in terms of the 
cost deviation from optimality and computational time, of thirteen heuristics. We 
also report the results of 5400 randomly generated problems under different 
demand patterns and cost structures. Finally, we recommend two computational 
effective heuristics for determining near-optimal ordering schedules. 

*To whom correspondence should be addressed. 


July 1992 The Arabian Journal for Science and Engineering, Volume 17, Number 3. 387 




M. A. Hariga and A. A. Alyan 

THE DYNAMIC LOT-SIZING PROBLEM (DLSP): REVIEW, EXTENSION, 
AND COMPARISONS 

1. INTRODUCTION 

Over the past years, several authors have consid
ered the problem of determining the ordering quan
tities over a known and fixed planning horizon for a 
single product when its demand is deterministic, 
time-varying, and occurs at discrete equally spaced 
points in time. The relaxation of the constant 
demand approximation, which is encountered in 
most classical inventory models, allows the problem 
to cover a wide variety of practical industrial engi
neering situations. In inventory systems with 
dependent demand-items (material requirement 
planning systems: MRP), lot-sizing techniques have 
played a major role in setting the reorder points and 
the ordering/production quantities for materials, 
parts, components, and subassemblies which form 
the product structure of the end item. Moreover, 
most MRP softwares include a module for the selec
tion of the lot-sizing technique to be used. In a 
production to contract situation, where certain 
quantities for each final product have to be delivered 
to the customer on specified dates, it is required to 
determine the least-cost production schedule (date 
and production quantities) to meet the customer 
requirement. Finally, lot-sizing techniques can also 
be used in preventive maintenance situations to 
determine the parts purchasing schedules when the 
maintenance timings are accurately known. Here
after, we refer to this problem as the dynamic lot
sizing problem, DLSP. 

After the pioneering work of Wagner and Whit in 
[1], WW, numerous papers have appeared in the 
literature focusing on heuristic methods. Although 
Ww provided an optimal solution to the problem, 
their algorithm was not used extensively in practice 
because its mathematical complexity made it diffi
cult to grasp for practitioners. Other reasons for the 
unpopularity of the WW algorithm are its computer 
implementation cost in terms of time and storage, 
besides its sensitivity to the length of the planning 
horizon. As a result, a large number of heuristic 
procedures have been proposed to overcome the 
shortcomings of the WW algorithm. Some of these 
authors [2-7] have additionally compared their heu
ristics to existing ones in terms of cost deviation from 
optimality. Other authors [8, 9] have devoted their 
entire papers to the review and comparison of 
various dynamic lot-sizing heuristics. However, we 

believe that the effort expended in this respect is still 
relatively modest since the reviews were not up-to
date and the comparisons were not exhaustive. All 
the comparisons were based on the demand patterns 
and cost structures provided by Berry [9]. Therefore, 
it would be misleading to draw conclusions based on 
five demand patterns over a fixed planning horizon 
of 12 periods. 

In this paper, we will provide an up-to-date review 
of the DLSP literature and will propose new heuris
tics. Moreover, we will conduct an extensive com
parison based on a more general framework of 
demand patterns and cost structures. In the next 
Section, we will review the current status of DLSP 
literature. In the third Section, we will propose new 
heuristics for DLSP. Section 4 describes the experi
ments undertaken and summarizes the results. 
Finally, Section 5 concludes the paper. 

Before presenting the mathematical model, we 
will make the following assumptions that are com
monly used in the DLSP literature: 

The demand is known and has a discrete time

varying features. 

The planning horizon has a known and fixed length. 

The periods that subdivide the planning horizon 

have equal duration. 

The initial and final inventories are set equal to 

zero. 

The production rate is infinite in each period. 

The orders are not allowed to be split. 

The holding cost is calculated for the quantity left 

at the end of the period. 

The holding and ordering costs are known and 

constant over time. 

The unit purchasing cost is time invariant and is 

not included in the model below. 

The demand quantity for each period must be 

available at the beginning of the period so that 

shortage is avoided. 

The delivery lead time is set equal to zero. 

The supplier does not offer quantity discounts. 


Furthermore, in deriving the mathematical model, 
the following notation is used: 

N = length of the planning horizon, 
A = ordering cost which is independent of the 

quantity ordered, 
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h 	 = cost of holding one unit of the product for 
one period, 

D, demand at period i, i = 1, ... , N, 
I I 	 = amount in stock by the end of period 

I, 	 I 1, ... , N, 
Q i = quantity ordered at period i, i = 1, ... , N. 

Given tha above stated assumptions and notation, 
the D LSP can be presented mathematically as 
follows: 

Min L
N 

(alA +h Ii) . 
1= 1 

Subject to: 

I i - 1 + QI- II = Di 1, ... ,N, 

11 ;;:::0, QI;;:::O i = 1, ... ,N, 

0 if Qi = 0 
{ 	 i = 1, ... ,N, 

a l 1 if QI> 0 

10 = O. 

The first type of constraint represents the inven
tory balance equation and guarantees that the 
demand quantity for each period is satisfied without 
shortage. 

2. 	 REVIEW OF DYNAMIC LOT·SIZING 
TECHNIQUES 

Since the paper of Wagner and Whitin [1], the 
area of inventory theory with dynamic lot-sizing and 
discrete demand has witnessed an explosive growth 
in the number of heuristics that claim to be computa
tionally efficient and assure near-optimal solutions. 
It would therefore be impossible to review all the 
literature of DLSP. However, our purpose is to 
present the best known and most recent heuristics. 
We begin our review with the Wagner and Whitin 
algorithm and then present the most cited heuristics 
in the literature. 

2.1. Wagner and Whitin Algorithm 

The WW algorithm is basically a dynamic pro
gramming procedure that uses the following recur
sion equation in a forward fashion [10]: 

Fk = Min [Fj+ Mid, 
o-sj-sk 

with 
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and where Fk is the minimum total inventory costs 
(ordering plus holding) for periods 1, 2, ... , k, when 
the ending inventory of period k is zero, and Mik is 
the total inventory costs incurred in periods j through 
k, i.e., 

k 

Mik A+hL(i-j)D i • 
i=j 

The main drawback of the algorithm is its compu
tational complexity since it requires lengthy calcula
tions to be performed. However, recently Evans [11] 
and Bahl and Taj [12] developed efficient computer 
programs that can solve large inventory dynamic 
problems in only a few seconds. Bahl and Taj 
included the setup cost horizon theorem [13] in their 
code and showed empirically that it is faster by a 
factor of N / 4 in the best case and slower by only 
1-2% in the worst case than Evans code. For this 
reason, we adopted the Bahl and Taj code in our 
computational comparison. 

2.2. Silver and Meal Heuristic (SM) 

The SM heuristic [14] determines the ordering lot 
size that covers an integer number of periods of 
demand such that the total inventory costs per unit 
of time are minimized. The heuristic selects the first 
value of T such that 

T+1 	 T 

A+h L (i-I) Di A+hL(i-l)Di 
____~i=~l~______ > i= 1 

T+1 	 T 

where T represents the number of periods of demand 
that should be satisfied by the current period's order. 
In our computer code we implemented the following 
stopping rule, which can be easily derived from the 
above inequality, to reduce the computational time 

T A 
T2 DT+1 - L (i 1) Di > h . 

i= 1 

2.3. Marginal Cost Approach (MCA) 

Groff [4] developed a simple marginal cost heuris
tic based on a theoretically sound rule. He stated: 

The economic order quantity rule is established by 
increasing the lot as long as the marginal savings in 
ordering cost are greater than the marginal cost in 
inventory holding cost. Marginal costs are the effect of 
the final unit or dollar added. Thus, the optimal lot size 
is reached when the decrease in marginal cost just 
equals the marginal increase. 
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Using this rule and the approximation 

T T T 

i~(i-l)Di ="2 i~Di' 

Groff determined that the Tth period of demand will 
be added to the lot ordered in the current period if 

2A 
T(T-l) DT < h' 

Note that this inequality can be obtained from the 
SM stopping rule by using the above approximation. 

2.4. Part Period Algorithm (PP A) 

The PP A procedure [15] determines the ordering 
lot size that includes the largest number of periods of 
demand such that the accumulated holding cost is less 
than or equal to the ordering cost. Mathematically, 
this condition can be restated as finding the largest 
value of T satisfying 

T A 
i~ (i - 1) D i :s Ii ' 

where Alh is called the economic part period, and 

ct, (i-I) Di) 
is called the accumulated part periods. 

2.S. Incremental Part Period Algorithm (IPPA) 

In contrast to PP A which increases an order as 
long as the accumulated holding cost is not greater 
than the ordering cost, the incremental part period 
algorithm [5] includes the demand for period T in 
the current order if the incremental holding cost of 
that period's demand does not exceed the ordering 
cost. Therefore, the demand for period T will be 
covered by the current ordering lot size if 

A 
(T-l) DT :s Ii' 

where (T - 1) D T is called the incremental part 
periods. 

2.6. Least Unit Cost (LUC) 

As the name of the heuristic implies, the objective 
is to determine the ordering lot size that covers an 
integer number of periods of demand such that the 
total inventory costs per unit demand are minimized 

[16]. This local-optimal number of periods is obtained 
by finding the first value of T such that 

T+l T 

A+h L (i-I) D; A+h L (i-I) Di 
i-I i-I 

----~T+~l------- > ----~T~------
L Di LDi 
i=1 i=1 

To reduce the computational time of our computer 
code, we used another stopping rule that can be easily 
derived from the above inequality. This stopping rule 
is as follows: 

T A 
i~ (T+ 1 - i) Di > Ii . 

2.7. Economic Order Quantity (EOQ) 

This heuristic is based on the static economic 
order quantity formula 

EOQ = t~t5, 
using the average demand over the planning horizon. 
In this heuristic, the demand is accumulated until it 
gets close to the EOQ value. Then, an order of 

units is placed, where T is the number of the period 
that gave the closest accumulated demand to EOQ 
and t is the number of the current period. The order 
quantity in any period is selected in much the same 
way as WW algorithm since it is equal to zero or to 
the exact demand of one or more of its succeeding 
periods, including that period [3]. 

2.8. Periodic Order Quantity (POQ) 

POQ is also based on the EOQ formula since the 
fixed number of periods of demand, T, to be covered 
by each ordering lot size is computed by dividing the 
EOQ value by the average demand over the planning 
horizon and rounding the result to the nearest integer 
[17], i.e., 

T=[j~~J. 

where [x] is the nearest integer to x. 

2.9. Lot For Lot (LFL) 

The LFL heuristic is the simplest procedure for 
determining a solution to the dynamic lot sizing 
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problem [18]. Orders are placed at each period in 
the exact quantity to satisfy the demand. As a conse
quence, no inventory will be held at any period and 
hence inventory holding cost is zero. The total costs 
are equal to the ordering cost multiplied by the 
number of periods with non-zero demand. 

2.10. Bookbinder and Tan Heuristics (HI, H2) 

Two lot sizing heuristics have been proposed by 
Bookbinder and Tan [2]. The first (HI) simplifies 
the stopping rule of SM heuristic whereas the second 
(H2) combines SM and LUC stopping rules into one 
complicated criterion function. 

After examining the SM stopping heuristic for 
some difficult cases of sharply decreasing demand, 
they noticed that if the term 

is discarded from the SM stopping rule, the new 
heuristic will give better results for the special case of 
a sharply decreasing demand pattern. Moreover, 
using only the periods with non-zero demand, they 
set the stopping rule for HI as 

where Z T is the number of non-zero demand periods 
in the interval [1, T]. 

Previous research studies on DLSP have shown 
that the SM heuristic does not perform well when 
demand is sharply decreasing. For this case, the 
LUC heuristic is preferred. The objective of the 
Bookbinder and Tan heuristic H2 is to take advan
tage of the merits of both the SM and LUC heuristics 
and to eliminate some drawbacks of each heuristic. 
To this end, they proposed a complicated criterion 
function F(T) composed of two portions. The first 
portion retains the benefits of SM and the second 
one retains the benefits of LUC. 

T [(i-I) i ] 

A 	 h.L -Z. D j f: D j 
1=2 1 J-l

F(T) 	 Tz+ 
T L Di 

i= 1 

3. EXTENSIONS 

In this section, we propose four new simple heu
ristics that are based on straightforward modifica
tions of some existing heuristics. We developed these 

heuristics in the hope of eliminating the deficiencies 
of the original ones under certain severe demand 
conditions. The first heuristic we suggest is based on 
the POQ heuristic. The second one is a straight 
modification of the SM heuristic by considering only 
the periods with positive demand. The last two heu
ristics combine SM and LUC in a much simpler way 
than Bookbinder and Tan. 

3.1. Modified Periodic Order Quantity (MPOQ) 

In this heuristic, we devised a new simple approach 
to find the fixed number of periods of demand, T, to 
be covered by each ordering lot size. Using the 
average demand over the planning horizon, the 
average total inventory cost per unit time can be 
written as 

A 
f(T) = T + 1f2 hDT. 

Since T can take only discrete values, the value of T 
that minimizes f(T) can be found by the first dif
ference approach, i.e., T should satisfy: 

f(T-l) '5: f(T) < f(T+ 1) . 

Substituting f(T) by its expression yields: 

2A 
T(T-l) '5: hD < T(T+ 1) . 

3.2. Modified Silver and Meal Heuristic (MSM) 

This heuristic is based on a simple modification of 
SM procedure by considering only non-zero demand 
periods. The heuristic determines the integer number 
of periods of demand to be covered by the ordering 
lot size such that the total inventory costs per period 
of positive demand are minimized. Under this 
new criterion function, the stopping rule of SM is 
modified to be: 

T A 
Z T TD T +1 - i~ (i-I) Di > h ' 

where Z T is the number of periods with non-zero 
demand in the first T periods. 

3.3. 	Combined SM and LUC Heuristic 1 
(CSMLUCl) 

The SM and LUC heuristics share the same proce
dure with slight differences. In this suggested com
bined SM and LUC heuristic, an order is placed to 
cover the demand for an integer number of periods, 
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T, corresponding to the maximum reorder intervals 
of both heuristics. If Tl and T2 are the reorder inter
vals that satisfy the stopping rules of SM and LUC, 
respectively, then T = Max{T1, T2}. Hopefully, at 
the expense of more computational time, some of 
the drawbacks of SM and LUC heuristics will be 
eliminated. 

3.4. Combined SM and LUC Heuristic 2 
(CSMLUC2) 

In this second combined heuristic, the ordering lot 
size will cover an integer number of periods of 
demand equal to the minimum reorder intervals of 
SM and LUC, i.e., T Min{T1, T2 }. 

4. COMPARATIVE STUDY 

A comparative study was designed to investigate 
the effectiveness of the different lot sizing techniques 
introduced in the two previous sections. We consider 
earlier comparative studies to be inadequate because 
they are limited to a few lot sizing techniques and are 
based on restricted demand patterns and cost struc
tures. Furthermore, the performance of each heuris
tic was evaluated only by the cost deviation from 
optimality. Using five demand patterns over a 
planning horizon of 12 periods, Berry [9] studied the 
cost performance of the EOQ, POQ, and PPA heu
ristics. His study was based on two experimental 
factors: the coefficient of variation which measures 
the degree of period to period demand variation, and 
the ratio of the ordering cost to the inventory holding 
cost per unit of time. Groff [4] evaluated the cost 
performance of EOQ, POQ, PPA, and MCA heu
ristics based on the same demand patterns and cost 
structure of Berry. Karni [7] added a new demand 
pattern to Berry's data and compared EOQ and the 
finiform order quantity, UOQ, heuristics. We did 
not include the UOQ technique in our comparisons 
because it is time consuming, since it evaluates many 
ordering plans. Moreover, for each plan it has to 
time phase the UOQ value, where the UOQ of plan 
k is equal to the total demand over the planning 
horizon divided by k. Using only the four demand 
patterns of Berry's data, Freeland and Golley [6] 
evaluated the cost effectiveness of the LFL, EOQ, 
POQ, PPA, IPPA, and SM heuristics. Mitra et al. 
[3] proposed two heuristics that are modifications to 
the standard economic order quantity and LUC 
techniques. Then, they compared their heuristics to 
the corresponding ones using the same demand 
patterns of Berry. Following the same experimental 

design framework as Karni, Boe, and Yilmaz [5] 
investigated the cost performance of UOQ and 
IPP A. Bookbinder and Tan [2] compared their two 
heuristics with the SM, MCA, LUC, POQ, and 
EOQ techniques, relying also on the same demand 
patterns of Berry. Finally, Ritchie and Tsado [8] 
used the demand patterns that are generated from 
three normal distributions each with a mean of 18 
and standard deviations of 4.14, 20.52, and 46.44, 
respectively. They also used three other types of 
demand that exhibit life cycle patterns of growth, 
stationary, and decline phases. This last groups of 
demand patterns each have a mean of 53 and coeffi
cients of variation of 0.5, 1.53, and 2.11, respectively. 
The planning horizon for both cases has a length of 
156 periods. In their experiments they used the aver
age time between orders, TBO, as an experimental 
factor instead of A/h. TBO is defined as the EOQ 
value divided by the average demand over the planning 
horizon and it measures the number of period 
demands covered by each order. They considered 
seven values of TBO totalling forty two problems to 
simulate for each of the lot sizing techniques (SM, 
MCA, PPA, IPPA, EOQ, the modified LUC pro
posed by Mitra et al., and the modified IPP A sug
gested by Gaither [19]). The modified IPPA was not 
used in our experiment since, as noticed by Ritchie 
and Tsado, it increases the complexity of using the 
original technique by introducing a correction factor 
that depends on the coefficient variation and A/h. 

4.1. Experimental Framework 

In our comparative study, all techniques discussed 
in the previous sections were assessed in terms of 
two performance measures: 

The percentage increase in total cost above the 
optimal cost of the WW algorithm. The cost effi
ciency of the kth lot sizing procedures is then 
measured by: 

Total Inventory Costs (k) 

CINC(k) = 100 Total Inventory Costs (WW) 
Total Inventory Costs (WW) 

The computation time, which is the CPU time 
required to compute the ordering plan and its 
associated costs. 

A BASIC code was written and implemented on 
an 80386 IBM compatible machine running at 
25 MHz without a math co-processor. Our experi
ments were carried out by varying five experimental 
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design factors to generate different problem settings 
on which the thirteen heuristics could be compared 
in terms of the above two performance measures. 
The five factors were: 

1. 	 The coefficient of variation of demand (CV). 
2. 	 The A/h ratio (A/h). 
3. 	 The percentage number of orders with zero 

demand over the planning horizon (PZ). 
4. 	 The length of the planning horizon (N). 
5. 	 The demand pattern (DP). 

All these factors have been cited in the literature 
as having an effect on the lot sizing cost efficiency. 
However, they have not been used together in any 
research work to show their impact on lot sizing 
technique performances. The values of the experi
mental design factors used in our simulation are 
shown in Table 1. The seven demand patterns 
employed in our experiments deserve some explana
tions which will be provided later. 

Table 1. Values of the Experimental Factors. 

Factors 	 Values 

CV 0.1 0.5 1.5 2 3 
Alh 10 50 100 200 300 500 
PZ 0 10 20 50 80 90 
N 12 52 104 156 366 
DP LN U LI EI LD ED S TS 

4.2. Experimental Design 

Three different experiments were carried out with 
ten replications for each problem setting. The gener
ation of the demand patterns differed from one 
experiment to another. In the first experiment we 
considered only demand patterns with positive 
values over the planning horizon. For this reason, 
we generated the demand for each period from a 
lognormal distribution LN with median 100 and the 
square of the shape parameter equal to 10g(1 + CV2

). 

The ordering cost A was also generated randomly from 
a uniform distribution in the interval [1, 10 A/h]. 
Then, based on this generated value, we computed 
the unit inventory holding cost per unit of time, h. 
The experimental factor settings (CV, A/h, and N) 
selected for this first experiment resulted in 180 
experimental problems. Each problem was replicated 
10 times totalling 1800 runs for each heuristic. 

For the second experiment, the values of PZ, A/h, 
and N shown in Table 1 were used. Each problem 

setting was replicated ten times resulting also in 1800 
runs for each technique. For periods with positive 
demand, the demand was generated from a discrete 
uniform distribution, U, between 100 and 1000. The 
periods with zero demand were selected randomly 
in such a way that their total number was equal to 
(N PZ)/100. A and h were generated in the same 
way as in the first experiment. 

Finally, in the last experiment different demand 
patterns that are often encountered in real-life 
inventory and production planning environment 
were tried. These demand patterns were: 

1. 	 Linearly increasing demand, LI: 
Di 10+10i+x, 

1,2, ... , Nand x=u (0,5). 

2. 	 Linearly decreasing demand, LD: 
Di 15N+10-10i+x, 

1,2, ... ,Nandx=u (-10,5). 

3. 	 Exponentially increasing demand, EI: 
Di 	 100 eO.OJ i + X, 

1,2, ... , Nand x=u (0,20). 

4. 	 Exponentially decreasing demand, DI: 
Di = 5+3N e-O.05i +x, 

1,2, ... , Nand x=u (-5,0). 

5. 	 Seasonal demand, S: 

D, 	 1000 ( 1+ sin e~N)) +x, 

1,2, ... , Nand x=u (0,10). 

6. 	 Trend-Seasonal demand, TS: 

D, = 100 (1+ i) (2+ sin C~N)) + x, 

i = 	1,2,... , Nand x=u (0,10). 

A and h were also generated in the same manner as 
in the previous two experiments. 

In order to find mathematical models explaining 
the behavior of the performance measures (CINC 
and CPU) as a function of the experimental factors, 
we combined the results of the three experiments 
(5400 runs) in one data file to use it as input to the 
REG procedure of the Statistical Analysis System 
(SAS). Several regression models were tried for 
each heuristic and we selected the one with the most 
significant coefficient estimates at the 5% level and 
with the highest coefficient of determination, R2. 
We did not use the experimental factors CV and PZ 
together in any regression model because they will 
obviously be correlated. Instead, in one of the 
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models, we used a two-stage linear regression where 
in the first stage we regress CV as a function of PZ, 
then we used the predicted CV as an independent 
variable in the next stage. 

4.3. Experimental Results 

In this section we present the cost deviation and 
CPU time results of 5400 experimental runs. Tables 
2 to 7 give the maximum, average, and standard 
deviation of the percentage increase in the total 

inventory costs above the optimal solution. Tables 2 
to 6 show the variation of these measurements as a 
function of each experimental factor, whereas in 
Table 7 they are calculated over the entire set of 
problems. To provide some further indicators about 
the relative cost performance of each heuristic, 
Figure 1 gives the frequency distribution of CINC in 
pie diagrams. These pie diagrams show that MCA, 
MSM, and H2 solved 3227, 4243, and 3260 of the 
5400 experimental runs to optimality, respectively. 

Table 2. Maximum, Average, and Standard Deviation of CINC as a Function of N. 

Length of Planning Horizon N 

Max. 
12 

Avr. S.D. Max. 
52 

Avr. S.D. 
104 

Max. Avr. S.D. Max. 
156 

Avr. S.D. Max. 
366 
Avr. S.D. 

LFL 238.0 24.0 38.8 161.8 19.9 31.8 193.2 20.2 34.4 228.8 21.4 38.3 321.4 24.3 49.6 
SM 12.8 0.6 1.5 7.3 0.5 1.1 5.5 0.5 0.9 5.8 0.6 0.9 4.6 0.6 1.0 
MSM 12.8 0.6 1.5 7.3 0.5 1.0 5.5 0.5 0.9 5.8 0.5 0.9 4.5 0.6 0.9 
H2 10.2 0.6 1.6 8.6 0.6 1.2 6.5 0.6 1.1 5.4 0.6 1.0 4.8 0.6 1.0 
CSMLUC1 974.1 9.2 41.3 270.1 7.5 21.4 205.9 7.5 17.4 155.1 7.3 16.7 362.3 8.0 19.8 
CSMLUC2 43.8 4.4 7.4 36.6 4.5 7.0 33.5 4.3 6.8 33.8 4.3 6.7 27.4 4.3 6.8 
EOQ 226.7 10.6 20.2 237.0 14.0 19.3 116.9 15.1 15.3 111.2 16.4 16.4 148.5 20.7 21.1 
LUC 1134.2 23.3 70.1 387.2 25.4 48.7 489.3 23.7 46.2 627.8 24.3 50.1 480.9 23.6 47.4 
POQ 129.9 6.7 13.5 89.5 9.3 14.3 126.8 10.6 15.8 118.7 11.7 17.5 121.9 14.8 25.8 
MPOQ 129.9 7.0 14.4 154.3 9.6 15.5 154.3 10.7 16.3 118.7 11.9 17.7 121.9 14.9 25.7 
PPA 19.2 0.9 2.3 12.9 0.9 1.7 9.6 0.8 1.6 9.3 0.9 1.7 7.9 0.9 1.6 
IPPA 48.4 2.9 7.3 90.6 2.5 8.2 94.8 2.9 9.9 108.4 3.2 11.5 98.4 3.5 12.0 
MCA 11.1 0.6 1.6 8.7 0.5 1.1 5.1 0.5 0.9 4.9 0.5 0.9 3.8 0.6 0.9 

Table 3. Maximum, Average, and Standard Deviation of CINC as a Function of ev. 
Coefficient of Variation CV 

Max. 
0.1 

Avr. S.D. Max. 
0.5 

Avr. S.D. 
1.0 

Max. Avr. S.D. 
1.5 

Max. Avr. S.D. Max. 
2.0 

Avr. S.D. Max. 
3.0 

Avr. S.D. 

LFL 92.4 29.7 32.9 117.0 31.8 33.9 119.1 38.4 34.6 120.7 40.6 34.0 128.0 42.3 33.2 151.7 45.4 33.5 
SM 4.3 0.4 0.5 7.7 1.3 1.5 7.2 1.5 1.4 8.5 1.4 1.4 8.6 1.4 1.5 6.4 1.4 1.3 
MSM 4.3 0.4 0.5 7.7 1.3 1.5 7.2 1.5 1.4 8.5 1.4 1.4 8.6 1.4 1.5 6.4 1.4 1.3 
H2 5.4 0.4 0.6 8.8 1.4 1.6 7.2 1.7 1.6 9.5 1.7 1.6 8.6 1.7 1.7 9.5 1.7 1.7 
CSMLUC1 10.7 0.7 1.2 29.7 4.5 4.8 75.2 11.7 10.8 158.0 20.2 21.7 207.1 28.7 30.2 974.1 54.6 78.1 
CSMLUC2 4.3 0.7 0.9 28.5 4.6 3.7 31.1 9.5 6.5 43.8 12.7 7.8 42.9 14.8 8.5 41.5 17.2 9.3 
EOQ 6.5 0.8 1.1 28.1 6.7 4.7 37.3 14.3 7.5 79.2 21.1 9.7 70.7 27.7 11.1 102.1 37.8 14.6 
LUC 6.2 1.1 1.4 49.3 10.6 8.2 91.4 26.7 16.6 186.1 53.2 32.5 489.3 85.7 55.3 1134 155.9 122.9 
POQ 4.5 1.0 1.2 22.3 6.2 5.1 41.4 14.3 9.9 59.3 22.9 15.5 74.5 28.4 19.2 129.9 37.7 26.4 
MPOQ 5.7 1.0 1.2 30.3 6.1 5.2 41.4 14.2 9.8 59.3 22.6 15.3 128.6 28.4 19.7 154.3 37.6 27.1 
PPA 3.5 0.4 0.6 9.5 2.0 2.2 17.5 2.7 3.0 19.2 2.6 2.7 17.0 2.7 2.8 11.0 2.2 2.2 
IPPA 27.3 5.7 7.2 24.2 4.0 5.0 21.6 2.9 3.4 13.1 2.3 2.7 18.7 1.8 2.3 9.4 1.4 1.6 
MCA 5.4 0.4 0.6 8.8 1.3 1.6 9.5 1.5 1.6 11.1 1.5 1.6 8.7 1.3 1.5 9.5 1.2 1.3 
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Figure 1. Pie Diagram of CINC Distribution for All Heuristics. 
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Table 2 shows that the cost efficiency of most heu
ristics does not depend on the length of the planning 
horizon. This is confirmed by our regression analysis 
since the coefficient of N was not significant at the 
5% level for all the regression models tested. The 
only exception was EOQ heuristic for which the cost 
performance gets worse for large N. In Table 3, it 
can be noticed that for most heuristics the cost per
formance is worsened as CV increases except for 
IPP A heuristic. This fact has also been confirmed by 

our regression analysis. Moreover, a drastic deterio
ration of the CSMLUC1, EOQ, LUC, POQ, and 
MPOQ cost performances for larg~ CV can be 
observed from the same table. For large PZ, the cost 
deviation from optimality is improved for most heu
ristics except for EOQ, POQ, and MPOQ techniques. 
This is shown in Table 4 from which we can also 
observe that MSM outperforms SM for large PZ. 
The Alh factor has the same impact as the CV factor 
on most heuristics with the only exception noticed 

Table 4. Maximum, Average, and Standard Deviation of CINC as a Function of PZ. 

Percent of Zero Demand Periods PZ 

Max. 
0 

Avr. S.D. Max. 
10 

Avr. S.D. 
20 

Max. Avr. S.D. 
50 

Max. Avr. S.D. Max. 
80 

Avr. S.D. Max. 
90 

Avr. S.D. 

LFL 238.0 26.0 36.3 314.3 9.4 36.9 23.1 3.6 5.3 29.3 2.4 4.2 24.5 0.8 2.2 34.7 0.6 2.5 
SM 12.8 0.7 1.2 4.5 0.3 0.7 3.4 0.2 0.5 3.4 0.2 0.5 2.9 0.1 0.4 7.1 0.1 0.6 
MSM 12.8 0.7 1.2 4.5 0.3 0.6 3.4 0.2 0.4 1.5 0.1 0.3 2.7 0.0 0.2 3.4 0.0 0.2 
H2 10.2 0.8 1.4 6.4 0.3 0.8 3.4 0.2 0.5 2.2 0.1 0.3 2.7 0.0 0.2 3.4 0.0 0.2 
CSMLUCl 974.1 10.0 29.4 83.4 3.1 7.3 33.7 3.4 5.1 35.4 4.0 6.5 85.1 3.3 9.5 64.8 1.3 5.9 
CSMLUC2 43.8 5.5 7.8 15.4 2.8 3.7 16.8 2.5 3.6 24.6 1.9 3.2 13.7 0.6 1.6 12.0 0.4 1.3 
EOQ 102.1 13.6 13.7 140.6 10.0 12.9 40.3 10.9 8.6 101.5 23.3 20.2 168.0 23.2 31.3 237.0 17.6 36.2 
LUC 1134 31.7 61.8 83.4 10.3 12.4 60.2 9.6 11.3 51.0 7.2 9.9 85.1 4.1 10.2 64.8 1.5 6.0 
POQ 129.9 10.7 16.3 120.5 6.4 16.0 25.2 3.8 5.7 35.3 3.3 6.1 63.7 6.4 10.5 126.8 10.6 19.0 
MPOQ 154.3 10.7 16.4 120.5 6.5 16.1 28.8 4.2 6.6 36.9 5.0 8.7 88.3 7.3 12.3 154.3 12.4 23.0 
PPA 19.2 1.1 2.0 6.4 0.4 0.9 8.3 0.3 0.9 2.3 0.1 0.4 2.7 0.0 0.2 3.4 0.0 0.2 
IPPA 94.8 3.0 8.1 95.0 1.6 10.1 3.4 0.2 0.4 1.4 0.1 0.2 1.6 0.0 0.2 3.4 0.0 0.2 
MCA 11.1 0.7 1.2 5.8 0.3 0.7 3.4 0.2 0.5 3.4 0.2 0.4 2.9 0.1 0.4 6.0 0.0 0.4 

Table 5. Maximum, Average, and Standard Deviation of CINC as a Function of Alh. 

Alh Ratio 

Max. 
10 

Avr. S.D. Max. 
50 

Avr. S.D. Max. 
100 

Avr. S.D. Max. 
200 
Avr. S.D. Max. 

300 
Avr. S.D. Max. 

500 
Avr. S.D. 

LFL 42.6 1.1 4.7 110.5 5.9 14.1 153.2 11.8 0.9 205.6 24.4 33.4 249.5 35.1 43.2 321.4 53.5 59.3 
9 

SM 1.9 0.0 0.2 3.9 0.2 0.5 8.5 0.9 0.5 10.2 0.7 1.2 12.8 0.9 1.4 8.6 1.1 1.4 
MSM 2.0 0.0 0.2 3.9 0.2 0.4 8.5 0.9 0.5 10.2 0.7 1.2 12.8 0.9 1.4 8.6 1.0 1.3 
H2 2.3 0.0 0.2 4.7 0.2 0.5 8.5 1.0 0.5 10.2 0.8 1.4 9.5 1.0 1.5 8.6 1.1 1.5 
CSMLUC1 331.9 1.5 16.6 365.9 6.1 22.2 362.3 26.7 9.1 205.6 9.2 19.8 297.8 10.1 20.7 974.1 11.4 37.4 
CSMLUC2 8.1 0.4 1.0 33.3 2.3 4.2 42.9 6.5 4.1 41.5 5.6 7.9 35.5 6.4 7.8 43.8 7.6 8.3 
EOQ 148.5 9.7 20.5 102.1 13.0 16.8 189.3 16.2 14.0 237.0 17.0 19.1 226.7 19.2 20.4 185.3 19.4 18.1 
LUC 1134 20.8 74.4 627.8 28.8 63.0 387.2 50.2 25.3 348.8 25.1 42.0 297.8 22.3 35.1 974.1 22.0 44.2 
POQ 42.6 1.1 4.7 110.5 5.5 13.9 121.9 17.7 10.5 115.7 14.3 21.0 126.8 15.4 20.7 129.9 16.8 19.6 
MPOQ 42.6 1.1 4.7 110.6 5.7 14.3 121.9 17.8 10.5 154.3 14.5 21.5 126.8 16.1 21.1 154.3 17.1 20.2 
PPA 4.7 0.1 0.3 7.4 0.2 0.6 9.5 1.2 0.7 17.5 1.1 1.9 17.0 1.4 2.2 19.2 1.8 2.5 
IPPA 6.5 0.1 0.6 23.0 0.6 2.5 32.7 4.3 1.3 51.3 3.0 7.9 74.2 4.7 11.0 108.4 8.3 18.4 
MCA 1.9 0.0 0.2 4.7 0.2 0.5 9.5 0.9 0.5 10.2 0.7 1.3 11.1 0.9 1.4 8.7 1.0 1.3 
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for LUC procedure. The result of the third experi
ment which is reported in Table 6 shows that all heu
ristics behaved poorly under sharply decreasing 
demand patterns. Finally, the best tested regression 
models that explain the variation of CINC as a func
tion of the experimental factors for each heuristic are 
presented in Figure 2. All the coefficients of the 
experimental factors reported in this figure are 
statistically significant at the 5 % level. 

Based on the cost deviation from optimality, we 
conclude that, on the average, MCA and MSM 
techniques performed best. The second best heu
ristics are H2, SM, and PPA, then come IPPA, 
CSMLUC2, CSMLUC1, MPOQ, POQ, EOQ, LFL, 

and LUC in the order listed. This ranking is deduced 
from Table 7 which reports the maximum, average, 
and standard deviation of the cost deviation from 
optimality for all the 5400 runs tested. 

Tables 8 to 12 give indications about the behavior 
of the CPU for each heuristic as a function of the 
experimental factors. The figures shown in Table 12 
are calculated over the 5400 test runs. As it was 
expected, Table 8 shows that the CPU times for all 
procedures, including WW, increase as the length of 
the planning horizon increases. In Table 9, we 
observe that Alh has a negative impact (as Alh 
increases, the running time gets longer) on WW, 
CSMLUC2, and PPA techniques. On the other 

LFL: CINC= 1.24 Alh + 368.74 CV R2 0.5475 
SM: CINC= 0.007 Alh + 1.525 CV R2 = 0.5133 

MSM: CINC 0.007 Alh + 1.54 CV R2 = 0.5062 

H2: CINC 0.005 Alh + 1.34 CV R2 = 0.5043 

CSMLUC1: CINC 6.58 CV R2 0.6135 
CSMLUC2: CINC= 0.006 Alh + 5.38 CV R2 0.6949 
EOQ: CINC =  0.0314 Alh + 6.58 CV R2 0.6365 
LUC: CINC =  0.011 Alh + 18.45 CV k2 = 0.6739 
POQ: CINC 0.006 Alh + 9.148 CV R2 = 0.6652 
MPOQ: CINC 0.0128 Alh + 7.918 CV R2 = 0.6609 

PPA: CINC= 0.005 Alh + 1.26 CV R2 0.5182 
IPPA: CINC= 0.025 Alh + 6.307 IjCV R2 0.4880 
MCA: CINC= 0.005 Alh + 0.938 CV R2 = 0.4887 

Figure 2. CINC Regression Models. 


Table 6. Maximum, Average, and Standard Deviation of CINC for Different Demand Patterns. 


Demand Patterns 

LI EI LD ED S TS 
Max. Avr. S.D. Max. Avr. S.D. Max. Avr. S.D. Max. Avr. S.D. Max. Avr. S.D. Max. Avr. S.D. 

LFL 102.6 11.4 22.3 
SM 2.0 0.1 0.3 
MSM 2.0 0.1 0.3 
H2 3.7 0.1 0.5 
CSMLUC1 5.3 0.3 0.8 
CSMLUC2 6.2 0.3 1.2 
EOQ 24.3 12.2 4.7 
LUC 5.3 0.3 0.8 
POQ 15.4 3.2 3.9 
MPOQ 13.8 3.1 3.5 

79.8 
1.4 
1.4 
1.4 
1.4 
1.4 

27.6 
1.5 

12.4 
12.4 

13.9 
0.0 
0.0 
0.0 
0.0 
0.0 
4.2 
0.0 
1.5 
1.3 

20.6 
0.1 
0.1 
0.1 
0.1 
0.1 
7.6 
0.2 
2.9 
2.7 

80.7 
5.0 
5.0 
4.6 
5.0 
9.6 

10.4 
9.6 
6.3 
6.3 

5.5 
0.3 
0.3 
0.1 
0.3 
0.5 
0.8 
0.5 
0.5 
0.5 

17.0 
0.9 
0.9 
0.5 
0.9 
1.9 
1.9 
1.9 
1.4 
1.4 

321.4 
12.8 
12.8 
10.2 
12.8 
21.8 

148.5 
21.8 

121.9 
121.9 

109.3 
1.3 
1.2 
1.0 
1.4 
2.3 

27.1 
2.5 

34.8 
34.8 

80.4 
1.6 
1.5 
1.2 
1.6 
3.4 

30.9 
3.5 

36.6 
36.6 

17.2 
0.6 
0.6 
1.1 
4.6 

12.1 
64.4 

223.2 
17.2 
17.2 

7.4 
0.1 
0.1 
0.1 
0.9 
4.6 

19.5 
49.6 
7.4 
7.4 

4.5 
0.2 
0.1 
0.2 
1.1 
3.2 

12.3 
51.0 
4.5 
4.5 

0.1 0.0 0.0 
0.0 0.0 0.0 
0.0 0.00.0 
0.0 0.00.0 
1.8 0.1 0.4 
0.1 0.0 0.0 

35.4 15.8 10.6 
0.11.8 0.4 

0.1 0.00.0 
0.1 0.0 0.0 

PPA 4.2 0.2 0.7 0.0 0.2 6.0 0.2 0.7 11.1 1.2 1.3 1.6 0.2 0.0 0.01.5 0.3 0.0 
IPPA 20.7 17.3 1.4 5.4 28.3 1.5 0.3 0.4 0.0 0.01.5 3.9 1.7 108.4 30.1 0.03.4 ! 29.4 

IMCA 2.0 0.1 1.4 0.0 0.1 4.6 0.1 0.6 10.2 1.0 1.2 0.6 0.1 0.0 0.0 0.00.3 0.1 
1 
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hand, it has a positive effect on SM, MS, H2, POQ, 
MPOQ, IPPA, and MCA heuristics. Moreover, it 
has no significant effect on LFL, CSMLUCl, EOQ, 
and LUC methods. The study of the experimental 
results shown in Table 10 does not reveal any clear 
trend in the CPU time as a function of CV. The 
impact of CVon the CPU time can be deduced from 
the linear regression models given in Figure 3. From 
Table 11, we notice that the CPU times for WW, 
CSMLUCl, CSMLUC2, LUC, POQ, and MPOQ 
are increased by an increase of PZ, whereas this 
factor has an opposite effect on the CPU times of 
LFL, SM, MSM, H2, and EOQ heuristics. However, 
no clear trend of variation of CPU time can be 
observed for the remaining approaches. Finally, 
from Table 12, we cannot detect any significant 
change in CPU time with the different demand 
patterns tested in the third experiment. Table 13 
shows that LFL is the most rapid heuristic. However, 
as mentioned above, the cost performance of this 
heuristic was one of the worst compared to other 
heuristics. The second fastest heuristic is IPP A. 

The remaining procedures are ranked in Table 13 
according to their computer time effectiveness. 

Based on the above analysis, we ranked the heu
ristics lexicographically by cost and computer time 
effectiveness, i.e., we ranked them first according to 
the average cost deviation from optimality, then in 
case of tie (close values of average CINC) we ranked 

Table 7. Overall Cost Performance for All Heuristics. 

Cost Increase CINC 
Heuristic 

Maximum Average Std. Dev. 

MCA 11.1 0.5 1.1 

MSM 12.8 0.5 1.1 

H2 10.2 0.6 1.2 

SM 12.8 0.6 1.1 

PPA 19.2 0.9 1.8 

IPPA 108.4 3.0 9.9 

CSMLUC1 43.8 4.4 6.9 

CSMLUC2 974.1 7.9 25.1 

POQ 129.9 10.6 18.1 

MPOQ 154.3 10.8 18.5 

EOQ 237.0 15.4 18.9 

LFL 321.4 22.0 39.1 

LUC 1134.2 24.1 53.3 

them according to the average computer CPU time. 
Overall, MCA is the best heuristic followed by MSM, 
SM, H2, PPA, IPPA, CSMLUC2, CSMLUCl, 
POQ, MPOQ, LFL, and finally LUC. Therefore, we 
recommend to practitioners adopting MCA or MSM 
to obtain a cost- and computationally-effective 
ordering schedule for their dynamic inventory 
planning problems. 

Table 8. Minimum, Maximum, Average, and Standard Deviation of CPU as a Function of N. 

Length of Planning Horizon N 

Max. 
12 

Avr. S.D. Max. 
52 

Avr. S.D. 
104 

Max. Avr. S.D. Max. 
156 

Avr. S.D. Max. 
366 
Avr. S.D. 

WW 0.116 0.072 0.021 1.16 0.446 0.259 3.03 0.971 0.648 4.83 1.49 1.03 12.2 3.66 2.61 
LFL 0.028 0.009 0.006 0.049 0.029 0.007 0.067 0.057 0.004 0.106 0.085 0.009 0.022 0.193 0.012 
SM 0.053 0.030 0.009 0.165 0.133 0.013 0.331 0.265 0.024 0.451 0.396 0.036 1.04 0.921 0.080 
MSM 0.057 0.037 0.007 0.180 0.149 0.014 0.347 0.299 0.026 0.502 0.444 0.037 1.16 1.03 0.088 
H2 0.058 0.036 0.018 0.229 0.145 0.077 0.464 0.292 0.154 0.687 0.437 0.228 1.59 1.01 0.536 
CSMLUC1 0.094 0.056 0.008 0.429 0.285 0.059 0.961 0.584 0.133 1.46 0.880 0.203 3.50 2.09 0.508 
CSMLUC2 0.083 0.051 0.014 0.466 0.235 0.089 1.0 0.476 0.195 1.54 0.721 0.304 3.67 1.71 0.761 
EOQ 0.053 0.022 0.008 0.115 0.089 0.009 0.209 0.176 0.012 0.302 0.262 0.016 0.66 0.600 0.029 
LUC 0.056 0.031 0.009 0.339 0.159 0.059 0.725 0.332 0.132 1.09 0.502 0.206 2.62 1.21 0.516 
POQ 0.065 0.050 0.008 0.339 0.201 0.039 0.723 0.398 0.082 1.09 0.595 0.125 2.70 1.38 0.312 
MPOQ 0.053 0.026 0.009 0.202 0.109 0.023 0.441 0.218 0.047 0.618 0.323 0.068 1.64 0.757 0.180 
PPA 0.051 0.019 0.008 0.109 0.076 0.011 0.172 0.146 0.014 0.259 0.216 0.018 0.594 0.499 0.043 
IPPA 0.056 0.021 0.008 0.122 0.086 0.019 0.255 0.175 0.037 0.352 0.260 0.055 0.795 0.604 0.129 
MCA 0.053 0.028 0.009 0.166 0.122 0.024 0.329 0.245 0.046 0.473 0.367 0.070 1.10 0.855 0.169 
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S. CONCLUSION 

Since the paper of Wagner and Whitin, several 
authors have studied the single item, finite horizon, 
lot sizing problem. Various heuristics were devel
oped and claimed to be simple, easy to understand, 
and cost effective. However the lack of adequate 
and exhaustive comparison of these heuristics 

has led us to conduct the research in this paper. 
We first reviewed the well known and recent 
heuristics dealing with this type of problem. Then, 
we proposed four new heuristics that are simple 
and based on straightforward modifications of 
existing methods. Finally, we conduct an adequate 
and extensive experimental design to compare the 
effectiveness of thirteen heuristics in terms of cost 

Table 9. Maximum, Average, and Standard Deviation of CPU as a Function of CV. 

Coefficient of Variation CV 

Max. 
0.1 

Avr. S.D. Max. 
0.5 

Avr. S.D. 
1.0 

Max. Avr. S.D. 
1.5 

Max. Avr. S.D. Max. 
2.0 

Avr. S.D. Max. 
3.0 

Avr. S.D. 

WW 12.2 2.59 2.96 11.3 2.43 2.76 10.0 2.19 2.45 9.18 2.01 2.23 8.09 1.85 1.98 6.82 1.66 1.73 
LFL 0.209 0.077 0.065 0.208 0.077 0.067 0.203 0.074 0.064 0.215 0.077 0.068 0.207 0.077 0.067 0.203 0.075 0.067 
SM 0.935 0,327 0.292 0.928 0.327 0.292 0.938 0,331 0.295 0.917 0,328 0.294 0.923 0,331 0.296 0.924 0,331 0.296 
MSM 1.05 0,372 0,330 1.04 0.371 0,330 1.04 0.371 0.331 1.05 0,375 0.332 1.04 0.373 0,332 1.03 0.375 0.331 
H2 1.43 0.496 0.445 1.42 0.497 0.444 1.42 0.500 0.446 1.41 0.499 0.448 1.43 0.501 0.449 1.42 0.501 0.450 
CSMLUC1 3.22 0.868 0.841 3.16 0.885 0.847 3.06 0.869 0.829 2.96 0.863 0.816 2.85 0.849 0.791 2.75 0.842 0.777 
CSMLUC2 3.67 0.962 0.956 3,31 0.901 0.881 3.03 0.836 0.814 2.76 0.801 0.762 2.65 0.774 0.731 2.52 0.741 0.697 
EOQ 0.646 0.234 0.208 0.632 0.231 0.206 0.622 0.229 0.201 0.613 0.225~ 0.203 0.611 0.226 0.199 0.609 0.226 0.200 
LUC 2.62 0.633 0.652 2.52 0.614 0.629 2.32 0.581 0.593 2.21 0.556 0.560 2.06 0.537 0.526 1.91 0.506 0.494 
POQ 1.25 0.409 0,362 1.27 0.413 0,369 1.27 0.416 0,369 1.29 0.421 0,375 1,31 0.431 0,383 1.31 0.440 0.390 
MPOQ 0.671 0.224 0.195 0.677 0.227 0.198 0.686 0.229 0.200 0.706 0.231 0.205 0.702 0.233 0.208 0.702 0.239 0.210 
PPA 0.543 0.199 0.177 0.533 0.199 0.177 0.549 0.198 0.177 0.538 0.199 0.177 0.544 0.200 0.178 0.552 0.201 0.180 
IPPA 0.617 0.187 0.170 0.605 0.189 0.170 0.596 0.191 0.170 0.599 0.194 0.174 0.592 0.192 0.170 0.593 0.194 0.173 
MCA 0.875 0.276 0.248 0.855 0.273 0.246 0.882 0.277 0.249 0.856 0.275 0.248 0.867 0.279 0.253 0.861 0.279 0.252 

Table 10. Maximum, Average, and Standard Deviation of CPU as a Function of PZ. 

Percent of Zero Demand Periods PZ 

Max. 
0 

Avr. S.D. Max. 
10 

Avr. S.D. 
20 

Max. Avr. S.D. 
50 

Max. Avr. S.D. Max. 
80 

Avr. S.D. Max. 
90 

Avr. S.D. 

WW 1.64 0.582 0.522 1.66 0.593 0.530 1.72 0.606 0.548 1.99 0.723 0.650 3.42 1.23 1.13 6.10 2.05 1.98 
LFL 0.204 0.076 0.065 0.206 0.074 0.066 0.203 0.073 0.064 0.193 0.071 0.060 0.189 0.066 0.059 0.173 0.066 0.057 
SM 1.04 0.383 0.342 1.01 0.377 0,333 0.989 0.366 0,325 0.908 0.340 0.304 0.831 0,315 0.278 0.810 0,303 0.270 
MSM 1.16 0.430 0,382 1.13 0.420 0.372 1.10 0.412 0,363 0.999 0.380 0,333 0.934 0,347 0.310 0.890 0,338 0.297 
H2 1.59 0.590 0.526 1.55 0.576 0.514 1.52 0.563 0.502 1.37 0.516 0.460 1.25 0.468 0.416 1.19 0.448 0.400 
CSMLUC1 1.69 0.638 0.570 1.71 0.644 0.576 1.73 0.650 0.582 1.89 0.709 0.634 2.51 0.919 0.836 3.50 1.23 1.16 
CSMLUC2 1.13 0,371 0,333 1.18 0,394 0.354 1.26 0.423 0.378 1.45 0.528 0.475 2.15 0.792 0.721 3.24 1.12 1.06 
EOQ 0.664 0.239 0.214 0.657 0.236 0.210 0.634 0.231 0.207 0.593 0.219 0.194 0.551 0.211 0.183 0.549 0.208 0.181 
LUC 0.788 0.295 0.263 0.798 0.298 0.267 0.815 0,301 0.269 0.890 0,332 0.297 1.39 0.497 0.463 2.31 0.775 0.754 
POQ 1.45 0.552 0.489 1.46 0.555 0.488 1.48 0.559 0.494 1.56 0.589 0.522 1.97 0.666 0.610 2.71 0.774 0.765 
MPOQ 0.819 0,307 0.272 0.820 0.304 0.269 0.832 0.303 0.270 0.884 0.312 0.279 1.16 0.359 0.336 1.64 0.408 0.421 
PPA 0.594 0.183 0.165 0.590 0.194 0.173 0.578 0.200 0.178 0.572 0.211 0.187 0.521 0.193 0.170 0.480 0.177 0.158 
IPPA 0.794 0.285 0.255 0.759 0.273 0.244 0.712 0.262 0.233 0.605 0.224 0.200 0.495 0.186 0.161 0.458 0.173 0.150 
MCA 1.09 0.395 0.354 1.05 0.381 0.337 1.00 0,365 0,322 0.839 0.314 0.276 0.688 0.260 0.229 0.648 0.241 0.214 
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deviation from optimality and computational 
time. We generated 5400 experimental problems 
covering 540 different settings. For each setting 
we computed the average, maximum, and standard 
deviation of the two measure of performance. 
Our experimental results reported that, on the 
average, the MeA and MSM are the best heu
ristics. 

It is well known that the Wagner and Whitin 
algorithm does not provide an optimal solution in a 
rolling schedule environment [8]. However, our 
comparative study was conducted in a static frame
work with a fixed planning horizon. An obvious 
extension to our research is to study the performance 
of the thirteen heuristics with the demand continuing 
beyond the time horizon [20]. 

Table 11. Maximum, Average, and Standard Deviation of CPU as a Function of Alh. 

Alh Ratio 

Max. 
10 

Avr. S.D. Max. 
50 

Avr. S.D. Max. 
100 

Avr. S.D. Max. 
200 
Avr. S.D. Max. 

300 
Avr. S.D. Max. 

500 
Avr. S.D. 

WW 6.10 0.829 0.933 5.87 1.04 1.17 6.07 1.19 1.41 8.14 1.43 1.80 9.75 1.59 2.11 12.2 1.88 2.63 
LFL 0.209 0.075 0.065 0.203 0.074 0.065 0.208 0.075 0.064 0.220 0.074 0.066 0.208 0.075 0.065 0.204 0.074 0.065 
SM 1.04 0.362 0.324 1.04 0.354 0.317 1.04 0.350 0.315 1.04 0.347 0.312 1.04 0.344 0.309 1.03 0.339 0.307 
MSM 1.15 0.405 0.361 1.16 0.397 0.354 1.16 0.395 0.353 1.15 0.388 0.348 1.16 0.386 0.346 1.16 0.382 0.342 
H2 1.59 0.400 0.457 1.59 0.391 0.444 1.59 0.386 0.438 1.56 0.382 0.435 1.52 0.377 0.428 1.48 0.371 0.420 
CSMLUC1 3.50 0.706 0.675 3.43 0.730 0.693 3.32 0.754 0.714 3.25 0.789 0.752 3.28 0.821 0.795 3.38 0.872 0.869 
CSMLUC2 3.24 0.509 0.542 3.15 0.574 0.602 3.03 0.616 0.646 2.97 0.667 0.709 3.17 0.706 0.760 3.67 0.765 0.840 
EOQ 0.646 0.230 0.204 0.651 0.231 0.204 0.648 0.230 0.202 0.643 0.228 0.201 0.635 0.229 0.201 0.664 0.230 0.205 
LUC 2.31 0.357 0.370 2.23 0.389 0.397 2.13 0.419 0.427 2.06 0.464 0.485 2.16 0.497 0.536 2.62 0.552 0.628 
POQ 2.71 0.570 0.534 2.64 0.553 0.521 2.57 0.543 0.515 1.91 0.515 0.476 1.56 0.492 0.450 1.54 0.482 0.442 
MPOQ 1.64 0.319 0.306 1.61 0.308 0.300 1.12 0.290 0.270 0.874 0.276 0.252 0.827 0.269 0.246 0.827 0.258 0.237 
PPA 0.551 0.186 0.169 0.552 0.190 0.168 0.549 0.190 0.169 0.560 0.191 0.169 0.557 0.193 0.170 0.594 0.196 0.172 
IPPA 0.793 0.250 0.227 0.794 0.237 0.220 0.790 0.232 0.215 0.784 0.225 0.211 0.776 0.219 0.208 0.786 0.213 0.201 
MCA 1.10 0.353 0.320 1.09 0.335 0.308 1.09 0.326 0.306 1.09 0.317 0.297 1.10 0.310 0.290 1.09 0.301 0.283 

Table 12. Maximum, Average, and Standard Deviation of CPU for DilTerent Demand Patterns. 

Demand Patterns 

Max. 
LI 

Avr. S.D. Max. 
EI 

Avr. S.D. Max. 
LD 

Avr. S.D. 
ED 

Max. Avr. S.D. Max. 
S 

Avr. S.D. Max. 
TS 

Avr. S.D. 

WW 1.650 0.602 0.045 1.660 0.670 0.036 1.660 0.724 0.057 2.003 0.509 0.025 1.901 0.532 0.003 1.890 0.340 0.012 
LFL 0.223 0.005 0.027 0.223 0.005 0.027 0.223 0.005 0.027 0.223 0.005 0.027 0.223 0.006 0.028 0.223 0.005 0.027 
SM 1.051 0.028 0.136 1.051 0.027 0.134 1.051 0.028 0.137 0.941 0.024 0.117 1.051 0.027 0.134 1.051 0.028 0.137 
MSM 1.160 0.031 0.152 1.160 0.030 0.150 1.160 0.031 0.154 1.051 0.027 0.132 1.160 0.031 0.151 1.160 0.031 0.153 
H2 1.648 0.043 0.211 1.652 0.042 0.207 1.641 0.043 0.211 1.434 0.036 0.177 1.602 0.042 0.207 1.652 0.043 0.212 
CSMLUC1 1.539 0.040 0.199 1.543 0.040 0.199 1.543 0.041 0.200 2.578 0.049 0.255 1.539 0.039 0.191 1.543 0.041 0.200 
CSMLUC2 0.992 0.026 0.124 1.102 0.027 0.131 0.941 0.025 0.120 2.863 0.051 0.278 1.102 0.027 0.131 0.941 0.025 0.120 
EOQ 0.660 0.018 0.086 0.723 0.018 0.089 0.660 0.017 0.083 0.613 0.016 0.079 0.660 0.017 0.083 0.660 0.017 0.082 
LUC 0.832 0.021 0.105 0.832 0.021 0.104 0.832 0.021 0.105 1.980 0.031 0.177 0.832 0.021 0.105 0.832 0.021 0.105 
POQ 0.613 0.015 0.074 0.609 0.014 0.073 0.609 0.015 0.074 0.609 0.011 0.058 0.609 0.015 0.075 0.609 0.015 0.075 
MPOQ 0.832 0.022 0.108 0.832 0.021 0.106 0.832 0.022 0.108 0.832 0.018 0.091 0.832 0.022 0.108 0.832 0.022 0.109 
PPA 0.500 0.013 0.060 0.551 0.013 0.064 0.441 0.012 0.057 0.551 0.014 0.069 0.500 0.012 0.062 0.441 0.012 0.057 
IPPA 0.832 0.021 0.103 0.832 0.020 0.100 0.832 0.021 0.105 0.613 0.014 0.069 0.820 0.020 0.100 0.832 0.021 0.105 
MCA 1.102 0.029 0.144 1.102 0.028 0.139 1.102 0.029 0.146 0.883 0.021 0.100 1.102 0.028 0.139 1.102 0.029 0.145 
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WW: CPU = 0.011 N + 0.002 Alh  0.0378 CV R2 = 0.7528 

LFL: CPU 0.001 N +0.00001 Alh 0.0001 PZ R2 = 0.9935 

SM: CPU = 0.002 N  0.0001 Alh +0.012 CV R2 = 0.9951 

MSM: CPU 0.003 N  0.0001 Alh+0'014 CV R2 = 0.9953 

H2: CPU = 0.004 N  0.0001 Alh +0.02 CV R2 = 0.9938 

CSMLUCl: CPU 0.006 N + 0.0005 Alh-0.08 CV R2 0.9546 

CSMLUC2: CPU = 0.005 N + 0.001 Alh 0.0124 CV R2 = 0.8950 

EOQ: CPU = 0.002 N-0.00002 Alh -0.008 CV R2 0.9975 

LUC: CPU = 0.004 N + 0.0005 Alh 0.084 CV R2 = 0.8838 

POQ: CPU = 0.004 N  0.0003 Alh + 0.003 PZ R2 0.9500 
MPOQ: CPU = 0.002 N  0.0002 Alh +0.002 PZ R2 = 0.9522 

PPA: CPU = 0.001 N + 0.00001 Alh R2 0.9956 

IPPA: CPU = 0.001 N  0.001 Alh+0.016 CV R2 = 0.9683 

MCA: CPU = 0.002 N  0.0001 Alh + 0.022 CV R2 0.9738 

Figure 3. CPU Regression Models. 


Table 13. Overall CPU Performance for All Procedures. 


CPU Time 
Procedure 

Minimum Average Maximum Std. Dev. 

LFL 0.00000 0.07438 0.22031 0.06501 

PPA 0.00000 0.19120 0.59375 0.16936 
IPPA 0.00000 0.22918 0.79453 0.21428 
EOQ 0.00000 0.22977 0.66406 0.20280 
MPOQ 0.00000 0.28677 1.63984 0.27070 

MCA 0.00000 0.32349 1.10156 0.30135 

SM 0.00000 0.34937 1.04297 0.31417 

H2 0.00000 0.38448 1.59492 0.43731 

MSM 0.01484 0.39208 1.15625 0.35083 

LUC 0.00000 0.44645 2.62383 0.48642 
POQ 0.02734 0.52563 2.70742 0.49210 

CSMLUC2 0.00000 0.63949 3.66602 0.69541 

CSMLUCI 0.04141 0.77869 3.50312 0.75484 

WW 0.04062 1.32838 12.17695 1.80588 
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