
INFLUENCE OF ELASTIC DEFORMATION OF 

THE STRIP ON THE ROLL FORCE AND 


TORQUE IN COLD ROLLING 


J. Chakrabarty * 
Sultan Qaboos University 


Muscat, Oman 


and 

Y. W. Kwon 

Oil Technology Services, Inc. 

Houston, Texas, U.S.A. 


It:!~ .)1)1 ~I c!1.rJ .);\:ll ~~ Jots' ~.)Js. J-- ~J ~I 1.lA J ;,.; 
~J . ~)I J~"il ~I;t ;~":II J .l:,i.'}1 ~ ~IJ r\..'}1 J J...!JI ~U..::...J. ~ ~IJ 

~; ~ ~I~ Cj;,i ~u... (':"IJ;Jt) If.1-,;i1 ~IJ ~..uJ.I (':"\..;ts' .:"U) ~.)t.-.. 

.)~":II ~li')\s.J ':"IJ"i1 ~":I.)t.-.. 4.t' 4i)1 J1t\:l.I .)I.x:.-I .)~I fJ . ~":A.)I J~":II 

~\J,..I Jl 4i)1 ~\J,..I 4.t' JU:;":II J::.s, .)~~ ~;I~"il J,J"':'J J1t\:l.1 •.lA J J~"iIJ 
. ~":A.)I 

J~"il Jot.-..J J~"i~ ~"a:JIJ ':")1 ~I ~t; ~ J~'}~ ~\::JI J:!l fJ 

. ':"I;JJJI r,J ~I ';J ~I ~ Cj;,i ~ ~..,-sJI ~w:.;":IIJ 

•Address for correspondence: 
College of Engineering 
Sultan Qaboos University 
P. O. Box 32483, AI-Khod 
Muscat, Sultanate of Oman 

July 1991 The Arabian Journal for Science and Engineering, Volume 16, Number 3. 385 



J. Chakrabarty and Y. W. K won 

ABSTRACT 

A complete numerical solution is developed for the cold rolling of work­
hardening strips with applied front and back tensions, taking account of the elastic 
arcs of contact in a rigorous manner. The modified form of the von Karman 
equation proposed by Orowan is employed for the computation of the roll pressure 
distribution over the plastic arc of contact. The extents of the elastic zones are 
determined from the equilibrium equations and stress-strain relations applicable 
to these regions, and the conditions of continuity of the stress at the elastic-plastic 
interfaces. Hitchcock's formula is used to estimate the radius of the deformed arc 
of contact. The results are presented graphically to show the effects of elastic 
deformation, strain-hardening, coefficient of friction and fractional reduction on 
the roll pressure distribution, roll force and torque. No attempt has been made to 
compared the numerical solution with the elementary theories of rolling, since an 
assessment of the accuracy of these theories is already available in the literature. 
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INFLUENCE OF ELASTIC DEFORMATION ON THE STRIP ON 
THE ROLL FORCE AND TORQUE IN COLD ROLLING 

NOTATION 

A, B = Coefficients of differential equation for the 
elastic regions. 

E = Young's modulus for the material of the 
strip. 

Er Young's modulus for the material of the 
roll. 

F, H = Coefficients of differential equation for the 
plastic region. 

G = Plastic part of the roll torque per unit width. 
Ge = Elastic part of the roll torque per unit width. 
L Length of the arc of contact. 
P = Plastic part of the roll force per unit width. 
Pe = Elastic part of the roll force per unit width. 
R = Undeformed roll radius. 
R' = Radius of the deformed arc of· contact. 
c = Constant parameter equal to 11'Er/16(I-v;). 
e = Local fractional reduction in thickness. 
h Local strip thickness. 
ho = Strip thickness at the minimum section. 
hi = Entry thickness of the strip. 
h2 = Exit thickness of the strip. 
he = Strip thickness at the plastic boundary near 

the entry. 
k Local yield stress of the strip in pure shear. 
k = Mean shear yield stress over the arc of 

contact. 
k 1 = Initial yield stress in pure shear. 
k 2 = Final yield stress in pure shear. 
m, n = Empirical constants for the strain-hardening 

law. 
p = Horizontal pressure over a vertical section. 
q = Vertical compressive stress acting on a slice. 
r = Overall fractional reduction in thickness. 
S = Local roll pressure. 
Se = Roll pressure at the plastic boundary near 

the entry. 
So = Roll pressure at the minimum section. 
t 1 = Back tension per unit area of cross-section 

of the strip. 
t 2 = Front tension per unit area of cross-section 

of the strip. 
a = Overall angle of contact. 
(3 = Elastic angle of contact at the exit. 
'Y = Elastic angle of contact at the entry. 
<p, e = Angular distances from the minimum 

section. 
J.L = Coefficient of friction between roll and strip. 

Angular distance of the neutral point from 
the exit. 

v = Poisson's ratio for the strip material. 
Vr = Poisson's ratio for the roll materiaL 

1. INTRODUCTION 

The basic theory of cold rolling, formulated by 
von Karman [1] sixty-five years ago, has been 
examined by many investigators, who discussed the 
calculation of roll pressure distribution, the roll 
separating force and the roll torque. In a compre­
hensive review of the subject, Orowan [2] consid­
ered certain modifications of the von Karman 
theory, and indicated how, in exceptional circum­
stances, slipping friction could give way to sticking 
friction over a part of the arc of contact. Orowan 
also discussed the inhomogeneity of the deformation 
of the strip in the roll gap, and proposed a correction 
factor to take account of this effect in, an approxi­
mate manner. These refinements are only of minor 
importance, for usual rolling geometries and coeffi­
cients of friction [3], since they involvff approxima­
tions of the same order of magnitude as those 
inherent in the von Karman theory. 

From the practical point of view, an approximate 
solution developed by Bland and Ford [4], and 
modified by Bland and Sims [5], is considered useful 
for predicting the relevant rolling parameters. 
Numerical results based on this theory for a range of 
values of front and back tensions have been reported 
by Ford, Ellis and Bland [6]. The effects of various 
modifications and simplifications of the von Karman 
theory have been examined by Alexander [7], who 
developed a computer method of solving the basic 
equations in coid and hot rolling processes. The 
contributions of the elastic arcs of contact suggested 
by Bland and Ford [8], and the inhomogeneity of 
deformation proposed by Orowan can be easily 
incorporated in the numerical framework [9]. More 
recently, a finite element solution for the rolling 
problem has been presented by Li and Kobayashi 
[10]. For a useful experimental investigation, 
reference should be made to Lai-Seng and Lenard 
[11]. 

In the present investigation, the basic equations 
have been developed for the elastic portions of the 
strip at the entry and exit by combining the equilibrium 
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equation with the elastic stress-strain relation. The 
extent of the elastic regions have been established by 
satisfying the yield criterion at the elastic-plastic 
interfaces. Once the elastic arcs of contact have been 
determined, the stresses in the plastic part of the 
strip can be computed from the equilibrium equation 
and the yield criterion, using the conditions of 
continuity across the interfaces. The basic differen· 
tial equation used for the plastic region in this paper 
is that given by Orowan [2]. The computed results 
have been displayed in graphical forms to indicate 
how the roll pressure distributions, roll force, and 
torque depend on such parameters as the fractional 

reduction, the applied tensions, the coefficient of 
friction, and the rate of hardening. 

2. BASIC EQUATIONS 

We begin with the usual assumption that the 
deformed arc of contact is a circular arc of radius R', 
which is somewhat greater than the radius R of 
the urideformed roll. The material in the roll gap 
consists of a central plastic part and a pair of elastic 
parts as shown diagrammatically in Figure 1. On the 
entry side, the material is deformed elastically to 
suffer a change in thickness from hI to he. On the exit 
side, plastic material recovers elastically from the 

Plastic Elastic 

T 
2 

T:th -th
2 2 1 1 

-
-

Elastic 

Figure 1. Geometry of Cold Rolling, Showing the Statically Equivalent Forces and Couples on the Upper Roll. All angles are 
reckoned positive in the senses they are measured from the vertical plane. 
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minimum'thickness ho to the final thickness h 2. The 
elastic angles of contact are denoted by "/ and ~ on 
the entry and exit sides respectively. The elastic 
contact on the exit side has significant effects when 
the reduction in thickness is sufficiently small. 

Consider the longitudinal equilibrium of a vertical 
slice of material defined by angular distances <f> and 
<f> + d<f> from the plane of the minimum section. The 
equation of equilibrium is easily shown to be: 

d . 
d<f> (ph) = 2R's (SIll <f> ± ,... cos <f» , (1) 

where p is the horizontal pressure on a generic 
section, s the local roll pressure, and h the local sheet 
thickness. The upper sign refers to the exit side and 
the lower sign to the entry side of the neutral plane, 
across which the frictional stress changes sign. 
The coefficient of friction ,... is assumed constant 
throughout the arc of contact. The vertical pressure 
q acting on the element is: 

q = s(1 ± ,...tan<f». (2) 

The above relationship is based on the assumption 
that q is a principal compressive stress, the other 
principal component in the considered plane being 
equal to p. Since ,... is generally less than 0.1 and n 
is usually less than 0.15 radians, q == s to a close 
approximation. We shall not use this approximation, 
however, in our present analysis. 

In the elastic regions, the equilibrium equation 
must be supplemented by the stress-strain relation, 
the deformaton being assumed to occur under 
conditions of plane strain. Since the vertical com­
pressive strain at any section exceeds that at <f> = n 
by the amount (hI - h)/hI' it follows from Hooke's 
law that: 

hI - h 1 + vT = ~ [(1- v)q-v(p + t1)] , 

where E is Young's modulus and v is Poisson's ratio 
for the strip material, and tl is the applied back 
tension. In view of the geometrical relations 

h = ho + 2 R' (1 - cos <f>) } 
(3)

hI = ho + 2R' (1- cos n) , 

the stress-strain relation furnishes: 

2ER' 
V(P+tl) = (l-v)q - (1 + V)hl (cos<f>-cosn). (4) 

Eliminating s between (1) and (2), and using (3) 
and (4), there results 

dq . 
d<f> = Aq + B SIll <f> (5) 

where 

A = 2R' [_v_ (Sin <f> - ,... cos <f» - sin ] (6)
h 1 - v 1 + ,... tan <f> <f> 

2ER' 
B = (l-v2)h

1 

2R' t ]
x h (cos <f> - cos n) - 1 + v (1 + v) i . (7)[ 

Equation (5) must be solved under the boundary 
condition q = 0 at <f> = n. The elastic angle of contact 
on the entry side can be determined from the 
condition that the yield criterion q - p = 2kl must be 
satisfied at <f> = n - ,,/, where kl is the initial shear 
yield stress of the material. 

On passing through the minimum roll gap, the 
plastically deformed strip becomes elastic due to 
unloading. The elastic part of the vertical compres­
sive strain at an angular distance e from the mini­
mum section exceeds that at the exit plane by the 
amount (h2 - h)/h2. By Hooke's law, 

where t2 is the front tension. Using the relation 
h2 - h = 2R' (cos <f> - cos ~), the above equation 
may be rearranged to give 

2ER' 
v(p + t2) = (1- v)q - (1 + v) h2 (cose - cos~). (8) 

where ~ is the elastic angle of contact on the exit 
side. The governing equations in this region are 
again (5) through (7), except that <f>, n, and tl must 
be replaced by e, ~, and t2 respectively. The bound­
ary condition is q = 0 at e = ~. The exit elastic angle 
of contact is obtained from the yield condition 
q - p = 2k2 at e = 0, where k2 is the final shear yield 
stress of the material. 
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Due to the applied front and back tensions, hl and 
h2 are marginally smaller than the undeformed and 
rolled sheet thickness h~ and h~ respectively. The 
relationship between these quantities being 

Except for the estimation of roll flattening under 
extremely light reductions, the approximations 
h~ == hI and h; == h2 are perfectly justified. 

In the plastic region, which extends from q, = 0 to 
q, = ex - 'Y, the quantities p and q must satisfy the 
condition of equilibrium given by (1) and (2), and 
the yield criterion 

q -p 2k (10) 

where k is the local yield stress in pure shear. From 
(1), (2), and (10), the governing differential equa­
tion is obtained as 

d 
dq, {h[s(1 ± ..... tan q,) - 2k]} = 2R's(sin q, ± ..... cos q,) 

which may be reduced to the form 

ds . 
dq, = Fs + H sm q, (11) 

where 

F ± fL sec <1>e:' + sec <1>) j (1 ± fL tan <1») 
. (12) 

4kR' ( h dk)jH = 1 + k dh (1 ± ..... tan q,) 

In the above expressions, the upper sign must be 
used for the integration of (12) along the exit side 

. and the lower sign along the entry side of the neutral 
plane. 

The variation of the yield stress along the plastic 
arc of contact may be represented with sufficient 
accuracy by the empirical equation 

where he is the strip thickness at q, = ex 'Y. The 
constants m and n are given by the uniaxial stress­
plastic strain curve expressed by the equation 

(14) 

The differentiation of (13) with respect to h gives 

h dk 2 ( 2m he)-I--mn 1+-ln- (15)
k dh V3 V3 h . 

With the help of (13) and (15), the integration of 
equation (11) can be carried out from q, 0 and 
q, = ex 'Y, using the conditions of continuity of s 
across these interfaces. The section q, q,n where 
the two solutions match defines the neutral plane. 
Once the roll pressure distribution and the neutral 
point are known, the roll force and torque can be 
calculated by integration along the arc of contact. 

3. METHOD OF ANALYSIS 

Except for extremely light reductions, the elastic 
arcs of contact are small compared to the plastic arc, 
and considerations of overall equilibrium of the 
elastic regions are generally sufficient. The basic 
equations indicate that to a first approximation, the 
elastic roll pressure distribution is linear on the entry 
side and parabolic on the exit side. Figure 2 shows 
the forces acting on the elastic regions, in which the 
arcs of contact are replaced by the respective chords. 
Considering first the entry region, the equation of 
longitudinal equilibrium may be written as 

to a close approximation. Eliminating Pe by means 
of the yield criterion expressed in the form 

which must be satisfied at the elastic-plastic inter­
face, we get 

R''Y [ (- h; ..... cos ex ~)-Sin(a - ~)J}. (16) 

From the stress-strain relation (4) considered at 
the interface q, = ex - 'Y, and the yield criterion 
qe - Pe = 2kl , there results 

2R' 1 + vh; [cos(ex-'Y)-cosex] =~ {(I 2v) 

[1 + ..... tan(ex - 'Y)]se + v(2k I - tIn. (17) 
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For any given values of 0., R'lh} and t}, the quantity 4R'~ ( ~ .~)
Po = - tz + 3 h ,.... cos "2 - sm"2 So'Se and "( can be calculated by an iterative process, z 

starting with Se 2kl - t} as a first approximation. 

A second equation connecting Po and So is given by The equation of overall longitudinal equilibrium 
the yield criterion So - Po = 2k2• The elimination ofof the exit elastic region, with a parabolic distribu­
Po then furnishes tion of roll pressure, is easily obtained with sufficient 

accuracy as 

Setting e= 0 in the stress-strain equation (8), and 
using the yield criterion, we get 

2R' 1 + vh; (1- cos~) = E [(1- 2v)so + v(2k2 - t2)]. 

(19) 

Equations (18) and (19) furnish So and ~ for given 
values of R'1hz and t2, the yield stress k2 bei~g 

obtained from (13) with h h2• 

The contributions Pe and Ge to the roll force and 
torque respectively (per unit width) from the elastic 
arcs of contact can be computed from the formulas 

Pe = R' (1f2,,(Se cos 0. + 2/3~So) } 
(20)

Ge = ,....RR' (1f2"(Se - ¥3~So) 

which are sufficiently accurate for practical purposes. 
If we introduce the approximation sin 4> == 4> and 
cos 4> == 1, and neglect higher order terms, the 
expression for Pe and Ge reduce to those given by 
Bland and Ford [8]. 

The total roll force and torque per unit width are 
P + Pe and G + Ge respectively, where P and G 
correspond to the plastic arc of contact. The change 
in curvature of the roll is given by 

p h ----... 
e e 

where L is the total arc of contact, and the subscript 
r refers to the roll material. Substituting for L, we 
obtain the modified Hitchcock formula 

R' P + Pe


Ii = 1 + c(Vh1-h + Vh -h )2 . (21)

o z o 

Figure 2. Equilibrium of Forces Acting on the Elastic The vertical roll force per unit width over the plastic 
Zones at the Entry and Exit; (a) entry zone, (b) exit zone. arc of contact is easily shown to be 
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P R' rs cos <I> d<l> + ILR' (r~ sin <I> d<l> 

r"s sin <I> d<l>), a' = u - 'Y • (22) 

The moment of the normal and tangential forces per 
unit width acting on the surface of each roll about 
the center 0' of the deformed arc of contact is 

The roll torque G per unit width is the moment of 
the surface forces about the roll center O. Since the 
forces acting on the roll are statically equivalent to 
horizontal and vertical forces 112 (t2h2 - tIhI) and P 
respectively acting at 0', together with a couple of 
magnitude G', it follows from statics that 

The derivation of this equation involves the custom­
ary assumption that the line joining the centres 0 
and 0' bisects the plastic angle of contact. In view of 
(23), the final expression for the roll torque becomes 

a .
X [ 1f2Tcos"2 + Psm"2a.] (24) 

where T = tl hI - t2 h2. The more complicated expres­
sion for G given by Alexander [7] is completely 
equivalent to (24), provided P is given by (22). 
Under the approximation sin 4> == 4> and cos 4> 1, 
(24) reduces to that given by Hill [12]. 

Since P and R' depend on one another in a given 
rolling program, they have to be evaluated simulta­
neously by successive iterations. For a rapid con­
vergence of the iterative process, a suitable starting 
value of R' must be chosen, or computed from an 
approximate value of P. Considering, for instance, 
the Bland and Ford theory of cold rolling, it is 
possible to express the roll force by the empirical 
formula 

P = 2kv'R'8 [1.02 + r(1.5+ 1.6r2) IL ff.-1.9r2] 

(25) 

where 8 is the draft hI - h2' r the fractional reduction 
in thickness, and k a suitable mean value of the shear 
yield stress over the arc of contact. The expression in 
the square bracket predicts the dimensionless roll 
force with good approximation over the relevant 
range. Substituting into (21), and setting ho == h2 
and Pe == 0, we obtain the quadratic [2] 

where A. = 2klf.Lc. Equation (26) indicates that 
the ratio R'IR depends only on the parameters 
f.L Y(Rlh), A. and r. For accuracy the mean yield 
stress should be estimated from the formula [13] 

k
l h-hpe)


k = ki + J.k2 V \ 1 - ;:) dk, e = T.. (27) 

The integral in (27) can be evaluated numerically 
using (14), with he == hI' When the value of R' is 
computed from (26), equation (11) can be solved for 
the roll pressure distribution over the plastic region. 
A modified value of R' is then obtained from (20), 
(22), and (21), after Se1 So, 'Y, and (3 have been 
computed from equations (16) through (19). 
In general, the results should converge after only a 
few iterations. 

4. DISCUSSION OF RESULTS 

Numerical results based on the preceding theory 
have been evaluated by using a computer program 
similar to that used by Alexander, and are displayed 
in Figures 3 to 7. The material is assumed to have an 
initial yield stress 2kI = 6.391 tons in -2 (98.677 MPa) , 
the parameter m of the stress-strain equation (14) 
being taken as 727.65. For simplicity, the strip ten­
sions are assumed to be zero. In Figure 3, the normal 
roll pressure is plotted agaivt the parameter 1 - 4>/0. 
for given values of rand f.L (Rlh I ), and two differ­
ent values of n. The effect of work-hardening is to 
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Figure 3. Roll Pressure Distribution in the Cold Rolling of Non-Hardening and Work Hardening Strips. 
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Figure 4. Roll Pressure Distribution in the Cold Rolling for Two Different Values of b = ....VR/h1 • 

July 1991 The Arabian Journal for Science and Engineering, Volume 16, Number 3. 393 

0.2 0.4 0.6 0.8 1.0 1.2 



J. Chakrabarty and Y. W. K won 

increase the roll pressure as well as the ratio ~/a, deformation of the strip increases as the reduction is 
representing the extent of the elastic recovery in decreased. Figure 7 indicates how the roll torque is 
relation to the energy angle of contact. Figure 4 overestimated by the neglect of the elastic arcs of 
shows the distribution of roll pressure for a non­ contact. The disparity is seen to be considerably 
hardening material, with r = 0.35, and indicates how more for the work-hardening material, due to the 
the roll pressure increases with the parameter augmented roll pressure on the exit side caused by 
f.L VCR/hI)' The effects of the elastic deformation work-hardening. This introduces the necessity for 
are not appreciable for sufficiently large reductions, taking account of the elastic deformation of the strip 
as may be seen from Figure 5. It is apparent that when dealing with relatively hard materials, not only 
the elastic angle of contact on the entry side is an for small reductions but also for moderate and large 
insignificant part of the total angle of contact even reductions. The analysis presented in this paper 
for a reduction that is as low as 3 percent. should be applied to such materials for an accurate 

estimation of the roll force and torque in cold flat 
The variation of the roll force with the fractional rolling.

reduction in thickness is shown in Figure 6 for both 
non-hardening and work-hardening materials, using In the elementary theories of cold rolling, which 
a definite value of f.L VCR/hI)' The graphs obtained are based on various approximations of the von 
by excluding the contribution from the elastic arcs of Karman equation, the elastic deformation of the 
contact are included for comparison. As expected, strip is usually disregarded, and the work-hardening 
the percentage error involved in neglecting the elastic is allowed for by introducing a suitable mean yield 

28.0 

24.0 

N 20.0 -Z 
::::: 
z 
0 
I­

16.0 
wa: 
;::) 
en en w 12.0a: 
r:a. 

..J 

..J 

0
a: 8.0 

0.0 0.2 0.4 0.8 1.01-! 0.6 
a 

Figure 5. Roll Pressure Distribution in the Cold Rolling for Two Different Fractional Reductions in Thickness. 
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r 
Figure 6. Variation of Roll Force with Reduction in Cold Rolling Without Tension (tJ.VR/h1 =1.2). 
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Figure 7. Variation of Roll Torque with Reduction in Cold Rolling Without Tension (tJ.VR/h1 =1.2). 
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stress over the arc of contact. In the case of thin hard 
metals, the elastic arcs of contact are taken into 
account by introducing correction terms for the esti­
mation of roll force and torque, without considering 
the effects of the elastic deformation on the com­
plete roll pressure distribution. Although this 
procedure seems adequate for the standard roning 
problem, the determination of the minimum strip 
thickness, for which a reduction is possible in cold 
rolling, will require more rigorous mathematical 
formulations. The theory presented in the first part 
of this paper would be particularly suitable for an 
accurate prediction of the minimum thickness in cold 
rolling. Since the accuracy of the approximations 
based on the rigid-plastic assumption for the 
material response has already been discussed in the 
literature, no attempt has been made here to 
compare the present theory with the elementary 
theories of rolling. 

REFERENCES 

[1] 	 Th. von Karman, "Beitrag zur Theorie des Walzvor­
ganges", Zeit. angew. Math. Meeh., 5 (1925), p. 139. 

[2] 	 E. Orowan, "The Calculation of Roll Pressure in Hot 
and Cold Flat Rolling", Proe. Inst. Meeh. Engrs., 150 
(1943), p. 140. 

[3] 	 J. Chakrabarty, Theory of Plasticity. New York: 
McGraw-Hill 1987, p. 551. 

[4] 	 D. R. Bland and H. Ford, "The Calculation of Roll 
Force and Torque in Cold Strip Rolling with Ten­
sions", Proe. Inst. Meeh. Engrs., 159 (1948), p. 144. 

[5] 	 D. R. Bland and R. B. Sims, "A Note on the Theory 
of Rolling with Tensions", Proe. Inst. Meeh. Engrs., 
167 (1953), p. 371. 

[6] 	 H. Ford, F. Ellis, and D. R. Bland, Cold Rolling with 
Strip Tensions, Part I, "A New Approximate Method 
of Calculation and a Comparison with Other 
Methods",l. Iron Steellnst., 168 (1951), p. 57. 

[7] 	 J. M. Alexander, "On the Theory of Rolling", Proe. 
Roy. Soc. London, 326 (1972), p. 535. 

[8] 	 D. R. Bland and H. Ford, "An Approximate Treat­
ment of the Elastic Compression of the Strip in Cold 
Rolling", 1. Iron Steel Inst., 171 (1952), p.245. 

[9] 	 R. Venter and A. Abd-Rabbo, "Modelling in the 
Rolling Process-I, Inhomogeneous Deformation 
Model", Int. 1. Meeh. Sci., 22 (1980), p. 83. 

[10] 	G. Li and S. Kobayashi, "Rigid/Plastic Finite 
Element Analysis of Plane Strain Rolling", J. Eng. 
Indust. Trans. ASME, 104 (1982), p. 55. 

[11] 	L. Lai-Seng and J. G. Lenard, "Study of Friction in 
Cold Rolling", J. Eng. Mat. Teehnol., Trans. ASME, 
106 (1984), p. 139. 

[12] 	R. Hill, "Relations Between Roll Force, Torque, and 
Applied Tensions in Strip Rolling", Proe. Inst. Meeh. 
Engrs., 163 (1950), p. 135. 

[13] 	R. B. Sims, "Calculation of Roll Force and Torque in 
Cold Rolling by Graphical and Experimental 
Methods", 1. Iron Steel Inst., 178 (1954), p. 19. 

[14] 	 H. Ford and J. M. Alexander, "Rolling Hard Mate­
rials in Thin Gauges, Basic Considerations", 1. Inst. 
Met., 71 (1960), p. 371. 

Paper Received 4 February 1990; Revised 9 July 1990. 

396 The Arabian Journal for Science and Engineering, Volume 16, Number 3. 	 July 1991 


