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ABSTRACT 

This paper is concerned with the plane elastostatic problem of a layer resting on 
two rigid nat supports with sharp edges. The layer is pressed against the supports by 
a uniform clamping pressure applied over a finite portion of its top surface. It is 
assumed that the contact between the layer and the supports is frictionless and that 
only compressive normal tractions can be transmitted through the interface. The 
contact along the interface may remain continuous or separation may start towards 
the outer edge of the supports depending on the magnitude and the relative 
distribution of the resultant force. The problem is formulated in terms of a singular 
integral equation for the contact pressure. In case of continuous contact, the contact 
pressure has singularities at the edges of the supports whereas it is bounded (zero) at 
the points where separation starts in case of discontinuous contact. For this latter 
case, size of the contact area constitutes an additional unknown. Numerical results 
for contact pressure, axial stress, and distance determining the separation area are 
given in graphical and tabular forms. 
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CONTACT PROBLEM FOR AN ELASTIC LAYER 

ON RIGID FLAT SUPPORTS 


INTRODUCTION 

The contact problem for an elastic layer has 
attracted considerable attention in the past. The layer 
usually rests on a continuous foundation, which may 
be either elastic (see, for example, [1-9]), or rigid (see, 
for example, [10-14]). In [15], the layer is supported 
by two elastic quarter planes. In most of the previous 
work the layer is pressed locally against the 
foundation and the effect of gravity is neglected. 
Consequently, in the absence of a clamping pressure, 
the contact area is finite and its size is independent of 
the magnitude of the load [16]. This property holds 
also for loading through a flat-ended rigid stamp with 
sharp edges. However, the size of the contact area is a 
function of the magnitude of the resultant compressive 
force for other stamp profiles. Some examples taking 
the effect of gravity into account may be found in 
[8-14]. 

In this paper, the plane elastostatic problem of an 
infinite layer resting on two rigid horizontal flat 
supports is considered. The supports have 90° sharp 
corners. I t is assumed that the contact along the 
interface is frictionless and no tensile tractions can be 
transmitted across the interface (receding contact). The 
effect of gravity is neglected. The layer is subjected to a 
uniform clamping pressure over a finite portion of its 
top surface (see Figure 1). Clearly, the supports may be 
considered as flat-ended rigid stamps and the problem 
may be assumed to approximate a double contact 
problem where the contact pressure on the upper 
surface is approximated by a uniform distribution over 
a predetermined contact region. The size of the contact 
area between the layer and the supports depends on 
the size of the region over which the layer is subjected 

r Po 
i J 1 J I I 

Figure 1. Elastic Layer Pressed Against Rigid Flat Supports 

to pressure, which determines the magnitude and the 

distribution of the applied resultant force. 


FORMULATION OF THE PROBLEM 

Consider the isotropic, linearly elastic infinite layer 

of thickness h resting on two symmetrical rigid flat 

supports with 90° sharp corners shown in Figure 1. 

The contact between the layer and the supports is 

assumed to be frictionless. Only compressive tractions 

can be transmitted across the interface. The layer is 

subjected to a uniform clamping pressure of intensity 

Po over a portion of width 2a on its top surface. 


In the absence of body forces, two-dimensional 

Navier equations may be written in the form 


K+1 a 2u + a 2u + 2 ~=O 
K-1 K-1 axay , 

2 a2u 
(la, b)

K-l 

where u and v are the x and y-components of the 

displacement vector and K = 3-4v for plane strain, 

K = (3 v)J(l +v) for plane stress, v being the Poisson's 

ratio. The use of K instead of v reduces two separate 

formulations for plane strain and plane stress cases to 

a single formulation. The stress components may be 

expressed as 


K+ 1 CU + 3-K av) 
(J x 11 ( K _ 1 ax K - 1 a y , 

3 - K au K +1 av)
(J 11---+---,

Y . ( K 1 ax K -1 a y 

(2a--c)
!x, ~G~ + ;;). 

where 11 is the shear modulus. 

For the plane elastostatic problem under 

consideration Navier equations must be solved under 

the following boundary conditions: 


'txix, h) =0, (0 S Ixl < 00), (3) 

_[ Po, (OS Ixl <a), 
(4)

(Jy(x, h) - 0 ( I I ), a<x<oo, 

rXy(x, 0) = 0, (0 S Ixl < CfJ ), (5) 
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V(x, 0)=0, (b < Ixl <c), (6) 

uy(x, 0) (0 ~ Ixl < b, c< Ixl < 00). (7) 

Observing that x = 0 is a plane of symmetry it is 
sufficient to consider the problem in the region 
o~ x < 00 only. In this case, in order to match the two 
halves at x=O properly, the following conditions must 
also be satisfied: 

u(O,y) 
(8a, b) 

'tXY(O,y) =0, 

Taking the Fourier sine and cosine transforms [17J 
of (la) and (lb), respectively, in the x direction, 
rearranging and solving the resulting ordinary 
differential equations and finally taking the inverse 
transforms one may obtain the solutions: 

2100 

u(x, y) [(A +Bry)e - ry 
1t 0 

+ (C +Dry)er)'J sin (rx )dr, 

2100 

V(X,y)=- [(A + Bry+ KB)e- ry 
1t 0 

(C+DrY-KD)erYJcos(rx)dr. (9a, b) 

These solutions satisfy the symmetry conditions (8) 
and when they are substituted in Equations (2), stress 
components may be obtained as 

00 

4Jl 1 K-3ux(x,y) r[(A+Bry B)e- ry 
1t 0 2 

K 3 
+ (C + Dry --2-D)e'YJcos(rx)dr, 

4Jl lCf) K+ 1
uy(x,y) r[ -(A+Bry+--B)e-r; 

1t 0 	 2 

K+1 
- (C + Dry 2 D)e/'YJcos(rx)dr, 

00 

4Jl 1 K+ 1'tx"{x,y) r[ (A + Bry+--B)e-/'y 
1t 0 	 2 

K-1 
+ (C + DrY--2-D)e7YJsin(rx)dr. 

(lOa-C) 

Here A, B, C, D are yet unknown functions to be 
determined from the boundary conditions. 

One may note that boundary conditions (6) and (7) 
are of mixed type. In order to have the same type of 
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conditions we may replace Equation (6) by 

o 
ox V(x, 0) (b <x <c), (11) 

and (7) by 

uy(x, 0) = - p(x), (O~x < 00). (12) 

Here a new unknown function p(x) is introduced for 
providing a more direct procedure in which the 
formulation is reduced to a singular integral equation 
instead of triple integral equations. Note that 
Equation (7) is satisfied if 

p(x) =0, (O~x<b,c<x<oo). (13) 

Substituting Equation (10) in Equations (3-5) and 
(12) one may determine A, B, C, D within the 
unknown function p(x) as follows: 

A = [1 - K- 2Krh - (1 - K- 2rh)e - 2rhJe - /'h posin(ar)/ H 

+ {K-1 + [(1 K)(1-2rh)+4r2h2Je- 2/'h}rP(r)/H, 

B +2rh - e - 2/'h)e --rh posin(ar)/ H 

2[1- (1- 2rh)e - 2rhJrP(r)/ H, 

C = [K -1 2rh + (1- K+ 2Krh)e -2rhJe -rh Po sin (ar)/ H 

+ [(1- K)(l +2rh-e- 2/'h)+4r2h2Je- 2h rP(r)/H, 

D=2[1-(1-2rh)e 	2/'hJe- rh posin(ar)/H 

2(1 +2rh-e- 2/,h)e- 2/,h rP(r)/H, (14) 

where 

H = 4Jlr2 [4r2 h2e - 2/'h - (1 - e - 2rhfJ, (15) 

P(r) =J: p(x)cos(rx)<Ix, (16) 

so that Equation (13) is also satisfied. Hence the 
displacements and stresses are expressed in terms of 
the function p(x). 

THE INTEGRAL EQUATION 

Now if Equations (14-16) are substituted in 
Equation (9b) and if the resulting expression is 
substituted in Equation (11), after some routine 
manipulations, one may find the following singular 
integral equation 

_1_ + k(x, t)]P(t)dt m(x),
t+x 

(b <x <c), 	 (17) 
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for p(x) where 

2 Icc (1 +2z+2z2-e
k(x, t) 

h 0 1-2(1 + - + 

. z. ZJdsm(t - x) h -sm(t + x) h z,[ 

rcc2 (1 +z)e- Z -(I-z)e- 3Z 

m(x) Po Jo 1-2(1 + +e

[cos(a + x) ~-cos(a x) nd: (18) 

In Equation (17), the kernel k(x, t) is bounded in the 
closed interval b ~ (x, t) ~ c, and the index of the 
integral equation is + 1 [18J. Thus, the solution will 
contain an arbitrary constant which can be determined 
from the equilibrium condition 

J: p(x)dx = apo· (19) 

Contact along the interface may be either 
continuous or discontinuous. If a/h is sufficiently small 
and c/h is sufficiently large separation starts on outer 
portion of the supports. These two cases must be 
analyzed separately. 

(a) Continuous Contact 

In order to simplify the numerical analysis introduce 
the following dimensionless quantities: 

c-b c+b 
(x, t) =-2-(w, s) +-2-' 

M(w)={;b w+ C;b)/po, 

g(S)=p(C 2 bs+ C;b)/po. (20) 

Then, Equations (17) and (19) may be written as 

l [_1___1_+K(w, S)] g(s)ds = M(w), 
-1 S w s+wJ

(-I<w<I), (21) 

2a 
[ g(sjds (22) 

where 

c b (c-b c+b c-b C+b)
K(w,s)=-2- k -2- w+-2-' 2 s+-2-' (23) 

Rigid flat supports have 90° sharp corners. Hence, 

the contact stress (JY' and consequently the contact 

pressure p, will be singular at the corners and referring 

to references [6, 7, 14, 18J the solution of the integral 

equation will be in the form 


g{s) = G(s)(I- S2) -(1/2), (24) 

where G(s) is bounded in ( 1~s~ 1). Then, using the 

appropriate integration formula [19J, Equations (21) 

and (22) are replaced by 


(j 1, . " . , n -1), (25) 

I 
n 

CiG(sJ 
2a 

i= 1 

where 

11: 11: 
=Cn (i ... ,n 1),C 1 Ci 

s, =cosG_» (i = 1, ... , n), 

Wj =cos G~-~ n)- U=I, ... ,n 1). (26) 

The system in Equations (25) contain n linear 

algebraic equations for n unknowns, G(sJ, (i 1, . , . , 11). 


(b) Discontinuous Contact 

If a/h is sufficiently small and c/h is sufficiently large, 

contact between the layer and the supports can be 

maintained on the inner portion of the supports along 

b~lxl<d(d<c) only. Formulation of the problem up 

to Equation (23) is still valid for this case except for the 

fact that c must be replaced by d. At Ixl = d separation 

starts and the contact between the layer and the 

supports will be smooth near these points. Therefore, 

g(l) vanishes and consequently the index of the 

integral Equation (21) will be zero [18]. Hence, the 

solution will be in the following form [15, 18J 


g(s)=G(S)(1-S)1/2(I+s)-1/2, (l<s<I), (27) 

where again G{s) is bounded in ( 1~ s ~ 1). In this 

case, the use of Gauss-Chebyshev integration formula 

[20J reduces Equations (21) and (22) to 


2n+ 1 
211: M(w}, (j = 1, ... , n), 
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n (2n + l)a 
(28)i~l (1- SJG(Si) = n(d - b) , 

where 

2in )s·=cos -- (i = 1, ... , n), 
I ( 2n+ 1 ' 

2j -1 ) 
Wj = cos ( 2n + 1n , (j=I, ... ,n). (29) 

Note that the system given by Equation (28) contains 
n + 1 equations for n + 1 unknowns, G(Sj), (i = 1, ... , n), 
and d. 

RESULTS 

The Fourier integrals appearing in expressions for 
k(x, t) and m(x) can be evaluated numerically. Several 
quadrature formulas have been considered and it came 
out that Simpson's rule [21J, which is considerably 
straightforward, yields sufficiently accurate results. 
However, the interval of integration (0, (0) has been 
divided into several subintervals. Around the lower 
limit z=O, the integrands show very rapid variations. 
Therefore, very closely spaced integration points are 
required (e.g., L.\z =0.0001 which is not possible when 
more sophisticated integration formulas are 
employed). On the other hand, in order to get 
sufficiently close to the upper limit, distance between 
the integration points must be gradually increased in 
the consecutive subintervals. 

Some of the calculated results are shown in Figures 
2-8 and Table 1. Figures 2-4 show the normalized 
contact pressure p{x)/Po for the continuous contact 
case. The contact pressure becomes infinitely large at 
the corners of the rigid supports. The general trend for 
p(x) which is an increase with increasing a/h ratio can 
be seen in Figure 2. Oue may note that a very small 
a/h (e.g., a/h =0.01) represents the case of a 
concentrated load P=2apo at x=O. As a/h increases, 
this load is distributed over a larger portion of the 
layer and also the total load increases. For relatively 
small a/h values the location of minimum contact 
pressure is close to the outer edge and as a/h increases 
it moves toward the inner edge. This effect can be seen 
in Figures 3 and 4 easily. 

Figure 5 shows the dimensionless stress (J x (0, Y)/Po 
along the symmetry plane x =0 for the continuous 
contact case. For relatively small a/h values is(J x 

compressive in upper portion and tensile in lower 
portion whereas it is tensile in upper portion and 
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0.0 '----__'--__1..-__1..-_----' 

0.1 0.2 0.3 0.4 0.5 
x/h 

Figure 2. Contact Pressure Distribution for Continuous 
Contact Case (bjh=O.l, c/h=O.5) 

2.0 

0.5 

0.01..---1..---1..---"-----.1..-.--1 
0.1 0.3 0.5 0.7 0.9 1.0 

x/h 

Figure 3. Contact Pressure Distribution for Continuous 
Contact Case (b/h=O.l, cjh=l.o) 

compressive in lower portion for larger a/h values. If 
the layer is considered as a beam, (J x represents the 
axial stress. For small a/h the layer behaves like a 
simply supported beam under a point load (positive 
bending moment and upward concaveness) whereas it 
behaves like an overhanging beam subjected to a 
distributed load (negative bending moment and 
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2.5 

2.0 

1.5 

p(x) 

p. 

1.0 

0.5 

0.0 '----___"'--___-'-___---1 

0.5 	 to 1.5 2.0 
x/h 

Figure 4. Contact Pressure Distribution for Continuous 

Contact Case (bjh=O.5, cjh=2.0) 


1.6 

0.7 '------'------'-----'----"
0.0 0.5 1.0 

a/h 

Figure 6. wcation of Point Where Separation Starts 

downward concaveness) for sufficiently large a/h. 
Therefore, the axial stress distribution may be 
completely different for various a/h values. 

Many a/h b/h-c/h combinations have been 
considered and it has been shown that for certain 
combinations (for sufficiently small a/h and sufficiently 
large c/h) separation between the layer and the 

Figure 5. Axial Stress (JAO,y)jpo for Continuous Contact 

Case (bjh=O.5, cjh=1.0) 


x/h 

p(x) 

p. 

1.4 

Figure 7. Contact Pressure Distribution for Discontinuous 

Contact Case (bjh=O.l, c>d) 


supports is possible only on the outer portion of the 

supports. Table 1 and Figure 6 give the location of 

point d where separation starts for various a/h-b/h 

combinations. 


Figures 7 and 8 show the contact pressure p(x)/Po 

for discontinuous contact case. The contact pressure is 

infinitely large around the inner edge whereas it 
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1.5 

1.0 

0,5 

0.5 	 1,3 
xl h 

Figure 8. Contact Pressure Distribution for Discontinuous 

Contact Case (b/h=O.5, c>d) 


Table 1. Location of Point Where 

Separation Starts (c > d) 


a/h b/h d/h 

0.01 0.1 0.854100 
0.50 0.1 1.000076 
1.00 0.1 1.391872 
0.01 0.5 0.880998 
0.50 0.5 0.944992 
1.00 0.5 1.200166 
0.01 1.0 1.164082 
0.10 1.0 1.164480 
0.50 1.0 1.175165 

decreases to zero at x=d. For very small ajh (e.g., for 
ajh=O.Ol) contact pressure distribution is such that 
the reaction is accumulated around the inner edge as if 
the layer is subjected to three point loads. 
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