ON INVERSE M-MATRICES OF THE FORM $A=s I+B$

Ibrahim N. Imam*
Department of Engineering Mathematics and Computer Science
University of Louisville
Louisville, Kentucky 40292, U.S.A.

and
Charles R. Johnson
Department of Mathematics
College of William and Mary
Williamsburg, Virginia 23185, U.S.A.


```
حقيقي بينا (1) المصفونة المحايدة للضرب ، أما (ب) ) فهي مصفونة غير سالبة . ويبدأ البحث
```



```
    عندما تكون ( ب ) متساوية التوي .
```


Abstract

In this paper matrices of the form $A=s I+B$, where s is a real number, I is the identity matrix, and B is a nonnegative matrix, are considered. The case when $s=1$ is considered first and sufficient conditions are imposed on B to insure that A is an inverse M-matrix. A lower bound for s such that $s I+B$ is an inverse M-matrix when B is idempotent is given.

[^0]
ON INVERSE M-MATRICES OF THE FORM $A=s I+B$

1. PRELIMINARIES

An $n \times n$ real matrix $M=\left(m_{i j}\right)$ is called a Z-matrix if and only if $m_{i j} \leq 0$ for all $i \neq j$. An important subclass of Z-matrices is the class of M-matrices. There is a number of equivalent definitions of these matrices [1]. For the purpose of this paper, a Z-matrix M is called an M-matrix if and only if it is of the form $M=\alpha I-P$ where P is entry-wise nonnegative and α exceeds the spectral radius of P. This is equivalent to saying that M is nonsingular and that its inverse is entry-wise nonnegative. An $n \times n$ nonnegative and nonsingular matrix A is called an inverse M-matrix provided that A^{-1} is an M-matrix. It is well-known that the zero-nonzero patterns of inverse M-matrices are power invariant and that any inverse M-matrix may be scaled by suitable diagonal matrices with positive diagonal entries to have prescribed diagonal entries [2]. Let B be an $n \times n$ nonnegative matrix such that $s I+B$ has a power invariant zero-nonzero pattern for $s>0$. It has been shown that there is a real number s_{0} such that $s I+B$ is an inverse M-matrix for $s>s_{0}$ and that $s I+B$ is not an inverse M-matrix for $s \leq s_{0}$. In this paper we give a characterization of this real number s_{0} for certain special types of matrices B.

The following lemmas are easy to prove. Thus, their proofs have been omitted.

Lemma 1. Let B be a nonnegative $n \times n$ idempotent matrix. Then $0 \leq b_{i i} \leq 1$ for $i=1, \ldots, n$.

Lemma 2. Let B be an $n \times n$ idempotent matrix such that $B \neq 0$ and $B \neq I$. Let s be a real number. Then $s I+B$ is invertible if and only if $s \neq 0$ and $s \neq-1$. In this case:

$$
(s I+B)^{-1}=s^{-1} I-[s(s+1)]^{-1} B .
$$

2. RESULTS

Theorem 1. Let A be a nonnegative nonsingular $n \times n$ matrix satisfying the polynomial

$$
x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}-a_{1} x+a_{0}
$$

in which a_{0} is positive. Then A is an inverse M-matrix if and only if $A^{n-1}+a_{n-1} A^{n-2}+\ldots+a_{2} A$ is the negative of a Z-matrix.
Proof. Since A satisfies the given polynomial, it follows that

$$
a_{0} A^{-1}=a_{1} I-\left[A^{n-1}+a_{n-1} A^{n-2}+\ldots+a_{2} A\right] .
$$

From this it follows that A^{-1} is a Z-matrix and therefore A is an inverse M-matrix if and only if $A^{n-1}+a_{n-1} A^{n-2}+\ldots+a_{2} A$ is the negative of a Z-matrix.

We may apply Theorem 1 to several situations in which it is easily seen that its requirements are met. Each is proven by translating the given information into coefficients and then checking them against Theorem 1.

Corollary 1. Let A be a nonnegative, nonsingular $n \times n$ matrix. If $A=I+B, B \geq 0$, and $B^{2}=0$, then A is an inverse M-matrix.

Proof. Let A be as given. Then $A^{2}=I+2 B=2 A-I$. Thus A satisfies the polynomial $x^{2}-2 x+1$. Since $-A$ is a Z-matrix then Theorem 1 yields that A is an inverse M-matrix.

Corollary 2. Let A be a nonnegative, nonsingular $n \times n$ matrix. If $A=I+B$, where B is a nonnegative idempotent, then A is an inverse M-matrix.

Proof. It can be easily shown that A satisfies the polynomial $x^{2}-3 x+2$. Moreover since $-A$ is a Z-matrix then Theorem 1 yields the desired result.

Corollary 3. Let A be a nonnegative, nonsingular $n \times n$ matrix. If $A=I+P$, where $P=u v^{T}$, and u and v are nonnegative vectors such that $v^{T} u=1$, then A is an inverse M-matrix.

Corollary 4. Let A be a nonnegative, nonsingular $n \times n$ matrix. If $A=s I+B$, where B is an idempotent matrix such that $B \neq I$ and $B \neq 0$, and s is a real number. Then A is an inverse M-matrix if and only if s is positive.

Proof. It is easy to show that A satisfies a minimal polynomial $x^{2}-a_{1} x+a_{0}$ with $a_{1}=(2 s+1)$, $a_{\mathrm{o}}=s(s+1)$. Moreover since $-A$ is a Z-matrix, then Theorem 1 proves the if part. The only if part follows from lemmas 2 and 1.

Theorem 2. Let A be an $n \times n$ matrix of the form $A=I+B$ where B is nonnegative and the spectral radius $\rho(B)<1$. Then $B^{2} \leq B$ implies that A is an inverse M-matrix.

Proof. A^{-1} has the convergent power series

$$
\begin{aligned}
A^{-1} & =I-B+B^{2}-B^{3}+\ldots \\
& =I-\left(B+B^{3}-B^{5}+\ldots\right)+\left(B^{2}+B^{4}+\ldots\right) \\
& =I-\left(B+B^{2}\right)\left(I+B^{2}+B^{4}+\ldots\right) .
\end{aligned}
$$

Since $\left(B-B^{2}\right)$ and $\left(I+B^{2}+B^{4}+\ldots\right)$ are nonnegative it follows that A^{-1} is a Z-matrix and since A is nonnegative then it is an inverse M-matrix.

REFERENCES

[1] A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences. New York: Academic Press, 1979.
[2] C. R. Johnson, "Inverse M-matrices", Linear Algebra and Its Applications, 47 (1982), p. 195.

Paper Received 4 January 1987; Revised 13 June 1988.

[^0]: *To whom correspondence should be addressed.

