θ-IRRESOLUTE MAPPINGS IN BITOPOLOGICAL SPACES

F. H. Khedr^{*}

Department of Mathematics Faculty of Sciences University of Assiut Assiut, Egypt

الخلاصـة :

يتناول هذا البحث تعريف ودراسة فصل من الرواسم في الفراغات ثنائية التوبولوجي تسمى بالرواسم مترددة الاتصال من النوع θ. وقد اشتمل على العديد من التكافؤات والخواص الاساسية لهذه الرواسم . كما تَـمَّـت دراسة العلاقة بين الرواسم مترددة الاتصال من النوع θ والأنواع الأخرى من الاتصال في الفراغات ثنائية التوبولوجي .

ABSTRACT

This paper introduces and investigates a class of mappings in bitopological spaces called pairwise θ -irresolute mappings. Several characterizations and basic properties of pairwise θ -irresolute mappings are given. The interrelation among pairwise θ -irresolute mappings and other generalizations of continuous mappings in bitopological spaces are investigated.

*Address for correspondence: Girls' Colleges General Administration P.O. Box 838, Dammam Kingdom of Saudi Arabia

θ-IRRESOLUTE MAPPINGS IN BITOPOLOGICAL SPACES

1. INTRODUCTION

The purpose of this paper is to introduce and investigate a class of mappings in bitopological spaces called pairwise θ -irresolute mappings. In Section 2, we give several characterization and basic properties of pairwise θ -irresolute mappings. In Section 3, we investigate the interrelation among pairwise θ -irresolute mappings and other generalizations of continuous mappings in bitopological spaces.

Throughout the paper, by a space X we mean a bitopological space (X, τ_1, τ_2) . By *i*-Int(A) and *i*-Cl(A), we shall mean the interior and the closure of a subset A of X with respect to τ_i , respectively, where i = 1, 2. Also, i, j = 1, 2 and $i \neq j$. A subset S of X is said to be *ij*-semiopen [1], if there exists *i*-open set U such that $U \subset S \subset j$ -Cl(U). S is called *ij*-regular open (resp. *ij*-regular closed) [2] if *i*-Int(*j*-Cl(S)) (resp. *i*-Cl(*j*-Int(S))) = S.

2. PAIRWISE 0-IRRESOLUTE MAPPINGS

Definition 2.1. Let S be a subset of a space X. A point x is in the ij- θ -semiclosure of S, denoted by ij-sCl_{θ}(S), if $S \cap j$ -Cl(U) $\neq \emptyset$ for every ij-semiopen set U containing x. If S = ij-sCl_{θ}(S), then S is called ij- θ -semiclosed. A point x is in the ij- θ -semiinterior of S, denoted by ij-sInt_{θ}(S), if there exists an ij-semiopen set U containing x such that j-Cl(U) $\subset S$.

Definition 2.2. A mapping $f: X \rightarrow Y$ is said to be $ij \cdot \theta$ -irresolute iff for every point $x \in X$ and each ij-semiopen set V, in Y, containing f(x), there exists an ij-semiopen set U, in X, containing x such that $f(j-\operatorname{Cl}(U)) \subset j-\operatorname{Cl}(V)$. f is called pairwise θ -irresolute if it is 12- θ -irresolute and 21- θ -irresolute.

Theorem 2.1. For a mapping $f: X \rightarrow Y$, the following are equivalent:

- (a) f is $ij-\theta$ -irresolute.
- (b) $f^{-1}(V) \subset ij\text{-sInt}_{\theta}(f^{-1}(j\text{-Cl}(V)))$, for every ij-semiopen set V of Y.
- (c) $f(ij-sCl_{\theta}(A)) \subset ij-sCl_{\theta}(f(A))$, for every subset A of X.
- (d) ij-sCl_{θ} $(f^{-1}(B)) \subset f^{-1}(ij$ -sCl_{θ}(B)), for every subset B of Y.
- (e) $f^{-1}(ij\text{-sInt}_{\theta}(B)) \subset ij\text{-sInt}_{\theta}(f^{-1}(B))$, for every subset B of Y.

Proof. It is straightforward.

Theorem 2.2. Let $f: X \rightarrow Y$ be a mapping and $g: X \rightarrow X \times Y$ be the graph function given by g(x) = (x, f(x)) for every $x \in X$. If g is *ij*- θ -irresolute, then f is *ij*- θ -irresolute.

Proof. Let $x \in X$ and V be an *ij*-semiopen set of Y containing f(x). Then $X \times V$ is *ij*-semiopen subset of $X \times Y$ containing g(x) [1] and hence there exists an *ij*-semiopen set U of X containing x such that $g(j-\operatorname{Cl}(U)) \subset j-\operatorname{Cl}(X \times V) = X \times j-\operatorname{Cl}(V)$. By the definition of g, we have $f(j-\operatorname{Cl}(U)) \subset j-\operatorname{Cl}(V)$. Therefore, f is *ij*- θ -irresolute.

Remark 2.1. One may give an example to show that the converse of Theorem 2.2 is not true.

Definition 2.3. A space X is said to be pairwise semi- T'_2 if for every two distinct points x and y in X, there exists an *ij*-semiopen set U and a *ji*-semiopen set V such that $x \in U$, $y \in V$ and j-Cl(U) $\cap i$ -Cl(V) = \emptyset .

Theorem 2.3. If $f: X \rightarrow Y$ is a pairwise θ -irresolute injection and Y is pairwise semi- T'_2 , then X is pairwise semi- T'_2 .

Proof. Let x_1 and x_2 be two distinct points of X. Since f is injective and Y is pairwise semi- T'_2 , then there exists an *ij*-semiopen set V_1 and a *ji*-semiopen set V_2 of Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and j-Cl $(V_1) \cap i$ -Cl $(V_2) = \emptyset$. Since f is pairwise θ -irresolute, there exists an *ij*-semiopen set U_1 and a *ji*-semiopen set U_2 of X containing x_1 and x_2 , respectively, such that f(j-Cl (U_1)) $\subset j$ -Cl (V_1) and f(i-Cl (U_2)) $\subset i$ -Cl (V_2) . Therefore, j-Cl $(U_1) \cap i$ -Cl $(U_2) = \emptyset$ and X is pairwise semi- T'_2 .

3. COMPARISON

Definition 3.1. A mapping $f: X \rightarrow Y$ is said to be

- (a) *ij*-irresolute [4], if the inverse image of each *ij*-semiopen set in Y is *ij*-semiopen in X.
- (b) *ij*-semicontinuous [1], if the inverse image of each *i*-open set in Y is *ij*-semiopen in X.
- (c) *ij*-almost continuous [2], if the inverse image of each *ij*-regular open set in Y is *i*-open in X.

Definition 3.2. [3]. A space X is called pairwise extremally disconnected if j-Cl(A) is *i*-open for each *i*-open set A.

Theorem 3.1. If $f: X \rightarrow Y$ is *ij*-irresolute and X is pairwise extremally disconnected, then f is *ij*- θ -irresolute.

Proof. Let $x \in X$ and V be an *ij*-semiopen set of Y containing f(x). Then $f^{-1}(V)$ is *ij*-semiopen in X and $x \in f^{-1}(V)$. Since X is pairwise extremally disconnected, j-Cl $(f^{-1}(V)) = ji$ -sCl $(f^{-1}(V))$ [4]. Moreover, since f is *ij*-irresolute, ji-sCl $(f^{-1}(V)) \subset f^{-1}(ji$ -sCl(V)) [4]. Put $U = f^{-1}(V)$, then U is an *ij*-semiopen set of X containing x and f(j-Cl $(U)) \subset ji$ -sCl $(V) \subset j$ -Cl(V). This shows that f is ij- θ -irresolute.

Remark 3.1. In Theorem 3.1 we cannot drop the assumption that X is pairwise extremally disconnected, as can be seen by Example 3.1. Moreover, an ij- θ -irresolute mapping need not be ij-irresolute even if the domain is pairwise extremally disconnected, as Example 3.2 shows.

Example 3.1. Let $X = Y = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}, \quad \tau_2 = \{X, \emptyset, \{b, c\}, \{a, d\}\},$ $\sigma_1 = \{Y, \emptyset, \{b\}, \{b, c\}\}$ and $\sigma_2 = \{Y, \emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}\}.$ Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ defined as follows: f(a) = b, f(b) = a, f(c) = c, f(d) = d. Then f is 12-irresolute but not 12- θ -irresolute.

Example 3.2. Let $X = Y = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{b\}, \{b, c\}\}$, $\tau_2 = \{X, \emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}\}$, $\sigma_1 = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma_2 = \{Y, \emptyset, \{a, d\}, \{b, c\}\}$. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity mapping. Then (X, τ_1, τ_2) is pairwise extremally disconnected and f is 12- θ -irresolute but not 12-irresolute.

Theorem 3.2. If $f: X \rightarrow Y$ is an *ij*-irresolute and *ij*-almost continuous mapping, then f is *ij*- θ -irresolute.

Proof. Let $x \in X$ and V be an *ij*-semiopen set of Y containing f(x). Since f is *ij*-almost continuous and *j*-Cl(V) is *ji*-regular closed in Y [4], $f^{-1}(j$ -Cl(V)) is *j*-closed in X [3]. Since f is *ij*-irresolute, $f^{-1}(V)$ is *ij*-semiopen in X containing x and j-Cl($f^{-1}(V)$) $\subset f^{-1}(j$ -Cl(V)). Put $U = f^{-1}(V)$, then U is an *ij*-semiopen in X containing x and f(j-Cl(U)) $\subset j$ -Cl(V). This shows that f is *ij*- θ -irresolute.

Remark 3.2. *ij*-almost continuous, *ij*-irresolute and *ij*- θ -irresolute are respectively independent as can be seen by Examples 3.1, 3.2, and 3.3.

Example 3.3. Let X, Y, τ_1 , τ_2 , σ_1 , and σ_2 be as in Example 3.1. Consider the following cases of mapping $f: X \rightarrow Y$.

- (1) f(a) = a, f(b) = c, f(c) = b, and f(d) = d. In this case, f is 12-irresolute and 12- θ -irresolute but not 12-almost continuous.
- (2) f(a) = f(b) = b, f(c) = f(d) = c. Then f is 12-almost continuous but neither 12-irresolute nor 12- θ -irresolute.

Definition 3.3. A mapping $f: X \rightarrow Y$ is called:

- (a) *ij*-*R*-map [5], if the inverse image of each *ij*-regular open set in *Y* is *ij*-regular open in *X*;
- (b) ij- δ -continuous [6], if for every $x \in X$ and each *i*-open set V in Y containing f(x), there exists an *i*-open set U of X containing x such that f(i-Int(j-Cl $(U))) \subset i$ -Int(j-Cl(V)).

Remark 3.3. [5]. ij-R-map $\implies ij$ - δ -continuous \implies ij-almost continuous but the converses are not true.

Remark 3.4. One may give examples to show that ij- δ -continuous and ij- θ -irresolute are independent of each other.

Theorem 3.3. If $f: X \rightarrow Y$ is an *ij-R*-map, then it is *ij*- θ -irresolute.

Proof. Let $x \in X$ and V be an *ij*-semiopen set of Y containing f(x). Since j-Cl(V) is *ji*-regular closed in Y, $f^{-1}(j$ -Cl(V)) = $X \setminus f^{-1}(Y \setminus j$ -Cl(V)) is *ji*-regular closed in X. Put $U = f^{-1}(j$ -Cl(V)), then U is *ij*-semiopen in X containing x and f(j-Cl(U)) = $f(U) \subset j$ -Cl(V). This shows that f is *ij*- θ -irresolute.

Remark 3.5. The converse of Theorem 3.3 is not true as shown by the following example:

Example 3.4. Let X, Y, τ_1 , τ_2 , σ_1 , and σ_2 be as in Example 3.1. Let $f: X \rightarrow Y$ be the identity mapping. Then f is 12- θ -irresolute but not 12-*R*-map.

From the above discussion we obtain the following diagram, where $A \not\rightarrow B$ indicates that A does not necessarily imply B.

In the diagram, we have abbreviated as follows: IR = irresolute; C = continuous; SC = semicontinuous; R = R-map; θ -IR = θ -irresolute; δ = δ -continuous; and a.c. = almost continuous.

REFERENCES

- S. Bose, "Semiopen Sets, Semicontinuity, and Semiopen Mappings in Bitopological Spaces", Bull. Cal. Math. Soc., 73 (1981), p. 237.
- [2] S. Bose and D. Sinha, "Pairwise Almost Continuous Map and Weakly Continuous Map in Bitopological Spaces", Bull. Cal. Math. Soc., 74 (1982), p. 195.
- M. C. Datta, "Projective Bitopological Spaces II", J. Austr. Math. Soc., 14 (1972), p. 119.
- [4] M. N. Mukherjee, "On Pairwise S-Closed Bitopological Spaces", International Journal of Mathematics & Mathematical Sciences, 8(4) (1985), p. 729.
- [5] F. H. Khedr and A. M. Al-Shibani, "On Pairwise Super Continuous Mappings in Bitopological Spaces", *Internat. J. Math. & Math. Sci.*, 14(4) (1991), p. 715.
- [6] G. K. Banerjee, "On Pairwise Almost Strongly θ-Continuous Mappings", Bull. Cal. Math. Soc., 79 (1987), p. 314.

Paper Received 28 May 1990.