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ABSTRACT 

This paper considers the flow of an incompressible, conducting non-Newtonian 
Rivlin-Ericksen fluid of second order through a porous medium on an inclined 
permeable plane. In the presence of uniform magnetic field, an analytic solution to 
the volume-averaged momentum equation is obtained. The velocity profiles are 
illustrated for several combinations of the porous medium shape parameter, elastic 
parameter, and magnetic parameter. During the course of discussion, the drag force 
on the permeable wall is obtained and the effect of properties of the problem are 
studied and shown numerically and graphically. 

*To whom correspondence should be addressed. 

July 1995 The Arabian Journal/or Science and Engineering, Volume 20, Number 3. 571 



Nabil T.M. Eldabe and Salwa M.G. Elmohandis 

MAGNETOHYDRODYNAMIC FLOW OF SECOND ORDER FLUID THROUGH 

A POROUS MEDIUM ON AN INCLINED POROUS PLANE 


INTRODUCTION 

There is increasing interest in magnetohydrodynamic flows within fluid-saturated porous media, because of 
numerous applications in geophysics and energy-related problems, such as thermal insulation of buildings, 
enhanced recovery of petroleum resources, geophysical flows, packed bed reactors, and sensible heat storage beds. 
Most of the previous studies of the flow through porous media [1-5] are based on the assumption that the fluid is 
Newtonian. 

The understanding of non-Newtonian flows through porous media represents interesting challenges in 
geophysical systems, chemical reactor design, certain separation processes, polymer engineering, and in petroleum 
production. 

In this technical brief, a theoretical study of the fully-developed magnetohydrodynamic non-Newtonian flow 
through a porous medium on an inclined permeable wall is presented (see Figure 1). The differential equation 
which describes the velocity distribution of the fluid have been solved using the method of series expansion in 
terms of a suitable parameter assumed to be small. 

The main idea of our work is to show the relation between the different parameters of the motion and the 
external forces, in order to investigate how to control the velocity of the fluid by changing these parameters and 
external forces. 

PRELIMINARIES 

The Cauchy stress 't in an incompressible Rivlin-Ericksen fluid of second order is related to the fluid motion in 
the following manner [6, 7]: 

(1) 

where J! is the coefficient of viscosity, J!* and J!** are the normal stress moduli, -PI denotes the indeterminate 
pressure and AI and A2 are the kinematical Rivlin-Ericksen tensors defined through: 

Al =VV + (VV)T 

B ~ 
o 

q 

Figure 1. Physical Model and Its Coordinates. 
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and 

A2 At + Al (VV) + (VV)T At 

where the dot denotes material time differentiation and V denotes the velocity field. 

We now develop the main field equations for the velocity V when the constitutive expression (1) is substituted 
into the volume-averaged momentum equation for an incompressible conducting fluid flowing through a porous 
medium with uniform porosity on an inclined permeable wall. The system is stressed by the normal magnetic field 
of uniform strength Bo. The following conventional assumptions are considered: (i) the physical properties p, Jl, Jl* 
and Jl** are considered to be constant; (ii) Darcy's law and Boussinesq approximation are employed; (iii) the fluid 
is injected through the inclined solid porous plate with constant velocity Vo; and (iv) the induced magnetic field is 
neglected, which is valid for small magnetic Reynolds number; the external electric field is zero and the electric 
field due to polarization of charges is negligible [8], Also, the fields generated by the fluid motions are negligible 
with respect to external fields. 

We select a rectangular cartesian system with the axis of x in the direction of motion and axis of y perpendicular 
to it. 

The governing equations are: 

The continuity equation: 

V·V =0, 

The momentum equation: 

p(av + V ' VV) = V . 't - Jl V + J x B + pg,at k 
Maxwell's equations: 

aB 
V·E= V·B 0at ' , 

Ohms law: 

J=O'[E+VxB], (2) 

where p is the density, k the permeability of the medium, J the current density, g the acceleration gravity, E is the 
electric field, 0' is the electrical conductivity, and B is the magnetic induction. 

For two-dimensional flow, the velocity vector V and magnetic flux vector B have the components V = (U, V,O) 
and B =(B ' By, 0). Since the plate is infinite, all physical quantities are independent of x. With this assumption the x 

equation of continuity reduces to av = 0 and we get V = Vo(t). We will, however, assume the simple case when ay 
suction velocity is uniform, Le., V = Vo = constant. Maxwell's equations give aBy = 0 and aBy = 0, hence By = at ay 
constant = Bo = strength of the imposed magnetic field which is constant in space and time. If the magnetic 
Reynolds number is small, as we mentioned before, the component Bx of the induced magnetic field may be 
neglected. These assumptions result in great simplification. Also, we assume the situation that satisfies the 
condition E =0 and uncoupling of the hydrodynamic and hydromagnetic equations. Taking account of these 
assumptions the system of Equations (2) for steady state are reduced to: 

dU Jl d2U d3U 
PVo - = - - U + Jl + VoJl* - 0'B5 U + p g sin <I> (3)

dy k dy2 dy3 

and 
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dP d (dUJ2 (JlVO )- = (2Jl* +Jl**)- - - - + pgcosq, 	 (4)
dy dy dy k 

where q, the angle of inclination. Equation (3) determines the velocity distribution of the fluid in terms of the 
problem properties and from the velocity expression we can obtain the modified pressure formula by using 
Equation (4). 

THE BOUNDARY CONDITIONS 

At the inclined Wall, the fluid velocity is zero. At the free surface, the shear stress is zero. 

ANALYSIS 

Using the following non-dimensional variables 

kp2v,2' pVo K= __oU'=~, Y =y-, 
Vo Jl Jl2 

pv,2Jl* 	 Jlg sin q,0: 	= _0_ ~ = aBaJl 

2 ' 


Jl p2VJ' 
1= 

pVJ 

(5) 
_ pVJJl** Jlg cos q,P'=~ S- 2' 1* = 

pVJ' Jl pVJ 

Here, K is the permeability parameter, 0: is the elasticity parameter, ~ is the magnetic parameter, and S is the cross­
viscosity parameter. The Equations of motion (3, 4) and the boundary conditions are obtained in the dimensionless 
form as follows (after dropping the primes) 

(6) 
dP d (dUJ2 (1 )- = (20: + S) - - - + 1* 
dy dy dy K 


with the boundary conditions 


U=o at y = 1) 
(7)

dU = 0 at y = 0 
dy 

It may be pointed out here that 0: = 0 leads to the flow of ordinary Newtonian viscous fluid. For a solid inclined 
wall (Vo =0), when the fluid is an ordinary Newtonian (0: =0) and in the absence of an external magnetic field 
(~ = 0) Equation (6) reduces to that equation which was studied in reference [9]. 

METHOD OF SOLUTION 

We seek the solution of Equations (6) and (7) in terms of perturbation elasticity parameter 0: in the following 
series expansion form 

(8) 
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thus, using the perturbation scheme (8) in Equations (6) and (7) and collecting the coefficients of like powers of a. 
we get the following sets of equations with boundary conditions up to first order 

d 2U(0) dU(O) ( 1 ) 
-- - -- - ~ + - U(O) =-1 (9)

dy2 dy K 

(10) 

U(O) = 0, U(I) =0 at y =1 (11) 

dU(O) dU(I) 
--=0 -- = 0 at y = O. (12)

dy , dy 

Equation (9) along with the conditions (11) and (12) give velocity component cf.0) as 

(13) 

where 

A.} = {I + ~1 + 4(~ + 11K) } 1 2 

and 

A.2 = {I - ~1 + 4(~ + 11K)} 12 

Equation (10) when solved using the expression for U(O) with the conditions (11) and (12), gives the first order 
component U<I) as: 

(14) 

where 

and 

Hence, the velocity distribution of our problem and the pressure may be written in the form: 
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(15) 

(16) 

WALL SHEAR STRESS 

Non-dimensional wall shear stress tw is given as: 


tw 
= (dU + a d2UJ 
dy dy2 y=1 

= Y {eAt [_ AIA2(1 + Ad _ Ai A2mla (1 + Ad + A32A~ (A2 -1)(1 + AdaeA2 

(~+ 1/K) mo m~O"1 - A2) m5(A2 - Ad 

+ A~A~m2a(1 + A2) _ A~Ala(2 + A2) _ A32Ata(1 + A2)]}. (17) 
mo(A2 - AI) mo(A2 - AI) mo(A2 - AI) 

RESULTS AND DISCUSSION 

To study the effects of elastic parameter a, the magnetic parameter ~, and the permeability parameter K on the 
velocity distribution and wall shear stress, the expressions (15) and (17) are evaluated by taking a = 0.01, 0.03, 
0.05, ~ =2, 4, 8, and K =0.5,0.7, and 0.85. 

The values of U are plotted versus y in Figures (2-4). It is observed from these figures that the effect of non­
Newtonian parameter a is to decrease the velocity profile when both of the magnetic parameter and permeability 
parameter are constants (Figure 2). Also in the case of constant permeability and elasticity parameters the effect of 
magnetic parameter ~ is to decrease the velocity distribution (Figure 3). Figure 4 indicates that the velocity profile 
increases with the increase of the permeability parameter K, this occurs when both of the magnetic and elasticity 
parameters are constants. 
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Figure 2. Velocity Profile Plotted Against y for ~=2 and K=0.5. 
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Figure 3. Velocity Profile Plotted Against y for 0.=0.01 and K=0.5. 
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Figure 4. Velocity Profile Plotted Against y for Cl=O.Ol and ~=2. 
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Figure 5. The Drag Force Plotted Against <l. 
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Figure 6. The Drag Force Plotted Against p. 
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Figure 7. The Drag Force Plotted Against K. 
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The values of the drag force 't(a, ~, K) on the permeable wall are plotted in Figures 5-7. It is found that the 
value of the drag force increases with the elasticity parameter, when both of permeability and magnetic parameter 
are constants (Figure 5). Also, the value of the drag force at the inclined wall increases as the magnetic parameter 
increases in the case of constant elasticity and permeability parameters (Figure 6). Figure 7 shows that the drag 
force decreases as the permeability parameter increases when both elasticity and magnetic parameters are 
constants. 

From the above analytical results and from figures we can conclude that the elasticity and magnetic terms a and 
~ make an retardation of the flow, while the flow will accelerates for the medium of large porosity K. On other 
hand both of elasticity and magnetic terms will accelerate the drag force 'tw while the porosity K retards it. 

Finally, it is found that the problem properties a, ~, K played an important role in controlling the motion of the 
fluid under consideration. 

CONCLUSIONS 

The study of the physics of non-Newtonian fluid flow through porous media has become the basis for many 
scientific and engineering applications. This type of flow is of great importance to the petroleum engineer 
concerned with movement of oil, gas, and water through the reservoir of an oil or gas field, to the hydrologist in his 
study of the migration of underground water, and to the chemical engineer in connection with filtration processes. 
Beyond this, the study is widely applicable in soil mechanics, water purification, ceramic engineering, powder 
metallurgy, and mathematical medium. 

The results of the problem are also of great interest in geophysics in the study of the interaction of the 
geomagnetic field with the fluid in the geothermal region. Water in the geothermal region is an electrically 
conducting liquid because of high temperature. With the fuel crisis deepening all over the developed world, 
attention is turning to the utilization of the enormous power beneath the earth's crust in the geothermal region. 

Another potential geophysical application of the present results is in the exploration of geopressured reservoirs. 
In these reservoirs, water at elevated temperature exists at enormously high pressure because of the weight of the 
overlying rock and the geomagnetic field. The upflowing water from geopressured wells can run hydraulic turbines 
to produce electricity, while the heat in the water can simultaneously be extracted to run steam turbines, again 
producing electricity. 
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