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ABSTRACT 

This paper presents a closed form solution for the dynamic response of an 
induction machine. Based on the load angle approach, the induction machine is 
represented by a simple linear second order differential equation whose solution 
can be obtained easily in a closed form. The accuracy of the closed form solution is 
demonstrated by comparing it with that predicted by a detailed dlq model in a 
synchronously rotating reference frame. The testing of the proposed model is 
carried out for very large as well as very small motors. In all cases the closed form 
solution gave excellent predictions despite its simplicity. 
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A CLOSED FORM SOLUTION FOR THE DYNAMIC RESPONSE OF 

INDUCTION MACHINES 


NOMENCLATURE 


T Developed torque 
TL Load torque 
5 Load angle 
Rs Stator resistance 
Rr Rotor referred resistance 

Stator inductance 
Lr Rotor referred inductance 
M Magnetizing inductance 
Xs Stator leakage reactance 
Xr Rotor referred leakage reactance 
X Xs+Xr 
P Number of pair of poles 
p (d/dt) operator 
J Rotor inertia 
V Terminal voltage 
<p tan-l (RJX) 
<Us Synchronous speed 
<Un Natural frequency 
~ Damping coefficient 

1. INTRODUCTION 

Simplified induction machine models playa major 
role in power system stability studies and in the 
prediction of induction machine dynamics. Various 
simplified models that predict the dynamic response 
of induction machines have been investigated [1-5]. 
Most of the reduced order models are based on small 
signal analysis and on neglecting the time rate of 
change of stator flux linkages (pA-terms) [1-4]. The 
second approximation is usually referred to as the 
neglecting of the stator transients. But for induction 
machines, especially for those of the large horse
power rating, these models have limited accuracy. 

A different approach for obtaining a reduced order 
model is described in reference [5]. Such a model 
represents the dynamic behavior of an induction 
machine by a non-linear second order differential 
equation similar to the swing equation of synchronous 
machines. The reduction in this model is based on 
the use of a simplified steady state equivalent circuit 
of the induction machine shown in Figure 1, and on 
the introduction of the load angle 5 as defined in 
Figure 2. The dynamic response predicted by the 
load angle approach [5, 6] follows closely that 
obtained from the detailed dlq model [7]. 

In this paper, the non-linear second order differ
ential equation of reference [5] has been simplified 

to a linear second order differential equation which 
has a simple closed form solution. The simplification 
is based on the introduction of a new angle e as 
defined in Figure 2. The proposed approach predicts 
the dynamic behavior of induction motors fairly 
accurately at any time following a disturbance in the 
load torque without any numerical instability what
soever. The proposed model is derived next. 

Figure 1. Simplified Equivalent Circuit of Induction 

Machine. 


v 

Figure 2. Phasor Diagram of the Simplified Circuit. 
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2. LOAD ANGLE MODEL 

The load angle & in an induction machine is 
defined as the angle between the synchronously 
rotating flux and the air-gap flux as shown in Figure 
2. Based on this definition of &, the developed 
electromagnetic torque as a function of the load 
angle can be expressed as [6]: 

(1) 

where 

3PV2 R 
~ ud ~~=Xs. W

2wsXcos~ 

If the load torque applied to the motor is abruptly 
changed by a unit step, then the dynamic behavior of 
the machine load angle can be described by the 
following non-linear second order differential equa
tion as given in [6]: 

(3) 

where 

wsRrcos2 ~ 
(4)A(&) = Xsin2(&+~) , 

and T(&) is given by Equation (1). 

3. PROPOSED MODEL 

In this section, a closed form solution for the 
dynamic response of induction motors will be derived. 
The derivation is based on the linearization of T(&) 
and A (&) which are given by Equations (1) and (4) 
respectively. Consequently, Equation (3) will be 
become a linear second order differential equation. 

3.1. Simplifying The Load Angle Equation 

Equation (1) can be expanded as follows: 

T(&) = - Tm(sin 2& cos ~+cos 2& sin ~+sin~) .(5) 

'iT 
Substituting &= 2" + 9, (see Figure 2), into the 

above equation gives: 

T(&) Tm(sin29cos~+cos29sin~-sin~). (6) 

Figure 3 shows the variation in the angle 9 for a 
100% increase in the load torque for a large and a 
small motor. These responses are obtained from the 
detailed d/q model which will be outlined later in 
this paper. From this Figure, it is clear that 9 is small 
enough which justifies the following approximation 

sin 29 = 29 and cos 29 = 1. 

12 
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Figure 3. Variation of 9 for a 100% Change in the Load Torque. 
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Substituting for sin 20 and cos 20 into Equation (6), 
the developed torque equation can be rewritten as 
follows: 

(7) 

where 

(8) 

From Equation (7) it is clear that the electromagnetic 
torque varies linearly with the new angle 6. 

To complete the simplification process, A(8) of 
Equation (3) must also be expressed in terms of the 
new angle O. This can be accomplished by rewriting 
equation (4) as follows: 

A (0) = __w...:;..s_R..:-rc_o_s 
2
_<t>.:....-_ Ws R r cos 2 <t> 

X cos2(0 + <t» (9)
Xsin2(6 + i + <t» 

Since the angle 0 is usually very small as shown 
earlier, then the following approximation can be 
safely used: 

cos(6+ <t» cos <t> . 

With the above approximation, Equation (9) 
becomes independent of 0, i.e. A(O) = A given by 
Equation (10). 

A (10) 

. 1T
Smce 8 = 6 + 2' therefore 

d8 d6 
dt dt 

Substituting Equations (7), and (10) and the 
above relations into Equation (3) yields the 
following linear second order differential equation: 

d62 d6 2 _ P 
+ 2~wn dt + wnO - J TL (11) 

where the natural frequency and damping coefficient 
are respectively given by: 

roo (12)= j(PJ') = PV j(J:X) 
~ = wsRr (13)

2wnX 

and Te is given by Equation (8). 

3.2. Dynamic Response Due to a Sudden Change 
in the Load Torque 

If the load torque TL is changed by a unit step 
ATL , then the normalized change in the angle 6 has 
the following closed form solution: 

A6 ATL 1 - = - {1 - - exp( -~wnt) cos(wt-l/I)} (14)
60 To cos l/I 

where 

00 = Wn V(1-~2) (15) 

l/I = sin-1 ~ (16) 

and 60 and To are the initial values of the load angle 
and electromagnetic torque respectively. 

The normalized change in the electromagnetic 
torque can be related to that of the load angle 6 by 
using Equation (7). It can be easily verified that: 

AT AO 
(17)o . 

o 

The rotor angular speed Wr can be obtained by 
, solving the familiar rotor dynamic equation as follows: 

dOOr P P
dt =, (T-Td =,(AT-ATd (18) 

Substituting for the solution of AT from Equations 
(17) and (14) into the above equation and simpli
fying yields: 

dOOr __ PA 
dt Jcosl/l cos(wt-l/I)exp(-~wnt). (19) 

The above first order differential equation can be 
integrated to give a closed form solution for the 
change in the rotor angular speed due to a sudden 
change in the load torque. The solution is: 

Aw = - wnATL {sin(wt-2l/1) exp(- ~wnt) +sin 2l/1}. 
r Tecos l/I 

(20) 

The magnitude of the rotor current can also be 
obtained in terms of the load angle 0 as follows [6]: 

V. 
IIrl = X sm 6. (21) 

If an induction motor is subjected to a disturbance 
in its load torque, the changes in its electromagnetic 
torque, rotor speed, and magnitude of the rotor 
current can be obtained directly by evaluating 
Equations (14), (20), and (21) respectively. 
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4. DETAILED d/q MODEL 

Accurate prediction of motors transients can be 
obtained using the well-established detailed d/q 
model. The equations which describe the induction 
motor in the synchronously rotating reference frame 
may be expressed as follows [7]: 

[v] = [Z] [i] (22) 

where 

[v] = [VdS Vqs 0 0]1 (23) 

[i] = [ids iqs idr iqr]1 (24) 

and with W = Ws - Wr and where P denotes d/dt 
operator, then 

Rs+Lsp -wsLs Mp -wsM 

wsLs Rs+Lsp wsM Mp 
[Z] = 

Mp -wM Rr+Lrp -wLr 

wM Mp wLr Rr+Lrp 

(25) 

Equation (22) may be rewritten in state space form: 

p[i] = [Lrl{[v]-[G][i]} (26) 

where 

Ls 0 M 0 

0 Ls 0 M 
(27)[L] = 

M 0 Lr 0 

0 M 0 Lr 

and 

Rs -wsLs 0 -wsM 

wsLs Rs wsM 0 
. (28)[G] = 

0 -wM Rr -wLr 

wM 0 wLr Rr 

The electromagnetic torque is 

T = 3f2PM{iqsidr-ids iqr} (29) 

and the mechanical equation is given by: 

dW r P 
Cit = J {T-Td· (30) 

5. RESULTS AND DISCUSSION 

The closed form solution is tested by comparing its 
prediction of the dynamic response with that predicted 

by a detailed d/q model in a synchronously rotating 
reference frame. Two motors A and B ':lre considered, 
the parameters of which are given in Table 1. The 
stators of both motors are Y -connected and their 
rotors are of the squirrel cage type. 

Motor A is selected to be of a very low rating while 
motor B is of high rating. This choice is made to 
investigate the accuracy of the proposed model over 
a wide range of motor ratings and parameters. In the 
simulation, the motors are assumed to be running 
fully loaded and suddenly subjected to a step increase 
in the load torque. Various values of such step 
changes were investigated. Here the results will only 
be given for a 30% step increase as an example of 
the accuracy of the closed form solutions. 

Figure 4 shows the normalized response of the 
change in the developed electromagnetic torque for 
motor A as obtained by the present simplified model 
and by the detailed d/q model. The normalized 
dynamic responses of the changes in the rotor current 
and that of the rotor angular speed are shown in 
Figures 5 and 6 respectively. The results of the 
dynamic performance of motor B are shown in 
Figures 7, 8, and 9 for the normalized change in the 
developed torque, rotor current and rotor angular 
speed respectively. The normalization is performed 
by dividing the dynamic response of the change of 
the variable by its initial value. 

From these figures it can be seen very clearly that, 
despite its simplicity, the closed form solution gives 
excellent predictions compared to those obtained 
from the detailed d/ q model for both small and large 
motors. From the results as well as the calculations, 
it was observed that the agreement between the two 
approaches is excellent for large motors. For small 
motors, in general, the torque obtained from the 
closed form solution is in excellent agreement with 

Table 1. Motor Parameters. 

Parameters Motor A Motor B 

Rating (RP) 1/3 1550 
# of poles 4 8 
Voltage (V) 220 6600 
Rs(fl) 7.2 0.162 
Rr(fl) 3.0 0.123 
Xs(fl) 14.4 2.444 
Xr(fl) 14.4 2.049 
Xm(fl) 157.0 55.446 
J (kg m2 

) 0.00615 305.910 
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Figure 4. Normalized Change in the Developed Torque for the Large Motor. 
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Figure 5. Normalized Change in the Rotor Current for the Large Motor. 
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Figure 6. Normalized Change in the Rotor Speed for the Large Motor. 
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Figure 7. Normalized Change in the Developed Torque for the Small Motor. 
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Figure 8. Normalized Change in the Rotor Current for the Small Motor. 
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Figure 9. Normalized Change in the Rotor Speed for the Small Motor. 
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that obtained from the detailed d/q model. The 
current and speed, however, have very small differ
ences between the two cases. This small departure, 
specially in the steady state, is due to the lineariza
tion process and the use of the approximate circuit of 
Figure 1. In that circuit the magnetizing reactance is 
moved to the motor terminals. For small motors 
where the stator resistance is relatively large, this 
simplification will have a slight effect in the steady 
state solution. Therefore, it can be stated in general, 
that the closed form solution provides very good 
simulation accuracy. 

In this paper, only the dynamic behavior of induc
tion motors due to a sudden disturbance in the load 
torque is obtained. The proposed approach can not 
be extended to obtain a closed form solution for the 
dynamic response of induction motors in the case of 
a disturbance in the terminal voltage and/or line 
frequency, because the angle e is not small enough 
for the linearization to be performed. The variation 
of the angle e for a 2% change in the terminal 
voltage, as obtained from the d/q model, is shown in 
Figure 10. 

6. CONCLUSIONS 

A simple closed form solution of the dynamic 
response of an induction machine has been obtained 
in this paper. The proposed solution can be used 
to obtain the dynamic responses of the developed 
torque, rotor speed, and magnitude of the rotor 
current of an induction motor at any time following 
a sudden change in the load torque with excellent 
accuracy irrespective of the motor horse power 
rating. It can also be concluded that, when the 
motor is subjected to a sudden change in the load 
torque, the normalized changes in the developed 
electromagnetic torque and rotor current are 
identical for large motors and nearly identical for 
small motors. When the transients die out, these 
normalized changes will approach that of the load 
torque. 

The model fails to predict the dynamic response of 
an induction machine following an abrupt change in 
the terminal voltage and/or line frequency, because 
of the violation of the assumption that the model is 
based on. 

60~~----------------------------------------~ 
large motor 

-

-
£:i.... 

O-h~~~~~TT~rr~~~~~~~TT~rr~~~~~ 

0.0 	 0.1 0.2 0.3 0.4 0.5 
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Figure 10. Variation of 6 for a 2% Change in the Terminal Voltage. 
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