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INTRODUCTION 

There are a variety of ways of evaluating fixed end 
moments and forces in cases of static loading [IJ but 
none can be easily used for dynamic loading, which is 
usually dealt with by using equivalent static load. The 
fixed end moment for a transverse load Won a beam 
of length I is x WI where x is called the influence 
coefficient. The value of x is affected by such variables 
as axial load and beam geometry and a number of 
tables of influence coefficients are available in the 
literature [1]. In this paper formulae are developed for 
dynamic loading which is harmonic showing how the 
influence coefficient depends on the frequency of the 
load. The axial load effects are covered by the same 
formulae. 

THE DIFFERENTIAL EQUATION OF A 
VIBRATING BEAM 

The differential equation of a prismatic beam sub
jected to the dynamic transverse load R(x, t), Figure 1, 
is given by [2J 

where E is Young's modulus, 1 the cross-sectional 
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moment of inertia of the beam, P the axial compres
sion, m the mass per unit length of the beam, and 
Y= Y(x, t) the deflection at distance x along the beam, 
measured from end A, at time t. 

Let R(x, t) 	 (2) 

then Y(x, t) = y(x) eJ")1 (3) 

is 	the steady state response. 
Substitution of (2) and (3) into (1) gives 

d4 y d2 v 
EI - ~ + P ---- mw2 y =f(x) (4)

dx4 dx 2 

This equation has been solved for f(x) =0 and its 
eigenvalues give the natural frequencies with extension 
to natural frequencies of frames [3]. 

Using the Laplace transform, Equation (4) has the 
solution 

y(x) h(x) +g(x) 	 (5) 

in which /1(x) is the complementary function and g(x) 
the particular integral having the forms 

P 
h(x) ~y(O)+r/y'(O)+oP(y"(O)+ EI y(O))+ 

P 
+}' f3(y"'(O) E1 y'(O)), 	 (6) 
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3(" t>x 1 rx 
g(X) =Elt f(uh(x -u)du EiJo j(X u)y(u)du 

(7) 

where 

1 . cpx 1 . t/lX)
y {(x) = ~..~~..-.-: ¢ slllh I t/I Sill -1- , (8)( 

a Iy'(x), r=[2y"(x), ~=l (x), (9) 

"" (1t~)'+ i4}" _ "~"-, (10) 

ljJ2 = ( 
rr41C + ;4)1/2 rr2 p (11)
4' 2 

rr2EI 
is the Euler load 

(12) 

If P is a tensile force then P in (1) is replaced by - P 
and the solution is the same as the above except that cp 
and t/I are interchanged in (8). 

For a fixed-end beam the end conditions are 

y(O) = y'(0), y(l) = y'(l) = 0 (13) 

and also 

r MF y"'(O) 1 F (14)y"(O)= EI A' EI (F A+P0A.) 

where M r is the fixed end moment at A and Fr is the 
fixed-end force at A. 

Combining (5), (6), 0), (13) and (14) and solving for 
lv1~ and F~ gives 

M~= EI (a(l)g(l) h'(l)g'(l)) (15) 

F EI 
F A = - pti (r(l)g(l)-la(l)g'(l)) (16) 
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where 

1 
L1 cpljJ(cp2 +~2)2 (2cpt/l(l-coshcp cosljJ) 

+ (cp2 ljJ2)sinh cp sinljJ), (17) 

Example. Consider the case where R(x, t) is a 
uniformly distributed load having amplitude of total 
load W. In this case 

W 
R(x, t) I eJU)/ (18) 

and (5) gives 

g(x) 

1 ( cpx )' 1 ( ljJx )] (19)[ cp2 cosh I - 1 +-;;;2 cos I - 1 

Substitution of (19) into (15) gives the fixed-end moment 

M~ ..-~...WI-.-- [ (coshcp cosljJ) 

G, (cosh'" 1)+ ;2 (cos'" -1) 

G- sinh", -~ sin",)] 2 

ctWI (20) 

which, in the limit as cp and ljJ tend to zero, gives the 
established static load result 

1 
-- WI. 

12 

The coefficient C( of WI in Equation (20) is called an 
influence coefficient. 
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Table I 

Influence coefficients, ct, for M~ Influence coefficients, /3, for F~ 
). 

p=O p=0.5 p= 1 p=O p=0.5 p=l 

0 -0.083 -0.083 -0.089 0.500 - 0.500 - 0.500 
0.5 -0.083 -0.083 -0.096 - 0.500 0.500 0.500 
0.1 -0.083 -0.089 -0.100 0.500 - 0.501 0.501 
1.5 -0.084 -0.092 -0.103 - 0.504 0.505 0.505 
2 -0.086 -0.094 -0.105 0.511 0.513 0.515 
2.5 -0.090 -0.099 -0.112 - 0.529 0.534 0.540 
3 -0.098 -0.110 -0.126 0.567 0.578 - 0.594 
3.5 -0.115 -0.134 -0.162 0.648 - 0.683 - 0.726 
4 -0.161 -0.205 -0.293 - 0.862 0.981 - 1.218 
4.1 -0.180 -0.238 -0.372 - 0.949 1.120 1.513 
4.2 -0.206 -0.289 -0.526 1.069 - 1.335 2.089 
4.3 -0.243 -0.374 -0.961 - 1.245 1.705 3.713 
4.4 -0.305 -0.564 -9.770 - 1.531 2.490 -36.605 
4.5 0.425 1.225 1.086 2.066 5.267 3.932 
4.6 -0.737 -4.442 0.491 3.428 18.557 1.710 
4.7 -2.961 0.735 0.307 13.874 2.973 1.023 
4.8 1.219 0.398 0.218 5.550 1.500 0.690 
4.9 0.515 0.253 0.165 2.118 0.946 0.494 
5.0 0.242 0.185 0.131 1.230 0.657 0.365 

Substituting (19) into (16) gives 

F~ q,2t/!2(q,~ + t/!2)/l [q,sinhq, (cost/! -1)+ 

l/Isim/l(coshl/l -1)J W = PW (21) 

which reduces to - tWin the static case and here the 
coefficient p of W is called an influence coefficient. 

In accordance with normal practice [1J the coef
ficient of Win (20) is called the Influence Coefficient of 
the Fixed-end Moment, M i, and similarly for the 
coefficient of W in (21). Table 1 gives some values of 
these influence coefficients shown graphically in Figure 
2{a)-(f), overleaf. 

CONCLUSION 

The table shows that the dynamic effect is negligible 
for a low frequency load, as may be expected, but, 
when the frequency is increased the influence coef
ficients change markedly. 
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Figure 2 
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