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INTRODUCTION

There are a variety of ways of evaluating fixed end
moments and forces in cases of static loading [1] but
none can be easily used for dynamic loading, which is
usually dealt with by using equivalent static load. The
fixed end moment for a transverse load W on a beam
of length [ is xWI where x is called the influence
coefficient. The value of x is affected by such variables
as axial load and beam geometry and a number of
tables of influence coefficients are available in the
literature [1]. In this paper formulae are developed for
dynamic loading which is harmonic showing how the
influence coefficient depends on the frequency of the
load. The axial load effects are covered by the same
formulae.

THE DIFFERENTIAL EQUATION OF A
VIBRATING BEAM

The differential equation of a prismatic beam sub-
jected to the dynamic transverse load R(x, t), Figure 1,
is given by [2]
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where E is Young’s modulus, I the cross-sectional
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moment of inertia of the beam, P the axial compres-
sion, m the mass per unit length of the beam, and
Y=Y(x, 1) the deflection at distance x along the beam,
measured from end A, at time 1.

Let R(x, 1) =/(x) e*" )
then }!(xa l): ,V(X) ej“[ (3)

is the steady state response.
Substitution of (2) and (3) into (1) gives
d4 ; d2 ,
EL GG+ P g o=moty=/( (4)
This equation has been solved for f(x)=0 and its
eigenvalues give the natural frequencies with extension
to natural frequencies of frames [3].

Using the Laplace transform, Equation (4) has the
solution

y(x)=h(x)+g(x) ()

in which h(x) is the complementary function and g(x)
the particular integral having the forms
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Figure 1
Y[ B where
g(x)= J flu)y (\—u]duw—ﬁj flx—u)y(u)du |
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l Example. Consider the case where R(x,f) is a
=ly(x), t=Ly"(x), E=19" (x), ) uniformly distributed load having amplitude of total
e \ 20 load W. In this case
P = ( P + ;})12 — ,’: (10)
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y ( 4 ) 2 and (5) gives
n*El
jame o -, p=P/P, and P—- 2 is the Euler load g(x) = WLA
El T BN+ )

(12)

If Pis a tensile force then P in (1) is replaced by — P
and the solution is the same as the above except that ¢
and  are interchanged in (8).

For a fixed-end beam the end conditions are
y(0)=y'(0), y()=y'()=0 (13)
and also

[
yu(‘o): I A’Ir ylr/(o):

|
- PO, ) 14
El El (Fi+POy (14

where M is the fixed end moment at A and F¥ is the
fixed-end force at A.

Combining (5), (6), (7), {13) and (i4) and solving for
M and F¥ gives

B
M=, (alg()—Lithg () (£5)
- El
F 4 g~ la)g1) (16)
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[# (cosh %E~ 1)+l[/1-- (Cos %i— 1)] (19)

Substitution of (19) into (15) gives the fixed-end moment

Mt = FERRTELTY [(coshd) —cosy)

(2;3 (cosh¢ —

(;; sinh¢ "l/l/ sim//)} ’

=qWl (20)

l/lz (cosyy —1)—

which, in the limit as ¢ and ¥ tend to zero, gives the
established static load result
ME= i Wi
A2 T
The coefficient « of WI in Equation (20) is called an
influence coefficient.
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Table 1

Influence coefficients, «, for M}

Influence coefficients, g, for F§

p=0 p=0.5 p=1

p=0 p=0.5 p=1

0 -—0083 —-0.083 —0.089 - 0500 — 0500 — 0.500
05 -—0083 —-0083 —0.09 — 0500 -~ 0500 — 0.500
01 -0083 -0.089 -0.100 — 0500 - 0.501 — 0.501
1.5 —0084 —0.092 -0.103 — 0504 — 0505 — 0.505
2 —0.086 —0.094 -0.105 — 0511 - 0513 — 0515
25 -00% -0.099 -—0.112 — 0529 — 0534 — 0540
3 -0.098 —-0.110 -0.126 - 0567 - 0578 — 0.594
35 —-0115 -0.134 -0.162 — 0648 — 0683 — 0.726
4 —-0.161 —-0205 —0.293 — 0862 — 0981 - 1.218
41 -0.180 —-0238 0372 - 0949 ~ 1.120 - 1.513
42 —-0206 —0.289 —0.526 — 1.069 -— 1335 — 2089
43 -0243 -0374 0961 — 1245 - 1705 - 3.713
44 0305 0564 —-9.770 — 1531 — 2490 —36.605
45 —-0425 —1.225 1.086 — 2066 — 5267 3932
46 —0737 4442 0.491 — 3.428 18.557 1.710
47 =296l 0.735 0.307 —13.874 2.973 1.023
4.8 1.219 0.398 0.218 5.550 1.500 0.690
49 0.515 0.253 0.165 2.118 0.946 0.494
5.0 0.242 0.185 0.131 1.230 0.657 0.365

Substituting (19) into (16) gives REFERENCES

. 1 .
F;:W [¢sinhé (cosy — 1)+

Ysinyr(coshy — 1) | W=pW (21)

which reduces to —4 W in the static case and here the
coefficient 8 of Wis called an influence coefficient.

In accordance with normal practice [1] the coef-
ficient of Win (20) is called the Influence Coefficient of
the Fixed-end Moment, ML and similarly for the
coefficient of W in (21). Table 1 gives some values of
these influence coefficients shown graphically in Figure

CONCLUSION

The table shows that the dynamic effect is negligible
for a low frequency load, as may be expected, but,
when the frequency is increased the influence coef-
ficients change markedly.
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