WALLMAN COMPACTIFICATION FOR BITOPOLOGICAL SPACES

B.M. Taher

Department of Mathematics Faculty of Science Tanta University Tanta, Egypt

الخلاصة :

يهدف هذا البحث إلى دراسة تصميت (ولمان) من النوع bi λ_{γ} - T_0 والنوع bi λ_{γ} - R_0 والتي من أهم خصائصها: أن تصميت ولمان للفراغات الثنائية التوبولوجية يكون شبه bi λ_{γ} - T_2 اذا واذا فقط كان الفراغ الثنائي التوبولوجية يكون شبه bi λ_{γ} - T_2 اذا واذا فقط كان الفراغ الثنائي التوبولوجي (χ, τ_1, τ_2) هو فراغ من النوع λ_{γ} bi المعتاد المحدود وأيضاً دراسة نوع جديد من التمدد على تصميت ولمان للفراغات الثنائية التوبولوجية.

ABSTRACT

The purpose of the present study is to construct a Wallman compactification for the larger classes which are bi $\lambda_{\gamma} - T_0$ and bi $\lambda_{\gamma} - R_0$. Some characterizations are given; also one of our main results is that the Wallman compactification of a bitopological space (X, τ_1, τ_2) is semi bi $\lambda_{\gamma} - T_2$ iff (X, τ_1, τ_2) is finite bi λ_{γ} -normal. A near type of extension over Wallman compactification of bispaces is also studied.

Key Words and Phrases: $(j,i)\lambda_{\gamma}$ -open $((j,i)\lambda_{\gamma}$ -closed) set, $(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ -homeomorphism, $(j,i)\lambda_{\gamma}$ -compact, bi λ_{γ} -normal, Wallman compactification for bispaces, and bi λ_{γ} -continuous extension.

AMS (1980) Classification Code: 54 D35, 54 C20, 54D10, 54D15, 54C25

WALLMAN COMPACTIFICATION FOR BITOPOLOGICAL SPACES

1. INTRODUCTION

For brevity we refer to a bitopological space (X, τ_1, τ_2) (see [1]) as a bispace. Throughout the present paper, (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bispaces and $f: X \to Y$ represents a function. For a T_1 -space (X, τ) , consider Wallman compactification $(\chi, (X^*, \omega))$ [2] consisting of the set X^* of all ultraclosed filters on X. The topology ω on X^* generated by $\{U^* : U \in \tau\}$, where $U^* = \{F \in X^* : U \in \tau\}$ and the dense embedding $\chi : X \to X^*$ defined by setting $\chi(x) = \rho(x) = \{A \subseteq X, x \in A\}$. In 1980 [2] Asha Singal and Sunder Lal studied a Wallman type compactification for pairwise T_1 spaces. In 1980 [3] Dvalishvili constructed the Wallman compactification of the completely regular bispaces. We denote the closure (interior) operator with respect to (w.r.t.) the topologies τ_i (i = 1, 2) by $cl_{\tau_i}(int_{\tau_i})$ respectively. In 1979, Kasahara [4] defined an operation α on a topology τ on a non-empty set X to be a function of τ onto the power set P(X) such that $G \subseteq G^{\alpha}$, for every $G \in \tau$, where G^{α} denotes the value of α at G. The family of all operations α is denoted by $O_{\tau(X)}$. In 1983, Abd El-Monsef *et al.* [5] generalized Kasahara's operation by introducing an operation on the power set P(X) of a topological space (X, τ) . A function $\Delta : P(X) \to P(X)$ (resp. $\delta : P(X) \to P(X)$) is said to be an operation on P(X) of type I [5] (resp. of type II) [5], if $\operatorname{int}_{\tau}(A) \subseteq A^{\Delta}(\operatorname{resp. cl}_{\tau}(A) \supseteq A^{\delta})$, for every $A \in P(X)$, where $A^{\Delta}(A^{\delta})$ denotes the value of $\Delta(\delta)$ at A. The family of all operations of type I (resp. of type II) is denoted by $O_{P(X)}(\operatorname{resp. O'_{P(X)}})$.

2. BI λ_{γ} -CLOSED FILTER

Let $\{i \neq j, i, j = 1, 2\}$, always.

Definition 2.1 [6]. A function $\lambda_{\gamma}: P(X) \to P(X)$ is called a (j,i) operation on P(X) of a bispace (X, τ_1, τ_2) , if λ_{γ} is an operation on P(X) of type I and also of type II with respect to (X, τ_j) and (X, τ_i) respectively; *i.e.*, $\operatorname{int}_{\tau_j}(A) \subseteq A^{\lambda_{\gamma}}$ (resp. $\operatorname{cl}_{\tau_i}(A) \supseteq A^{\lambda_{\gamma}}$) for every $A \in P(X)$, where $A^{\lambda_{\gamma}}$ denotes the value of λ_{γ} at A.

Definition 2.2 [6]. A subset A of a bispace (X, τ_1, τ_2) is called a (j,i) λ_{γ} -open set, if $A \subseteq A^{\lambda_{\gamma}}$. A is (j,i) λ_{γ} -closed set if $X \setminus A \subseteq (X \setminus A)^{\lambda_{\gamma}}$ or $A \supseteq X \setminus (X \setminus A)^{\lambda_{\gamma}}$.

It is easy to get corresponding statements for $(j,i)\lambda_{\gamma}$ -closed in bispaces. In a bispace (X, τ_1, τ_2) , the class of $(j,i)\lambda_{\gamma}$ -open $((j,i)\lambda_{\gamma}$ -closed) will be denoted by $(j,i)\lambda_{\gamma}O(X)((j,i)\lambda_{\gamma}C(X))$.

Definition 2.3 [6]. Let A be a subset of a bispace (X, τ_1, τ_2) . Then the intersection of all $(j,i) \lambda_{\gamma}$ -closed sets containing A is called $(j,i) \lambda_{\gamma}$ -closure of A and is denoted by $(j,i) \lambda_{\gamma}$ -cl(A).

Definition 2.4 [7]. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $(j, i) \lambda_{\gamma}$ -continuous if the inverse image of each σ_j -open set in Y is $(j, i) \lambda_{\gamma}$ -open set in X.

Definition 2.5 [7]. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(j,i) \lambda_Y^*$ -open $((j,i) \lambda_Y^*$ -closed) if the image of every τ_j -open $(\tau_j$ -closed) set in X is a $(j,i) \lambda_Y^*$ -open $((j,i) \lambda_Y^*$ -closed) set in Y, where $\lambda_Y^*: P(Y) \to P(Y)$.

Definition 2.6 [7]. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ continuous, if the inverse image of each $(j,i)\lambda_{\gamma}^*$ -open set in Y is $(j,i)\lambda_{\gamma}$ -open in X.

Definition 2.7 [7]. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ -open $[(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ -closed], if the image of each $(j,i)\lambda_{\gamma}$ -open $((j,i)\lambda_{\gamma}$ -closed) set in X is a $(j,i)\lambda_{\gamma}^*$ -open $((j,i)\lambda_{\gamma}^*$ -closed) set in Y.

Definition 2.8 [7]. Two bispaces X and Y are called $(j,i) \lambda_{\gamma} \lambda_{\gamma}^*$ -homeomorphic equivalent, if there exists a bijective function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ such that f is $(j,i) \lambda_{\gamma} \lambda_{\gamma}^*$ -continuous and $(j,i) \lambda_{\gamma} \lambda_{\gamma}^*$ -open such function f is called $(j,i) \lambda_{\gamma} \lambda_{\gamma}^*$ -homeomorphism.

Definition 2.9 [8]. A family $\beta_i(\beta_j)$ of $(i,j)\lambda_{\gamma}$ -closed $((j,i)\lambda_{\gamma}$ -closed) subsets of a bispace (X, τ_1, τ_2) is called $(i,j)\lambda_{\gamma}$ -closed $((j,i)\lambda_{\gamma}$ -closed) filter if:

- (i) $\emptyset \notin \beta_i(\beta_j);$
- (*ii*) if $A, B \in \beta_i(\beta_i)$, implies $A \cap B \in \beta_i(\beta_i)$;
- (*iii*) if $B \supseteq A \in \beta_i(\beta_j)$, implies $B \in \beta_i(\beta_j)$.

Definition 2.10 [8]. Let (X, τ_1, τ_2) be a bispace, $\beta_i(\beta_j)$ is $(i, j) \lambda_\gamma$ -closed $((i, j) \lambda_\gamma$ -closed) filter, then $\beta = \beta_i \times \beta_j$ is called a bi λ_γ -closed filter on X if $(A, B) \in \beta$, implies $A \cap B \neq \emptyset$, for each $A \in \beta_i, B \in \beta_j$, where β_i, β_j are called the families of first and second coordinates respectively of the bi λ_γ -closed filter β .

If $\Phi = \Phi_i \times \Phi_j$ is another bi λ_γ closed filter, then we say $\Phi \ge \beta$ if $\beta_j \subseteq \Phi_j$. It is clear that \ge is a partial order relation in the collection of all bi λ_γ -closed filters.

A maximal bi λ_{γ} -closed filter is called a bi λ_{γ} -ultraclosed filter (*i.e.* a bi λ_{γ} -closed filter that is not contained in any other bi λ_{γ} -closed filter).

Lemma 2.1 [8].

- (i) For each bi λ_{γ} -closed filter Φ there is a bi λ_{γ} -ultraclosed filter Q containing Φ .
- (*ii*) If $\Phi = \Phi_i \times \Phi_j$ is a bi λ_{γ} -ultraclosed filter and there is $A_j \in (j,i) \lambda_{\gamma}$ -closed sets in X such that $\Phi_j \cup A_j$ is a bi λ_{γ} -closed filter and $A_j \cap A \neq \emptyset$ for each $A \in \Phi_j$, then $A_j \in \Phi$.
- (*iii*) If $U, V \in (j,i)$ $\lambda_{\gamma} C(X)$, Φ is a bi λ_{γ} -ultraclosed filter, then $U \cup V \in \Phi$ implies $U \in \Phi$ or $V \in \Phi$.
- (*iv*) If Φ_1 , Φ_2 are bi λ_γ -ultraclosed filters on X, $\Phi_1 \neq \Phi_2$, there exists a (*i*, *j*) λ_γ -closed set C_1 , a (*j*, *i*) λ_γ -closed set C_2 , such that $C_1 \in \Phi_1$, $C_2 \in \Phi_2$, $C_1 \cap C_2 = \emptyset$.

Definition 2.11 [9]. If $E \subseteq X$ is finite joint closed, then there is an open dual family $\{(U_{\infty}, V_{\infty}): \infty \in A: \text{ so } E = X \setminus \bigcup \{U_{\infty} \cap V_{\infty}): \infty \in A\}$ and this family is finite.

Definition 2.12. A bispace (X, τ_1, τ_2) is called finite bi λ_γ -normal if for any finite joint closed set *E* and any $(j, i) \lambda_\gamma$ -closed set *F* with $E \cap F = \emptyset$, there exist $U \in (i, j) \lambda_\gamma O(X)$, $V \in (j, i) \lambda_\gamma O(X)$ with $U \cap V = \emptyset$, and $E \subseteq U$, $F \subseteq V$ ($E \subseteq V$, $F \subseteq U$).

For $x \in X$, $\beta_x = \beta_{ix} \times \beta_{jx}$, where $\beta_{ix}(\beta_{jx})$ is a family of all subsets of $\beta_i(\beta_j)$ containing x such that if $(A,B) \in \beta_x$ then $A \cap B \neq \emptyset$, for each $A \in \beta_{ix}$, $B \in \beta_{jx}$.

Proposition 2.1 [8]. $\beta_x = \beta_{ix} \times \beta_{jx}$ is a bi λ_{γ} -ultraclosed filter.

Definition 2. 13 [8]. A bispace (X, τ_1, τ_2) is called:

- (i) **bi** λ_{γ} - R_o if each (j,i) λ_{γ} open set O and each $x \in O$, (j,i) λ_{γ} -cl{x} $\subseteq O$;
- (*ii*) bi $\lambda_{\gamma} \cdot T_o$ if for each two distinct points x, y of X, there exists a (i, j) λ_{γ} -open set U such that $x \in U, y \notin U$ or $y \in U$, $x \notin U$;
- (*iii*) bi $\lambda_{\gamma} R_1$ if for each two distinct points x, y of X such that $(j,i) \lambda_{\gamma}$ -cl{x} $\neq (j,i) \lambda_{\gamma}$ -cl{y}, there exists a $(i,j)\lambda_{\gamma}$ -open set U and a $(j,i)\lambda_{\gamma}$ -open set V such that $(j,i) \lambda_{\gamma}$ -cl{x} $\subseteq U, (j,i) \lambda_{\gamma}$ -cl{y} $\subseteq V, U \cap V = \emptyset$;
- (*iv*) **bi** $\lambda_{\gamma} T_1$ if for two distinct points x, y of X, there exists a $(i, j)\lambda_{\gamma}$ -open set U containing x to which y does not belong and a $(j, i)\lambda_{\gamma}$ -open set V containing y to which x does not belong;
- (v) **bi** $\lambda_{\gamma} T_2$ if for each two distinct points x, y of X, there exists a $(i, j)\lambda_{\gamma}$ -open set U and a $(j, i)\lambda_{\gamma}$ -open set V such that $x \in U, y \in V, U \cap V = \emptyset$.

Proposition 2.2. If $x \in X$, then $\cap \{\beta_{ix} \cup \beta_{jx}\} = \{x\}$.

3. WALLMAN COMPACTIFICATION FOR BISPACES

Definition 3.1 [7]. A bispace (X, τ_1, τ_2) is called $(j,i) \lambda_{\gamma}$ -compact if every $(j,i) \lambda_{\gamma}$ -open cover X has a finite subcover.

A bispace which is bi $\lambda_{\gamma} R_k$ and bi $\lambda_{\gamma} T_k$ is called semi bi- $\lambda_{\gamma} T_{k+1}$, $k \in \{0,1,2\}$.

Definition 3.2 [7]. A subset A of a bispace (X, τ_1, τ_2) is called $(j,i)\lambda_\gamma$ dense if for any $(j,i)\lambda_\gamma$ -open set G such that $G \cap A \neq \emptyset$.

Definition 3.3 [7]. A bispace (X, τ_1, τ_2) is called $(j, i)\lambda_{\gamma}\lambda_{\gamma}^*$ -embeddable in a bispace (Y, s, t) if there exists a $(j, i)\lambda_{\gamma}\lambda_{\gamma}^*$ -homeomorphism from (X, τ_1, τ_2) onto a $(j, i)\lambda_{\gamma}$ dense subpace (Y, s, t).

Definition 3.4 [8]. If $\gamma X = \{\beta:\beta \text{ is a bi } \lambda_{\gamma}\text{-ultraclosed filter on } X\}$, $K_i(\text{resp. } K_j)$ be a $(i, j) \lambda_{\gamma}\text{-closed}(\text{resp-}(j, i) \lambda_{\gamma}\text{-closed})$ set. We let $K_i^* = \{\beta \in \gamma X, (K_i, X) \in \beta\}$, $K_j^* = \{\beta \in \gamma X, (X, K_j) \in \beta\}$, Then we can define $C_i = \{K_i^*, K_i \text{ is } (i, j) \lambda_{\gamma}\text{-closed}\}$, $C_j = \{K_j^*, K_j \text{ is } (j, i) \lambda_{\gamma}\text{-closed}\}$.

Proposition 3.1 [8]. $C_i(C_i)$ is a base for the closed subsets of a topology P_1 (a topology p_2) on γX .

Definition 3.5 [8]. A bispace $(X^*, \tau_1^*, \tau_2^*)$ is called a (i, j) λ_{γ} -compactification of a bispace (X, τ_1, τ_2) if there exists a (j, i) λ_{γ} -embedding function from (X, τ_1, τ_2) onto $(X^*, \tau_1^*, \tau_2^*)$ and if $(X^*, \tau_1^*, \tau_2^*)$ is (j, i) λ_{γ} -compact.

Theorem 3.1 [8]. A bispace $(\gamma X, P_1, P_2)$ is $(j,i) \lambda_{\gamma}$ -compactification of a bispace (X, τ_1, τ_2) .

We called $(\gamma X, P_1, P_2)$ its Wallman compactification.

Theorem 3.2 [8]. Let (X, τ_1, τ_2) be a bispace and $(\gamma X, P_1, P_2)$ its Wallman compactification. Then the following statements hold:

- (i) for each $(i, j)\lambda_{\gamma}$ -closed set K in X, we have $K_i^* = cl_{p_i}f(K)$ and with a corresponding result for $(j, i)\lambda_{\gamma}$ -closed sets;
- (*ii*) for $(i, j)\lambda_{\gamma}$ -closed sets K_1 , K_2 we have $(K_1 \cap K_2)^* = K_1^* \cap K_2^*$, $(K_1 \cup K_2)^* = K_1^* \cup K_2^*$, and with the corresponding results for $(j, i)\lambda_{\gamma}$ -closed sets;
- (*iii*) for each $(i, j)\lambda_{\gamma}$ -closed set $K \subseteq X$ and a $(j, i)\lambda_{\gamma}$ -closed set $T \subseteq X$ we have $K_i^* \cap T_i^* \neq \emptyset$ iff $K \cap T \neq \emptyset$.

Proposition 3.2 [8]. The Wallman compactification ($\gamma X, P_1, P_2$) is bi λ_{γ} - T_1 .

Theorem 3.3. Let (X, τ_1, τ_2) be a bispace and $(\gamma X, P_1, P_2)$ its Wallman compactification. Then $(\gamma X, P_1, P_2)$ is semi bi λ_{γ} - T_2 iff (X, τ_1, τ_2) is finite bi λ_{γ} -normal.

Proof. Let $\delta, \beta \in \gamma X$ and $\delta \neq \beta$. This implies $\delta \not\subseteq \beta$ and $\beta \not\subseteq \delta$. If $\delta \not\subseteq \beta$, then there exist $(A_1, A_2) \in \delta$ such that $(A_1, A_2) \notin \beta$. This gives that $(A_1, X) \notin \beta$ or $(X, A_2) \notin \beta$. Hence there exist $B_1 \in \tau_1$ -closed, $B_2 \in \tau_2$ -closed such that $(B_1, B_2) \in \beta$ and $A_1 \cap B_1 \cap B_2 = \emptyset$ or $A_2 \cap B_1 \cap B_2 = \emptyset$, $E = B_1 \cap B_2 = X \setminus [(X \setminus B_1) \cup (X \setminus B_2)]$ is a finite closed set, and $A_1 \cap E = \emptyset$ or $A_2 \cap E = \emptyset$. Then we have from hypothesis $(i, j)\lambda_{\gamma}$ -open and $(j, i)\lambda_{\gamma}$ -open sets which are disjoint and contain respectively A_1 , E (or E, A_2). From these sets we can obtain the desired $(i, j) \lambda_{\gamma}$ -open and $(j, i)\lambda_{\gamma}$ -open sets in γX which verifies that $(\gamma X, P_1, P_2)$ is bi λ_{γ} - T_2 . In the same way, if $\delta, \beta \in \gamma X, \delta \notin cl_{p,1}\beta$ (resp. $\delta \notin cl_{p,2}\beta$) then we have a $(i, j)\lambda_{\gamma}$ -open set U and a $(j, i)\lambda_{\gamma}$ -open set V such that $\delta \in U, \beta \in V$ (resp. $\delta \in V, \beta \in U$) and $U \cap V = \emptyset$. This means $(\gamma X, P_1, P_2)$ is semi-bi λ_{γ} - T_2 . Conversely, let $E \cap F \subseteq X, E \cap F = \emptyset$, where F is an $(i, j)\lambda_{\gamma}$ -closed set, $E = X \cup (U_{\alpha} \cap V_{\alpha})$, where U_{α} is a τ_i -open set, $V \alpha$ is a τ_j -open set, $\alpha = 1, 2, \dots, n$. We can write $E = \cup (F_k \cap K_k)$ where F_k are τ_i -closed sets and K_k are τ_j -closed sets, $k = 1, 2, \dots, m$. It follows that $F_k \cap K_k \cap F = \emptyset$, for each $k = 1, 2, \dots, m$. By Theorem 3.2 (i), we get $cl_{p_1}(F_k) \cap cl_{p_2}(K_k) \cap cl_{p_1}(F) = \emptyset$.

Since (X, τ_1, τ_2) is semi bi λ_γ - T_2 , we have $\delta \in U \in (i, j) \lambda_\gamma O(\gamma X)$, $\Im \in V \in (j, i) \lambda_\gamma O(\gamma X)$ and $U \cap V = \emptyset$. We know that $cl_{p_1}(F_k) \cap cl_{p_2}(K_k)$ and $cl_{p_1}(F)$ are $(j, i)\lambda_\gamma$ -compact $((i, j)\lambda_\gamma$ -compact). It follows that $cl_{p_1}F_k \cap cl_{p_2}K_k$ and cl_pF can be covered respectively by $(j, i)\lambda_\gamma$ -open $((i, j)\lambda_\gamma$ -open) sets which are disjoint. The inverse images of these sets separate E, F. Hence $(\gamma X, P_1, P_2)$ is bi λ_γ -normal. A similar proof holds when F is $(j, i)\lambda_\gamma$ -closed.

Theorem 3.4. Let $(X^*, \tau_1^*, \tau_2^*)$ be a bi λ_{γ} - T_1 compactification of a bispace (X, τ_1, τ_2) . Then $(X^*, \tau_1^*, \tau_2^*)$ and $(\gamma X, P_1, P_2)$ are $(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ -homeomorphic iff the following conditions are satisfied $(f_1 \text{ is the } (j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ embedding function from (X, τ_1, τ_2) to $(X^*, \tau_1^*, \tau_2^*)$).

- (i) $(cl_{\tau_1^*}f(K): K \text{ is a } (i,j) \lambda_{\gamma} \text{-closed set in } X)$ is a base for the closed subsets of the topology τ_1^* and with a similar result for the topology τ_2^* .
- (*ii*) Let K_1 , K_2 be a (i, j) λ_{γ} -closed sets in X and F_1 , F_2 be (j, i) λ_{γ} -closed sets in X. Then:

$$cl_{\tau_{1}^{*}}f_{1}(K_{1} \cap K_{2}) = cl_{\tau_{1}^{*}}f_{1}(K_{1}) \cap cl_{\tau_{1}^{*}}f_{1}(k_{2});$$

$$cl_{\tau_{2}^{*}}f_{1}(F_{1} \cap F_{2}) = cl_{\tau_{2}^{*}}f_{1}(F_{1}) \cap cl_{\tau_{2}^{*}}f_{1}(F_{2}).$$

(*iii*) Let K be a (i, j) λ_{γ} -closed set and F a (j, i) λ_{γ} -closed set in X. Then $F \cap K \neq \emptyset$ iff $cl_{\tau_1^*} f_1(K) \cap cl_{\tau_2^*} f_1(F) \neq \emptyset$.

Proof. We assume that the conditions are satisfied. We want to see that $(X^*, \tau_1^*, \tau_2^*)$ and $(\gamma X, P_1, P_2)$ are $(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ -homeomorphic. We define a function $g:(\gamma X, P_1, P_2) \rightarrow (X^*, \tau_1^*, \tau_2^*)$ in the following way. For each $\mathfrak{I} \in \gamma X$, $\{cl_{\tau_2}^*f(E), cl_{\tau_1}^*f(F)\}_{(E,F) \in \mathfrak{I}}$. Define a bi λ_{γ} -closed filter \mathfrak{I}_1 which has a cluster point x in $(X^*, \tau_1^*, \tau_2^*)$; this point is unique. Otherwise, if $y \in \bigcap_{(E_1, F_1) \in \mathfrak{I}_1} E_1 \cap F_1$ and $y \neq x, \mathfrak{I} \subseteq \mathfrak{I}_1$, then we get a contradiction from conditions (*ii*) and (*iii*), because $(X^*, \tau_1^*, \tau_2^*)$ is bi λ_{γ} - T_1 and \mathfrak{I} is a bi λ_{γ} -ultraclosed filter. This leads us to set $g(\mathfrak{I}) = x$, so defining the function g it is clear that $g^{-1}(cl_{\tau_1^*}f_1(K)) = (cl_p f_1(K))$ and $g^{-1}(cl_{\tau_2^*}f_1(K)) = (cl_{p_2}f_1(K))$. From the conditions and these equations we can get $(j,i) \lambda_{\gamma}\lambda_{\gamma}^*$ -continuity of g. Let $x_1 \in X^*$. We define a bi λ_{γ} -closed filter $\beta_1 = \{(F, K): F \subseteq X \text{ is } (j,i) \lambda_{\gamma}\text{-closed}, K \subseteq X \text{ is } (i,j) \lambda_{\gamma}\text{-closed}, x_1 \in (cl_{\tau_1^*}f_1(K)) \cap (cl_{\tau_2^*}f_1(F))$. If \mathfrak{I}_1 is a bi λ_{γ} -ultraclosed filter containing β_1 then $g(\mathfrak{I}_1) = y_1$, implies that $x_1 = y_1$. It follows that g is onto.

We now see that g is a one-to-one function. Let \Im , $\beta \in \gamma X$ and $g(\beta) = g(\Im) = x$. If $\beta = \Im$ then, from maximality of \Im and β , there exist $B_1 \in \tau_1$ -closed, $B_2 \in \tau_2$ -closed such that $(B_1, B_2) \in \beta$, $(F_1, F_2) \in \Im$ and $B_1 \cap B_2 \cap F_1 \cap F_2 = \emptyset$. The third condition gives us $cl_{\tau_2^*}f_1(B_1) \cap cl_{\tau_2^*}f_1(F_1) \cap cl_{\tau_1^*}f_1(F_2) \cap cl_{\tau_1^*}f_1(B_2) = \emptyset$. But from the definition of g we have $x \in cl_{\tau_2^*}f_1(B_1) \cap cl_{\tau_2^*}f_1(F_2) \cap cl_{\tau_1^*}f_1(B_2) \neq \emptyset$; this is a contradiction. It can be shown that $g(K_i^*) = cl_{\tau_2^*}f_1(K)$, $g(F_j^*) = cl_{\tau_2^*}f_1(F)$, for each $K \subseteq X$ is an $(i, j) \lambda_{\gamma}$ -closed set and $F \subseteq X$ is $(j, i) \lambda_{\gamma}$ -closed. This means that g is a $(j, i)\lambda_{\gamma}\lambda_{\gamma}^*$ -closed function $(i.e. g^{-1} \text{ is } (j, i)\lambda_{\gamma}\lambda_{\gamma}^*$ continuous). Finally it is clear that $g_0f = f_1$. Theorem 4. 2 gives the necessity.

Proposition 3.3. Let $(X^*, \tau_1^*, \tau_2^*)$ be a semi bi $\lambda_{\gamma} - T_2$ bispace which is a compactification of (X, τ_1, τ_2) . Then $\mathcal{D}_{\tau_1^*} = \{ cl_{\tau_1^*} F : F is (i, j)\lambda_{\gamma}$ -closed in X} is a base for the closed subsets of the topology τ_1^* and in the same way $\mathcal{D}_{\tau_2^*} = \{ cl_{\tau_2^*} F : F is (j, i) \lambda_{\gamma}$ -closed in X} is a base for the closed subsets of the topology τ_2^* .

Proof. Let $F_1 \subseteq X^*$ be a τ_1^* -closed set, $x \in X^*$ and $x_1 \notin F_1$, $(X^*, \tau_1^*, \tau_2^*)$ is semi- $\lambda_{\gamma}T_2$ and $i F_1$ is $(i, j) \lambda_{\gamma}$ -compact. It follows that $x_1 \in X^* \setminus F_1 = U_1$ is τ_1^* -open, $F_1 \subseteq V_1 \in (j, i) \lambda_{\gamma}$ -open in X^* such that $U_1 \cap V_1 = \emptyset$. Let $F = X \setminus [X^* \setminus cl_{\tau_1^*}V_1 \cap X]$. Since $cl_{\tau_1^*}V_1 \subseteq X^* \setminus U_1$, implies $U_1 \cap cl_{\tau_1^*}V_1 = \emptyset$, hence $U_1 \cap cl_{\tau_1^*}F = \emptyset$, implies $x \notin cl_{\tau_1^*}F$.

Let us assume that F_1 is not a subset of $cl_{\tau_1^*}F$. Then we can take $y \in F_1$ such that $y \notin cl_{\tau_1^*}F$. There exists a τ_1^* -open set $U_2 = X^* \setminus cl_{\tau_1^*}F$ such that $y_1 \in U_2$ and $U_2 \cap F = \emptyset$. We know that $y_1 \in F_1 \subseteq V_1$. Then $y_1 \in U_2 \cap V_1 \neq \emptyset$ so $y_1 \in cl_{\tau_1^*}V_1$, but $y_1 \notin F$, implies $y_1 \in X \setminus F = X^* \setminus (cl_{\tau_1^*}V_1 \cap X) = X^* \setminus cl_{\tau_1^*}V_1$, implies $y_1 \notin cl_{\tau_1^*}V_1$. We have a contradiction. Hence we have $F_1 \subseteq cl_{\tau_1^*}F$.

Definition 3.6 [1]. A bispace (X, τ_1, τ_2) is called pairwise regular if for any τ_i -closed set $F, x \notin F$ there exist two disjoint upon sets U, V, such that $x \in U, F \subseteq V$.

Proposition 3.4. Let $(X^*, \tau_1^*, \tau_2^*)$ be a semi bi λ_{γ} - T_2 space which is a compactification of (X, τ_1, τ_2) . Let ρ be a $(j,i) \lambda_{\gamma} \lambda_{\gamma}^*$ continuous function on X^* to γX such that $\rho(x) = \{x\}$, for each $x \in X$. Also, f_1, f_2 are $(j,i) \lambda_{\gamma} \lambda_{\gamma}^*$ -embedding functions on X to respectively $X^*, \gamma X$. If $F \subseteq X$ is a $(i, j) \lambda_{\gamma}$ -closed set, then $\rho^{-1}(cl_{\tau}^*(f_1(F))) \subseteq (cl_{\tau_1}^*(f_1(F)))$.

Proof. If there exists a member $x \in \rho^{-1}(cl_{\tau_1^*}(f_1(F)))$ and $x \notin (cl_{\tau_1^*}(f_2(F)))$, then $\rho(x) = \beta = cl_{\tau_1^*}(f_1(F))$ and $(X, F) \in \beta$. It can be shown that $(X^*, \tau_1^*, \tau_2^*)$ is pairwise regular; then there exists $U_1 \in \tau_1^*, V_1 \in \tau_2^*$ such that $x \in U_1, cl_{\tau_1^*}(f_2(F)) \subseteq V_1, U_1 \cap V_1 = \emptyset$. We can obtain a τ_2 -closed set $K = (X \cap (X^* \setminus V_1))$ in X such that $cl_{\tau_1^*}(f_2(F)) \subseteq V_1 \subseteq X^* \setminus U_1$ and $(X^* \setminus U_1) \cap X = F_1$ is a τ_1 -closed

set in X. Then we have $F \subseteq X \setminus K \subseteq F_1$, so $F \cap (X^* \setminus V_1) = \emptyset$, $K \cap F_1 = \emptyset$, implies $(X, F) \notin \beta$ and $(K, X) \notin \beta$, $\beta \in \gamma X \setminus K_{\tau}^*$, $x \in \rho^{-1}(\gamma X \setminus K_{\tau_2^*})$ is a (2,1) λ_{γ} -open set in X* (because $\rho(x) = \beta$, ρ is $(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ continuous). On the other hand, $x \in X^* \setminus cl_{\tau}^* F_1$, then there exists a member $z \in \rho^{-1}(\gamma X \setminus K_{\tau_2^*}) \cap ((X^* \setminus cl_{\tau}^* F) \cap X)$, but X is $(j,i)\lambda_{\gamma}$ -dense subset of X* and γX . Thus $\rho^{-1}(\gamma X \setminus K_{\tau_2^*}) \cap X \neq \emptyset$, $(X^* \setminus cl_{\tau}^* F_1) \cap X) \neq \emptyset$ and $\rho^{-1}(\gamma X \setminus K_{\tau_2^*}) \cap (X^* \setminus cl_{\tau_1^*} F_1) \cap X \neq \emptyset$. It follows that $z \notin K \cup F_1 = X$ and this a contradiction $(x \notin cl_{\tau_1^*}(f_1(F)))$. Hence the proposition is proved.

Theorem 3.5. If a bispace (X, τ_1, τ_2) is finite bi λ_{γ} normal then $(\gamma X, P_1, P_2)$ is the projectively largest semi bi λ_{γ} - T_2 compactification of (X, τ_1, τ_2) .

Proof. Let ρ be a (j,i) $\lambda_{\gamma}\lambda_{\gamma}^*$ -continuous function from any semi bi λ_{γ} - T_2 compactification $(X^*, \tau_1^*, \tau_2^*)$ of (X, τ_1, τ_2) to $(\gamma X, P_1, P_2)$. It will be enough to show that ρ is a $(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ -homeomorphism.

- (i) Let $\beta \in \gamma X$ and define $\delta = \{(cl_{\tau_2^*}F, cl_{\tau_1^*}K): (F, K) \in \beta\}$. δ has a cluster point $x_1 \in X$; let $\rho(x_1) = \beta$. If $\rho(x_1) = \beta_1$ then, $\beta \neq \beta_1$ we have a member $(F, K) \in \beta$, $(F, K) \notin \beta_1$. Then $\beta_1 \notin (\gamma X \setminus F_{\tau_2^*})$ or $\beta_1 \notin (\gamma X \setminus K_{\tau_1^*})$. It follows that $x_1 \in \rho^{-1}(\gamma X \setminus F_{\tau}^*)$ is a $(2,1)\lambda_{\gamma}$ -open set in X^* or $x_1 \in \rho^{-1}(\gamma X \setminus K_{\tau}^*)$ is a $(1,2)\lambda_{\gamma}$ -open set in X^* , $(F, K) \in \beta$ gives that $x_1 \in (cl_{\tau_2^*}F \cap cl_{\tau_1^*}K)$ and $\rho^{-1}(\gamma X \setminus F_{\tau_2^*}) \cap K \neq \emptyset$, $\rho^{-1}(\gamma X \setminus K_{\tau_1^*}) \cap F \neq \emptyset$. But these are impossible. It means $\beta_1 = \beta$ and ρ is onto.
- (*ii*) Let $x_1, x_2 \in X^*$, $\rho(x_1) = \rho(x_2) = \beta$ and $x_1 \neq x_2$. We have $x_1 \notin cl_\tau^* X_2$ or $x_2 \notin cl_\tau^* X_2$ (where X_2 is another compactification of X). Since X is bi $\lambda_\gamma T_1$, there exists a $(j,i)\lambda_\gamma$ -closed set F in X by Proposition 3.3 such that $x_1 \notin cl_{\tau_1^*} F$, $cl_{\tau_2^*} X_2 \subseteq cl_{\tau_1^*} F$. It follows by Proposition 3.4 that $\rho^{-1}(cl_{p_1}F) \subseteq cl_{\tau_1^*}F$. Then $x_1 \notin \rho^{-1}(cl_{p_1}F)$, $\beta = \rho(x_1) = \rho(x_2) \in cl_{p_1}F$; on the other hand $x_2 \in cl_{\tau_1^*} X_2 \subseteq cl_\tau^* F$ gives that $\rho(x_2) \in cl_{p_1}F$; this is a contradiction. It means that ρ is one to one.
- (*iii*) Let F be a $(i, j) \lambda_{\gamma}$ -closed set in X* and $\rho(F)$ not be $(i, j)\lambda_{\gamma}$ -closed in γX . Take $\beta \in cl_{p_1}\rho(F)$ and $\beta \notin \rho(F)$, *i.e.*, $cl_{p_1}\rho(F) \not\subseteq \rho(F)$. There exists a $(i, j) \lambda_{\gamma}$ -closed set in X; by Proposition 4.3 we have $\rho^{-1}(\beta) \notin cl_{\tau}^* K$ and $F \subseteq cl_{\tau}^* K$. It follows that $\rho(F) \subseteq cl_{p_1}\rho(K)$ and $\beta \in cl_{p_1}\rho(F) \subseteq cl_{p_1}\rho(K)$, implies $\rho^{-1}(\beta) \in \rho^{-1}(cl_{p_1}K)$. On the other hand, $\rho^{-1}(\beta) \notin \rho^{-1}(cl_{\tau_1^*}K)$ contradicts Proposition 3.4. It means that ρ is a $(i, j)\lambda_{\gamma}$ -closed function. Hence the theorem is proved.

Remark 3.1.

- (*i*) If i = j then we return to the ordinary case of Wallman compactification as in [10].
- (*ii*) If every τ_j -closed set is a τ_i -open set in bispace (X, τ_1, τ_2) , then we return to the pairwise case of Wallman compactification as in [3].

4. THE BI λ_{γ} -CONTINUOUS EXTENSION OVER THE WALLMAN COMPACTIFICATION FOR BISPACES

Definition 4.1 [8]. A bispace (X, τ_1, τ_2) is called bi λ_{γ} -regular if for each τ_j -closed set $F, x \notin F$, there exist two disjoint sets U, V such that $x \in V \in (j, i) \lambda_{\gamma} O(X)$, $F \subseteq U \in (i, j) \lambda O(X)$.

Lemma 4.1. Let (X, τ_1, τ_2) be bi λ_γ -regular. If $x, y \in X, x \in A \in \tau_1$ -open and $y \notin A$ then there exist two disjoint sets U, V such that $x \in U \in (i, j)\lambda_\gamma O(X), y \in V \in (j, i)\lambda_\gamma O(X), cl_{\tau_1}U \cap cl_{\tau_1}V = \emptyset$.

The following theorem is a generalization of the extension problem in Engelking [11] for bispace.

Theorem 4.1. Let A be a (j,i) λ_{γ} -dense subspace of X and f is a $(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ -continuous function of A to a semi bi λ_{γ} - $T_2(j,i)\lambda_{\gamma}$ -compact space Y. The function f has a $(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ -continuous extension f' over X iff for every pair $F \in (i,j)\lambda_{\gamma}C(Y), K \in (j,i)C(Y), f \cap K = \emptyset$, then the inverse images $cl_{\tau_2}(f^{-1}(K)) \cap cl_{\tau_1}(f^{-1}(F)) = \emptyset$.

Proof. Let f' be an extension of f and $F \in (i, j)\lambda_{\gamma} C(Y)$, $K \in (j, i) C(Y)$, $F \cap K = \emptyset$, then $\emptyset = f'^{-1}(F \cap K) = f'^{-1}(F) \cap f'^{-1}(K) = cl_{\tau_1}(f'^{-1}(F)) \cap cl_{\tau_2}(f^{-1}(K)) = \emptyset$. We shall prove that the condition is sufficient.

Let $x \in X$, denote by $\beta(x)$ the family of all $(j,i) \lambda_{\gamma}$ -neighborhood of x and define $\Im(x) = \{(\operatorname{cl}_t f(U \cap A), (\operatorname{cl}_s f(V \cap A))\}, (U,V) \in \beta(x). \Im(x) \text{ is a base for a bi } \lambda_{\gamma}\text{-closed filter in } Y.$ Then it has a cluster point z in (Y,s,t). We shall show that z is unique and define f'(x) = z. At first if $f'(x) \in S \in (i,j)\lambda_{\gamma} O(Y)$, then $\cap \operatorname{cl}_t f(U \cap A) \subseteq S$ and if $f'(x) \in T \in (j,i)\lambda_{\gamma} O(Y)$, then $\cap \operatorname{cl}_s(f(V \cap A)) \subseteq T$. If we take a member $y \in \cap \operatorname{cl}_t(f(U \cap A)), y \notin S$, there exists $S_1 \in (i,j)\lambda_{\gamma} O(Y), T_1 \in (j,i)\lambda_{\gamma} O(Y)$, by Lemma 4.1, such that $f'(x) \in S_1, y \in T_1, \operatorname{cl}_t S_1 \cap \operatorname{cl}_s T_1 = \emptyset$, $\operatorname{cl}_{\tau_2}(f^{-1}(S_1)) \cap \operatorname{cl}_{\tau_1}(f^{-1}(T_1)) = \emptyset$. By assumption, $x \in X$ gives that $x \in X \operatorname{cl}_{\tau_2}(f^{-1}(S_1))$ or $x \in X \operatorname{cl}_{\tau_2}(f^{-1}(T_1))$.

- (i) If $x \in X \setminus cl_{\tau_1}(f^{-1}(T_1))$ then $y \in cl_t(f(A \cap X \setminus cl_{\tau_1}(f^{-1}(T_1)))$ and $T_1 \cap (f(A \cap X \setminus cl_{\tau_1}(f^{-1}(T_1)) \neq \emptyset)$. But this is impossible.
- (*ii*) If $x \in X \operatorname{cl}_{\tau_2}(f^{-1}(S_1))$ then $f'(x) \in \operatorname{cl}_s(f(A \cap X \setminus \operatorname{cl}_{\tau_2}(f^{-1}(S_1))) \text{ and } S_1 \cap (f(A \cap X \setminus \operatorname{cl}_{\tau_2}(f^{-1}(S_1))) \neq \emptyset$. This is also impossible. Hence $\cap_{u \in \beta u(x)} \operatorname{cl}_s f(U \cap A) \subseteq S$ and converse is similar: $x \in \operatorname{cl}_t z \cap \operatorname{cl}_s z \subseteq \cap_{v \in \beta v(x)} \operatorname{cl}_s(f(V \cap A)) \cap \cap_{u \in \beta u(x)} \operatorname{cl}_t(f(U \cap A))$, since z is a cluster point of $\mathfrak{I}(x)$. Let us take a member $y_0 \in \cap_{v \in \beta v(x)} \operatorname{cl}_s(f(V \cap A)) \cap \cap_{u \in \beta u(x)} \operatorname{cl}_t(f(U \cap A))$ and $y_0 \in \operatorname{cl}_s\{z\}$.

We know that X is preseparated; then there exists $G \in (j,i) \lambda_{\gamma} O(Y)$, $H \in (i,j)\lambda_{\gamma} O(Y)$, such that $y_0 \in G$, $z \in H$, and $G \cap H = \emptyset$. It can be written that $\bigcap_{v \in \beta v(x)} cl_s(f(V \cap A)) \subseteq H$ for $x \in H$; it follows that $y \in G \cap H \neq \emptyset$, which is a contradiction. This means that $y \in cl_s\{z\}$. In the same way we have $y_0 \in cl_s\{z\}$. Hence $\bigcap_{v \in \beta v(x)} cl_s(f(V \cap A)) \cap \bigcap_{u \in \beta u(x)} cl_t(f(U \cap A)) = cl_t z \cap cl_s z = \{z\}$ by bi λ_{γ} -T₁ of X. We shall show that f is $(j,i)\lambda_{\gamma}\lambda_{\gamma}^*$ -continuous. Let S be a $(i,j)\lambda_{\gamma}$ -neighborhood of f(x) then $f(x) \in \cap (cl_t f(U \cap A)) \subseteq S$. We have for $U_1, \ldots, U_n \in \beta_u(x), cl_t f(U_1 \cap A) \cap \ldots cl_t f(U_n \cap A) \subseteq S$. Since Y\S is $(i,j)\lambda_{\gamma}$ -compact, $U = U_1 \ldots, U_n \in \beta_u(x)$ gives that $cl_t f(U \cap A)) \subseteq S$. We have $f(x) \in cl_t f(U \cap A) \subseteq S$ for each $x \in U$. This means that $f'(U) \subseteq S$ and f' is $(i,j)\lambda_{\gamma}\lambda_{\gamma}^*$ -continuous. In the same way f is $(i,j)\lambda_{\gamma}\lambda_{\gamma}^*$ -continuous. Hence the theorem is proved.

Theorem 4.2. Let (X, τ_1, τ_2) be a semi bi $\lambda_{\gamma} T_1$ space and (Y, s, t) be a semi bi $\lambda_{\gamma} T_2(j, i) \lambda_{\gamma}$ -compact space. If f is a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^*$ -continuous function on X to Y then it has a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^*$ -continuous extension over $(\gamma X, P_1, P_2)$ to (Y, s, t).

Proof. Let F be an (i, j) λ_{γ} -closed set, K a (j, i) λ_{γ} -closed set in Y and $F \cap K = \emptyset$. Then $f^{-1}(F) \cap f^{-1}(K) = \emptyset$ and by Theorem 3.2, $f^{-1}(F)_i^* \cap f^{-1}(K)_j^* = \emptyset$ since f is (j, i) $\lambda_{\gamma} \lambda_{\gamma}^*$ -continuous. Hence if h is a (j, i) $\lambda_{\gamma} \lambda_{\gamma}^*$ -embedding function on X to γ X then $\emptyset = cl_{p_1} (h(f^{-1}(F)) \cap cl_{p_2} (h(f^{-1}(K)) \subset f^{-1}(F)_i^* \cap f^{-1}(K)_j^*)$. Hence the proof is completed by Theorem 4.1.

We come now to an important property of the Wallman compactification on bitopological spaces.

Definition 4.2. Let (X, τ_1, τ_2) , (Y, s, t) are bispaces and f be a function on X to Y. If f satisfies the following conditions:

- (*i*) f is $(i, j) \lambda_{\gamma} \lambda_{\gamma}^*$ -continuous;
- (*ii*) f is $(i, j) \lambda_{\gamma} \lambda_{\gamma}^*$ -closed;
- (*iii*) $f^{-1}(y) \subseteq X$ is $(i, j) \lambda_{\gamma} \lambda_{\gamma}^*$ -compact for each $y \in Y$, then f is called the bi $\lambda_{\gamma} \lambda_{\gamma}^*$ -perfect function.

Theorem 4.3. Let (X, τ_1, τ_2) , (Y, s, t) be finite bi λ_{γ} -normal semi bi λ_{γ} - T_1 bispaces. Let $(\gamma X, \tau_1^*, \tau_2^*)$, $(\gamma Y, s^*, t^*)$ be respectively their Wallman compactification, and f be a bi $\lambda_{\gamma}\lambda_{\gamma}^*$ -perfect function on X to Y. Then there exists a (j,i) $\lambda_{\gamma}\lambda_{\gamma}^*$ -continuous extension f' of f on γX to γY and we have $f^{-1}(g(Y)) = h(X)$, where g is an embedding function on Y to $\gamma(Y)$ and h is a (j,i) $\lambda_{\gamma}\lambda_{\gamma}^*$ -embedding function on X to γX .

Proof. Let $F \subseteq \gamma Y$ be $(i, j) \lambda_{\gamma}$ -closed, $K \subseteq \gamma Y$ be $(j, i) \lambda_{\gamma}$ -closed and $F \cap K = \emptyset$, $(g_o f)^{-1}(F) \cap (g_o f)^{-1}(K) = \emptyset$ gives that $cl_{\tau_1^*}(g_o f)^{-1}(F) \cap cl_{\tau_2^*}(g_o f)^{-1}(K) = \emptyset$, since $(g_o f)$ is $(i, j)\lambda_{\gamma}\lambda_{\gamma}^*$ -continuous, and by Theorem 3.2. It follows that, by Theorem 3.3. and Theorem 4.2, $(g_o f)$ has $(i, j)\lambda_{\gamma}\lambda_{\gamma}^*$ -continuous extension f on γX to γY . To show that $f^{-1}(g(Y)) = h(X)$, let $y \in Y$ and $g(y) = \beta_y$. If $f(\beta) = \beta_y$ for $\beta \in \gamma X$, then we must find an $x \in X$ such that $\beta = \beta_x$. We have $cl_{\tau_1^*}(h(f^{-1}(cl_s(y)))) = ((f^{-1}(cl_s(y)))^*$, since $(f^{-1}(cl_s(y)))$ is an $(i, j) \lambda_{\gamma}$ -closed set in X, and $(f^{-1}(cl_t(y))) = ((f^{-1}(cl_s(y)))^*$, since $(f^{-1}(cl_s(y)))^* \cap (f^{-1}(cl_t(y)))^*$. On the contrary, let $\beta \notin (f^{-1}(cl_s(y)))^*$. From Theorem 3.3 (γX , τ_1^* , τ_2^*) is semi bi λ_{γ} - T_2 , then there exists G, $H \subseteq \gamma X$ such that $\beta \in G \in (i, j)\lambda_{\gamma}O(\gamma X)$, $(f^{-1}(cl_s(y)))^* \subseteq H \in (j, i)\lambda_{\gamma}O(\gamma X)$, $G \cap H = \emptyset$. We have $\beta \notin (\gamma X) \setminus G \in (i, j)\lambda_{\gamma}C(\gamma X)$. By Proposition 4.3, there exists an

 $(i, j)\lambda_{\gamma}$ -closed set in X such that $\beta \notin F_i^*, \gamma X \setminus G \subseteq F_i^*, h^{-1}(H) \in (j, i) \lambda_{\gamma} O(X)$, which implies that $f(X \setminus h^{-1}(H)) \in (j, i)\lambda_{\gamma} C(Y)$ since f is $(j, i) \lambda_{\gamma} \lambda_{\gamma}^*$ -closed. Let $T = \gamma X \setminus [f(X \setminus h^{-1}(H))]_j^* \in (j, i)\lambda_{\gamma} O(\gamma Y)$. If $\beta_y \notin T$ then $\beta_y \in [f(X \setminus h^{-1}(H))]_j^*$ and this gives that $y \in (f(X \setminus h^{-1}(H))$ such that y = f(z). But $x \notin h^{-1}(H)$ gives that $h(z) \notin H$ and $h(z) \notin ((f^{-1}(cl_s(y)))_i^*$ hence $z \notin f^{-1}(cl_s(y))$ and $f^{-1}(z) \notin (cl_s(y))$. But this conflicts with $y \in f(z)$. This gives that $\beta_y \in T$, $\gamma X \setminus G \subseteq F_i^*$ gives $X \setminus h^{-1}(G) \subseteq F$ and $(X \setminus F) \subseteq h^{-1}(G) (X \setminus F) \cap h^{-1}(H) \setminus = \emptyset$, since $G \cap H = \emptyset$. This means that $f \cup (X \setminus h^{-1}(H)) = X$. Now we have $((X \setminus h^{-1}(H)), X) \in \beta$ or $(X, F) \in \beta$ since β is maximal, $F \in (i, j)\lambda_{\gamma} C(X)$ and $(X \vee h^{-1}(H)) \in (j, i)\lambda_{\gamma} C(X)$. If $(X, F) \in \beta$ then $\beta \in F_i^*$. But this is a contradiction. Then we have $((X \setminus h^{-1}(H)), X) \in \beta$. It means that $\beta \in [X \vee h^{-1}(H)]_f^* = cl_{\tau_2^*}(h(X \vee h^{-1}(H)))$. The $(j, i)\lambda_{\gamma}\lambda_{\gamma}^*$ -continuity of f' and $f'(\beta) = \beta_y$ gives that $\beta \in f'^{-1}(T) \in (j, i)\lambda_{\gamma} O(\gamma X)$. Then $f^{-1}(T) \cap h(X \vee h^{-1}(H))$, $h(x) \in H$. But this is a contradiction. Thus $\beta \in ((f^{-1}(cl_s(y)))_i^*$. It can be shown that $\beta \in (f^{-1}(cl_t(y))_f^*$ in the same way. Then we have $(f^{-1}(cl_s(y)) f^{-1}(cl_t(y)) \in \beta$ and for each $(F, K) \in \beta$, $F \cap K \cap f^{-1}(cl_s(y)) \cap f^{-1}(cl_t(y)) = F \cap K \cap f^{-1}(cl_s(y)) \cap cl_t(y) = F \cap K \cap f^{-1}(y) \neq \emptyset$ since (Y, s, t)is semi bi $\lambda_{\gamma} \cdot T_1$ there exists an $x \in X$ such that $x \in F \cap K \cap f^{-1}(y)$ for all $(F, K) \in \beta$, since $f^{-1}(y)$ is $(j, i) \lambda_{\gamma}$ -compact. This gives $\beta \subseteq \beta_x$. The maximality of β gives that $\beta = \beta_x$ and then f(x) = y completes the proof.

REFERENCES

- [1] J.C. Kelly, "Bitopological Spaces", Proc. London Math. Soc., 13(3) (1963), pp. 71-89 (MR 26 # 729).
- [2] A.R. Singal and S. Lal, "A Wallman Type Compactification for Bitopological Spaces", *Bull. Inst. Math. Acad. Sinica*, **11**(1) (1983), pp. 23–29.
- [3] B.P. Dvalishvili, "Compactification of Bitopological Spaces", Uspekhi Math., Nauk., 35(3) (1980), pp. 171-174.
- [4] S. Kasahara, "Operation Compact Spaces", Math. Japonica, 24(1) (1979), pp. 97-105.
- [5] M.E. Abd El-Monsef, F.M. Zeyada, and A.S. Mashhour, "Operation on the Power Set P(X) of a Topological Space (X,τ) ", Colloquium on Topology, Eger-Hungary, August 9–13, 1983.
- [6] A.M. Kozea and B.M. Taher, "Basic (i, j) λ_y -Bitopological Concepts", Delt. J., 19(2) (1995), pp. 84–101.
- [7] M.E. Abd El-Monsef, A.M. Kozea, and B.M. Taher, "Compactification of Bitopological Spaces", AJSE, 22(1A) (1997), pp. 99-105.
- [8] B.M. Taher, "Compactifications of Topological Spaces", Ph.D. Thesis, Tanta University, 1996.
- [9] L.M. Brown, "Dual Covering Theory, Confluence Structure and the Lattices of Bicontinuous Functions", *Ph.D. Thesis, University of Glasgow*, 1980.
- [10] W.J. Thron, Topological Structures. New York: Holt Rinehart and Winston, 1966.
- [11] R. Engelking, General Topology. Wroclaw, Poland: Wroclawska Drukarnia Naukova, 1977.

Paper Received 7 June 1998; Revised 21 January 2000; Accepted 16 May 2000.