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ABSTRACT 

The purpose of the present study is to construct a Wallman compactification for the 
larger classes which are bi Ay-TO and bi Ay-RO' Some characterizations are given~ also one 
ofour main results is that the Wallman compactification of a bitopological space (X. 'tl , 't2) 

is semi bi Ay-T2 iff (X. 't1, 't2) is finite bi \-normal. A near type of extension over Wallman 
compactification of bispaces is also studied. 

Key Words and Phrases: (J.i)Ay-open «J.i)Ay-closed) set, (J,i)AyA~-homeomorphism, 
(J,i)Ay-compact, bi Ay-normal, Wallman compactification for bispaces, and bi Ay-continuous 
extension. 

AMS (1980) Classification Code: 54 D35, 54 C20, 54DIO, 54D15, 54C25 

The Arabian Journal/or Science and Engineering, Volume 26, Number 2A: 167 



B.M. Taher 

WALLMAN COMPACTIFICATION FOR BITOPOLOGICAL SPACES 

1. INTRODUCTION 

For brevity we refer to a bitopological space (X, 'tl> 't2) (see [1]) as a bispace. Throughout the present paper, (X, 't}7 't2) and 

(Y, 0'1> 0'2) (or simply X and Y) always mean bispaces and/: X ~ Y represents a function. For a Tt-space (X,'t), consider 

Wallman compactification (X,(X*,O») [2] consisting of the set X* of all ultraclosed filters on X. The topology 0) on X* 

generated by {V* : VE't}, where V* = {F E X* : V E 't} and the dense embedding X : X ~ X* defined by setting 

X(x) = p(x) = {A C X, x E A}. In 1980 [2] Asha Singal and Sunder Lal studied a Wallman type compactification for pairwise 

TI spaces. In 1980 [3] Dvalishvili constructed the Wallman compactification of the completely regular bispaces. We denote 

the closure (interior) operator with respect to (w.r.t.) the topologies 't; (i = 1,2) by c11:j(int,) respectively. In 1979, Kasahara [4] 

defined an operation ex. on a topology 't on a non-empty set X to be a function of l' onto the power set P(X) such that G C Ga, 

for every G E 't, where Gadenotes the value of ex. at G. The family of all operations ex. is denoted by 01:(X)' In 1983, Abd EI
Monsef et ai. [5] generalized Kasahara's operation by introducing an operation on the power set P(X) of a topological space 
(X,'t). A function ~ : P(X) ~ P(X) (resp. 8 : P(X) ~ P(X)) is said to be an operation on P(X) of type I [5] (resp. of type II) 

[5], if int1:(A) C At, (resp. c1iA) ~As), for every AEP(X), where At, (As) denotes the value of ~(8) at A. The family of all 

operations of type I (resp. of type II) is denoted by Op(X) (resp. Op(X»' 

2. BI Ay.CLOSED FILTER 

Let {i *j, i,j = 1,2}, always. 

Definition 2.1 [6]. A function Ay : P(X) ~ P(X) is called a (j,i) operation on P(X) of a bispace (X, 1'1' 't2), if Ay is an operation 

on P(X) of type I and also of type II with respect to (X,'t) and (X, 't;) respectively; i.e., int1:/A) C AA.r (resp. c11:j(A) => AA.r) for 

every AE P(X), where AA.rdenotes the value of Ay at A. 

Definition 2.2 [6]. A subset A of a bispace (X, 'tI' 't2) is called a (j,i) 'Ay-open set, if A C AAy. A is (j,i) Ay-c1osed set if 
X\A C (X\A)A.r or A ;;;;;2 X\(X\A)Ay. 

It is easy to get corresponding statements for (j,i)Ay-c1osed in bispaces. In a bispace (X, 'tI, 1'2), the class of (j,i) Ay-open 

«j,i) Ay-c1osed) will be denoted by (j,i) AyO(X)«j,;) AyC(X». 

Definition 2.3 [6]. Let A be a subset of a bispace (X, 'tl' 't2)' Then the intersection of all (j,;) Ay-c1osed sets containing A is 

called (j,i) Ay-c1osure ofA and is denoted by (j,i) Ay-c1(A). 

Definition 2.4 [7].A function/: (X, 'tl> 1'2) ~ (Y, 0'1, 0'2) is called (j,i) Ay-continuous if the inverse image of each O'ropen set 

in Y is (j, i) Ay-open set in X. 

Definition 2.5 [7]. A function/: (X, 't I, 't2) ~ (Y, 0'1' 0'2) is (j,i) A~-open «j,i) A~-c1osed) if the image of every 'tropen 
('trclosed) set in X is a (j,i) A~-open «j,i) A~-c1osed) set in Y, where A~: P(Y) ~ P(Y). 

Definition 2.6 [7]. A function /: (X, 'tI, 't2) ~ (Y, 0'), 0'2) is (j,i)'AyA~continuous, if the inverse image of each (j,i) A~-open 
set in Y is (j,i) Ay-Open in X. 

Definition 2.7 [7]. A function /: (X, 't), 't2) ~ (Y, 0'), 0'2) is called (j,i)AyAi-open [(j,i) AyAi-c1osed], if the image of each 

(j,i)'Ay-open «j,i) Ay-c1osed) set in X is a (j,i) A~-open «j,i) A~-c1osed) set in Y. 

Definition 2.8 [7]. Two bispaces X and Yare called (j,i) AyA~-homeomorphic equivalent, if there exists a bijective function 

/: (X, 't), 't2) ~ (Y, O'J> 0'2) such that / is (j,i) AyA~-continuous and (j,i)AyA~-Open such function / is called (j,i)AyA~
homeomorphism. 
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Definition 2.9 [8]. A family f3i(f3) of (i,j)Ay-closed «(j,i)Ay-closed) subsets of a bispace (X, tb t2) is called (i,j)A.-y-closed 
«(j, i)Ay-closed) filter if: 

(i) 	 0 i: f3i(f3j ); 

(ii) 	 if A, BE f3i(f3), implies A (\ B E f3i(f3j ); 

(iii) 	 if B E f3;(f3j), implies B E f3i(f3j)' 

Definition 2.10 [8]. Let (X, t l , t 2) be a bispace, f3i(f3j) is (i,j) Ay-closed «(i,j) Ay-closed) filter, then f3 =f3i X f3j is called a 

bi Ay-closed filter on X if (A,B) E f3, implies A (\ B =t. 0, for each A E f3i' B E f3j , where f3i,f3j are called the families of first 

and second coordinates respectively of the bi Ay-closed filter f3. 

If <1> = <1>i X <1>j is another bi Ay closed filter, then we say <1> ~ f3 if f3j C <1>j. It is clear that ~ is a partial order relation in the 
collection of all bi Ay-closed filters. 

A maximal bi Ay-closed filter is called a bi Ay-ultraclosed filter (i.e. a bi Ay-closed filter that is not contained in any other 

bi Ay-closed filter). 

Lemma 2.1 [8]. 

(i) 	 For each bi Ay-closed filter <1> there is a bi Ay-ultraclosed filter Q containing <1>. 

(ii) 	 If <1> =<1>i X <1>j is a bi Ay-ultraclosed filter and there is Aj E (j, i) A.-y-closed sets in X such that <1>j U Aj is a bi A.-y-closed 


filter and Aj (\ A =t. 0 for each A E <1>j. then Aj E <1>. 


(iii) 	 If V, V E (j,i) Ay C(X), <1> is a bi Ay-ultraclosed filter, then V U V E <1> implies V E <1> or V E <1>. 

(tv) 	 If <1> .. <1>2 are bi Ay-ultraclosed filters on X. <1>1 =t. <1>2, there exists a (i,j) Ay-closed set C b a(j,i) Ay-closed set C2 , such 

that CI E <1>1, C2E <1>2, CI (\ C2 0. 


Definition 2.11 [9]. If E C X is finite joint closed, then there is an open dual family {(Vee, Vee): oc E A: so 

E = x\u {Vee (\Vee) : oc E A} and this family is finite. 

Definition 2.12. A bispace (X, tl' t2) is called finite bi Ay-nonnal if for any finite joint closed set E and any (j, i) Ay-closed set 

F with E (\ F = 0, there exist VE (i,})AyO(X), V E (j,i) A.-yO(X) with V (\ V = 0, and E C V, Fe V (E C V, Fe V). 

For x E X, f3x = f3ix X f3j x, where f3iAf3jx) is a family of all subsets of f3i(f3j) containing x such that if (A,B) E f3x then 
A (\ B =t. 0, for each A E f3ix, BE f3jX' 

Proposition 2.1 [8]. f3x = f3ix X f3j x is a bi Ay-ultraclosed filter. 

Definition 2. 13 [8]. A bispace (X, t .. t2) is called: 

(i) bi Ay.Ro if each (j, i) Ay open set 0 and each x EO, (j, i) Ay-cl {x} CO; 


(if) bi Ay.To if for each two distinct points x, y of X, there exists a (i,j) Ay-open set V such that x E V, Y i: V or y E V, 

xi: V; 

(iii) 	 bi AyRt if for each two distinct pointsx,y of X such that (j,i) Ay-cl{x} =t. (j,i) Ay-cl{y}. there exists a (i,j)Ay-open set 


V and a (j, i)Ay-open set V such that (j, i) Ay-cl {x} C V, (j, i) Ay-cl {y} c V, V (\ V =0; 


(iv) 	 bi Ay Tt if for two distinct points x, y of X, there exists a (i,j)Ay-open set V containing x to which y does not belong 


and a (j, i)Ay-Open set V containing y to which x does not belong; 


(v) 	 bi Ay.T'}. if for each two distinct points x, y of X, there exists a (i,j)Ay-open set V and a (j,i)Ay-open set V such that 


x E V, Y E V, V n V =0. 


Proposition 2.2. If x E X, then n {f3ix U f3jx} = {x}. 
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3. WALLMAN COMPACTIFICATION FOR BISPACES 

Definition 3.1 [7]. A bispace (X, tl, t2) is called (j,i) Ay-COmpact if every (j,i) Ay-open cover X has a finite subcover. 

A bispace which is bi Ay-Rk and bi Ay-Tk is called semi bi-Ay-Tk+.. k E {O,I,~}. 

Definition 3.2 [7]. A subset A of a bispace (X, t l' t2) is called (j,i)Ay dense if for any (j,i)Ay-open set G such that G (lA :F- 0. 

Definition 3.3 [7]. A bispace (X, t 1, tz) is called (j, i)AyA~-embeddable in a bispace (Y,s, t) if there exists a (j, i)AyA{-homeo
morphism from (X, tl> t2) onto a (j,i)Ay dense subpace (Y,s,t). 

Definition 3.4 [8]. Ify X= { ~: ~ is a bi Ay-ultraclosed filter on X}, Kj (resp. Kj ) be a (i,j) Ay-closed (resp-(j,i) Ay-closed) set. 

We let Kt ={~E YX, (Ki' X) E ~}, Kl ={~E yX, (X, Kj ) E ~}, Then we can define Cj = {Kt, K; is (i,j) Ay-closed}, 
Cj = {Kl, Kj is (j, i) Ay-closed}. 

Proposition 3.1 [8J. Cj(Cj ) is a base for the closed subsets of a topology PI (a topology P2) on YX. 

Definition 3.5 [8]. A bispace (X*, ti, ti) is called a (i,j) Ay-compactification of a bispace (X, tl' t2) if there exists a 

(j,i) Ay-embedding function from (X, t .. tz) onto (X*, ti, ti) and if(X*, ti, ti} is (j,i) Ay-compact. 

Theorem 3.1 [8J. A bispace (y X, p .. P2) is (j,i) Ay-compactification of a bispace (X, t l , t2)' 

We called (y X, PI' P2) its Wallman compactification. 

Theorem 3.2 [8]. Let (X, t l , t z) be a bispace and (y X, PI> Pz) its Wallman compactification. Then the following statements 
hold: 

(i) 	 for each (;,j)Ay-closed set K in X, we have Ki* = clp;f(K) and with a corresponding result for (j,i)Ay-closed sets; 

(ii) 	 for (i,j)Ay-closed sets K .. Kz we have (KI (l Kz)* = Ki (l Ki, (KI U Kz)* = K'( u Ki, and with the corresponding 

results for (j,OAy-closed sets; 

(iii) 	 for each (i,j)Ay-closed set K ~ X and a (j,i)Ay-closed set X we have K;* (l T;* -:I: 0 iff K (l T -:I: 0. 

Proposition 3.2 [8]. The Wallman compactification (y X, PI, Pz) is bi Ay-TJ • 

Theorem 3.3. Let (X, tl, t2) be a bispace and (y X, PI' Pz) its Wallman compactification. Then (y X, P., Pz) is semi bi Ay-Tz 
iff (X, tl' tz) is finite bi Ay-normal. 

Proof Let 5, ~E Y X and 5-:1:~. This implies 5~ ~ and ~ ~ 5. If 5 ~~, then there exist (AI,Az) E 5 such that (A1,A z) fi!: ~. 

This gives that (AI> X) fi!: ~ or (X, A2) fi!: ~. Hence there exist BI E tl-closed, Bz E tz-closed such that (B .. Bz) E ~ and 
AI (l BI (l Bz =0 or Az (l BI (l Bz 0, E =BI (l Bz =X\[(X\B I) u (X\Bz)] is a finite closed set, and Al (l E =0,or 
A2 (l E = 0. Then we have from hypothesis (i,j)Ay-Open and (j,i)Ay-open sets which are disjoint and contain respectively AI' 

E (or E, A2). From these sets we can obtain the desired (i,j) Ay-Open and (j,i)Ay-open sets in y X which verifies that 

(y X, PI. P2) is bi Ay-T2. In the same way, if 5, ~ E yX, 5 fi!: clP'~ (resp. 5 fi!: clP2~) then we have a (i,j)Ay-open set V and a 
(j,i)Ay-open set V such that 5 E V, ~ E V (resp. 5 E V, ~ E V) and V (l V =0. This means (y X, P" Pz) is semi-bi Ay-T2• 

Conversely, let E (l Fe, X, E (l F= 0, where F is an (i,j)Ay-closed set, E= X\ u (Va (l Va), where Va is a tj-open set, Va is 
a tropen set, ex =1,2 ...... n. We can write E =u(Fk(l Kk) where Fk are tj-closed sets and Kk are trclosed sets, k =1,2... m. 
It follows that Fk (l Kk (l F =0, for each k =1,2... m. By Theorem 3.2 (i), we get clp,(Fk) (l clp2(Kk) (l clPI(F) =0. 

If 5 E clp,(Fk) (l clp2(Kk) and ZE clp,(F), then 5 fi!: clPIZ. 

Since (X, tl' t2) is semi bi Ay-T2' we have 5 EVE (i,j) AyO(y X), Z EVE (j,i) AyO(y X) and V (l V == 0. We know that 
clPI(Fk) (l clp2(Kk) and clPI(F) are (j,i)Ay-compact «(i,j)Ay-compact). It follows that clptFk(l clp2Kkand clpF can be covered 
respectively by (j,i)Ay-open «i,j) Ay-open) sets which are disjoint. The inverse images of these sets separate E, F. Hence 
(y X, PI' P2) is bi Ay-normal. A similar proof holds when F is (j,i) Ay-closed. 

170 The Arabian Journal for Science and Engineering. Volume 26, Number 2A 	 July 2001 



B.M. Taher 

Theorem 3.4. Let (X*, 'ti, 'ti) be a bi Ay-TI compactification of a bispace (X, 'tl, 't2)' Then (X*, 'ti, 'ti) and (y X, PI' P2) are 

(j,;)AyA:-homeomorphic iff the following conditions are satisfied (11 is the (j,;) Ay~ embedding function from (X, 'tl' 't2) 

to (X*, 'ti, 'ti». 
(i) 	 (cLrr I(K): K is a (i,j) Ay-closed set in X) is a base for the closed subsets of the topology 'ti and with a similar result 


for the topology 'ti. 

(ii) 	 Let Kit K2 be a (i,j) Ay-closed sets in X and Fit F2 be (j,i) Ay-closed sets in X. Then: 


cl-rrII (KI fl K0 = cl-ri11 (K1) fl cl-rifl (k2); 


cl-r;/1 (FI fl F2) = cl-r;/1 (FI) fl cl-r;fl (F2)· 


(iii) 	 Let K be a (i,j) Ay-closed set and F a (j,i) Ay-closed set in X. Then F fl K *0 iff cl-ri II(K) fl cl-r;fl(F) *0. 

Proof. We assume that the conditions are satisfied. We want to see that (X*, 'ti, 'ti) and (yX,PI,P2) are (j,i)AyAt-homeomor

phic. We define a function g: (yX, Ph P2) ~ (X*, 'ti, 'ti) in the following way. For each ~ E yX, {cl-r; I(E), cl-rif(F) hE, F) e 5' 

Define a bi Ay-closed filter ~ 1 which has a cluster point x in (X*, 'ti, 'ti); this point is unique. Otherwise, if 

Y E fl (E
I
• F

I
>e 51 EI fl FI and Y *~, ~ ~ ~ I, then we get a contradiction from conditions (U) and (iii), because (X*, 'ti, 'ti) 

is bi Ay-TI and ~ is a bi Ay-ultraclosed filter. This leads us to set g(~) = x, so defining the function g it is clear that 

g-I(cl-ri II (K» = (clpfl(K» and g-I(cl-r; fl(K» = (clp2/1(K». From the conditions and these equations we can get 

(j, i) AyAt-continuity of g. Let XI E X*. We define a bi Ay-closed filter (31 = {(F, K): Fr;,. X is (j, i) Ay-closed, K ~ X is 

(i,j) Ay-closed, xlE (cl-rifl (K» fl(cl-r; II (F». If~ I is a bi Ay-ultraclosed filter containing (31 then g(~ I) = YI, implies that 

XI = YI' It follows that g is onto. 

We now see that g is a one-to-one function. Let~, (3 E YX and g«(3) = g(~) = x. If (3 = ~ then, from maximality of ~ and 

(3, there exist BI E 'ti-closed, B2E 'trclosed such that (BI' B2) E (3, (FI , F2) E ~ and BI fl B2 fl F} fl F2 = 0. The third 

condition gives us cl-r;/1 (BI) flcl-r;/I(FI) flcl-rift(F2) flcl-ri/I(B2) = 0. But from the definition ofg we have x E cl-r;/I(BI) 

fl cl-r;/I(FI) fl cltft (F2) fl cl-ri/l(B2) *0; this is a contradiction. It can be shown that g (K;*) = cl-r;/I(K), g(F/) = cl-r;ft (F), 
for each K ~ X is an (i,j) Ay-closed set and F r;,. X is (j,;) Ay-closed. This means that g is a (j,i)Ay At-closed function 

(i.e. g-I is (j,i)AyA: continuous). Finally it is clear thatgol=/I' Theorem 4.2 gives the necessity. 

Proposition 3.3. Let (X*, 'ti, 'ti) be a semi bi Ay-T2 bispace which is acompactification of (X, 'tl, 't2)' ThenfP-ri = {cl-ri F: F 

is (i,})Ay-closed in X} is a base for the closed subsets of the topology 'ti and in the same way fP -r; = {cl-r; F: F is 
(j,;) Ay-closed in X} is a base for the closed subsets of the topology 'ti. 

Proof. Let F} C x* be a 'ti-closed set, X E X* and XI e F I , (X*, 'ti, 'ti) is semi-AyT2 and iF} is (i,}) Ay-COmpact. It follows 

that XI E X*\FI = UI is 'ti-open, FI ~ VI E (j,i) Ay-open in X* such that UI fl VI = 0. Let F x\[X*\cl-riVI fl X]. Since 

cl-rrVI ~X*\Uh implies UI fl cl-r: VI = 0, hence UI fl cl-ri F = 0, implies X e cl-riF. 

Let us assume that FI is not a subset of cl-riF. Then we can take Y E FI such that Y e cl-riF. There exists a 'ti-open set 

U2= X*\cl-ri F such that YI E U2and U2 fl F = 0. We know that YI E FI r;,. VI' Then YI E U2 fl VI *0 so YI E cl-riVI' but 

YI e F, implies YI E X\F = X*\(cl-ri VI fl X) = X*\cl-ri V" implies YI e cl-ri VI' We have a contradiction. Hence we have 

FI~cl-rrF. 

Definition 3.6 [1]. A bispace (X, 'th 't2) is called pairwise regular if for any 't;-closed set F, X e F there exist two disjoint 
upon sets U, V, such that X E U, F ~ V. 

Proposition 3.4. Let (X*, 'ti, 'ti) be a semi bi Ay-T2 space which is a compactification of (X, 'tit 'to. Let p be a (j,i) AyA: 
continuous function on X* to y X such that p(x) = {x}, for each X E X. Also, 11,12 are (j,;) Ay At-embedding functions on X 

to respectively X*, y X. If F~X is a (i,j) Ay-closed set, then p-I (clt(fl (F») r;,. (cl-ri(/I(F». 

Proof. If there exists a member xE p-I (cl-rr(/I(F») and x e (cl-rr(f2(F»), then p(x) = (3= cl-rr(fl(F» and (X, F) E (3. It can be 
shown that (X*, 'ti, 'ti) is pairwise regular; then there exists UIE 'ti, VI E 'ti such thatxE U}, cl-rr(/2(F» r;,. VI, UI fl VI = 0. 
We can obtain a'trclosed set K = (X fl (X*\VI» in Xsuch that cl-rr(f2 (F» r;,. VI r;,.X*\UI and (X*\UI) fl X =FI is a'tl-closed 
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set in X. Then we have F ~X\K~ Fit so F n (X*\VI ) = 0, K n FI = 0, implies (X, F) e ~ and (K, X) e ~,~ E y X\Kt, 

x E p-I (y X\K-r;) is a (2,1) Ay-Open set inX* (because p(x) =~, p is (j,i)AyA: continuous). On the other hand,xE X*\clt F I , 

then there exists a member Z E p-l(y x\K-r;) n «X*\cltF) n X), but X is (j,i)Ay-dense subset of X* and y X. Thus 
p-l(y x\K-r;) n X"# 0, (X*\cltF) n X)"# 0 and p-l(y X\K-r;) n (X*\cl-r~F) n X"# 0. It follows that z e K u FI = X and this 
a contradiction (x e cl-r~(/I(F)). Hence the proposition is proved. 

Theorem 3.S. If a bispace (X, 'tit 't2) is finite bi Ay normal then (yX, PI' P2) is the projectively largest semi bi Ay-T2 

compactification of (X, 'tit 't2)' 

Proof. Let p be a (j,i) AyJ.{-continuous function from any semi bi Ay-T2 compactification (X*, 'ti, 'ti) of (X, 'tI' 't2) to 
(y X,PI,P2). It will be enough to show that p is a (j,i)AyAi-homeomorphism. 

(i) 	 Let ~ E Y X and define 0 = {(cl-r;F, cl-r;K): (F, K) E ~}. 0 has a cluster pointxI E X; let p (Xl) =~. If p (Xl) = ~l then, 
~ "# ~l we have a member (F, K) E ~, (F, K) e ~l' Then ~I e (y X\F-r;) or ~l e (y X\K-r~)' It follows that 
Xl E p-I(y X\Ft) is a (2,1)Ay-Open set in X* or XIE p-l (y X\Kt) is a (l,2)Ay-open set in X*, (F, K) E ~ gives that 
Xl E (cl-r;F n cl-r~K) and p-l(y X\F-r;) n K"# 0, p-l (y X\K-r~) n F"# 0. But these are impossible. It means ~l = ~ and 
p is onto. 

(ii) 	 Let XI ,X2 E X*, p (Xl) = p (X2) = ~ and Xl "#X2' We have Xl e clt X2or X2 e clt X2(whereX2is anothercompactification 
of X). Since X is bi Ay -Tit there exists a (j,i)Ay-closed set F in X by Proposition 3.3 such that Xl e cl-r~ F, 

cl-rrX2~cl-rrF. It follows by Proposition 3.4 that p-I(clp.F) ~ cl-rrF. Then Xl e p-I (clpl), ~= p (Xl) =p (X2) E clpl; 

on the other hand X2 E cl-r; X2~ cl~ F gives that P(X2) E clp.F; this is a contradiction. It means that p is one to one. 

(iii) 	Let F be a (i,}) Ay-closed set in X* and p(F) not be (i,})Ay-closed in yX. Take ~ E clp.p(F) and ~ e p(F), i.e., 

clp.p(F) g p(F). There exists a (i,}) Ay-closed set in X; by Proposition 4.3 we have p-l(~) e cl~K and F ~ cl~ K. 

It follows that p(F) ~ clp.p(K) and ~ E clp.p(F) ~ clp.p(K), implies p-l(~) E p-l(clp.K). On the other hand, 
p-I(~) e p-I(cl-rrK) contradicts Proposition 3.4. It means that p is a (i,})Ay-closed function. Hence the theorem is 
proved. 

Remark 3.1. 

(i) 	 If i =) then we return to the ordinary case of Wallman compactification as in [10]. 

(ii) 	 If every 'trclosed set is a 'tj-open set in bispace (X, 'tit 't2), then we return to the pairwise case of Wallman 
compactification as in [3]. 

4. THE BI Ay.CONTINUOUS EXTENSION OVER THE WALLMAN COMPACTIFICATION FOR BISPACES 

Definition 4.1 [8]. A bispace (X, 't I' 't2) is called bi Ay-regular if for each 'trclosed set F, X e F, there exist two disjoint sets 
U, V such that X EVE (j,i) Ay O(X), F ~ U E (i,}) AO(X). 

Lemma 4.1. Let (X, 'tl' 't2) be bi Ay-regular. Ifx,y E X,x E A E 'tI-open andy e A then there exist two disjoint sets U,Vsuch 

that X E U E (i,})AyO(X), y EVE (j,i) Ay O(X), cl-r2U n cl-r. V =0. 

The following theorem is a generalization of the extension problem in Engelking [11] for bispace. 

Theorem 4.1. Let A be a (j,i) Ay-dense subspace of X and I is a (j,i)AyA:-continuous function of A to a semi 
bi Ay-T2(j, OAy-COmpact space Y. The function I has a (j, i)AyAi-continuous extension I' over X iff for every pair 
FE (i,})AyC(Y), K E (j,i) C(y), InK =0, then the inverse images cl-r2(/-I(K)) n cl-r.(/-I(F)) =0. 

Proof. Let I' be an extension of I and FE (i,})AyC(Y), KE (j,i) C(Y), FnK=0, then 0=1'-I(F n K)=I'-I(F)nl'-I(K) = 

cl-r.(/'-I (F)) ncl-r2(/-I(K)) and this gives that cl-r.(/-I(F)) n cl-r2(/-I(K)) =0. We shall prove thatthe condition is sufficient. 
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Let x E X, denote by ~(x) the family of all (j,i) Ay-neighborhood of x and define 3(x) ={(cItf(U n A), (cIsf(V n A)}, 
(U, V) E ~(x). 3(x) is a base for a bi Ay-closed filter in Y. Then it has a cluster point z in (Y,s, t). We shall show that z is unique 
and definef'(x) =z. At first if f'ex) ESE (i,})Ay O(y), then n cit feU n A) ~ S and if rex) E TE (j,i)Ay O(Y), then 

n clif(V nA)) s: T. If we take a member yEn clt(f(U n A)), yeS, there exists Sl E (i,})AyO(Y), Tl E (j,i)AyO(Y), by 

Lemma 4. 1, such thatf'(x) E SbY E Tb cltSIn clsTI = 0, cLr2(f-I(SI)) n cltl(f-I(Tl)) = 0. By assumption,xE X gives that 
x E X\cI t2(f-l(SI)) or x E X\cltl(f-1(T1)). 

(i) 	 If x E X\cIt,(f-1(TI)) then Y E clt(f(A n X\cltl(f-I(T1)) and TI n (f(A n X\cltl(f-1(TI)) =1: 0. But this is impossible. 

(ii) 	 IfxE X\cl t2(f-1(SI)) then f'(x)EcIAf(A nX\clt2(f- I(SI)) and Sl n (f(A nX\clt2(f-I(SI)) =1: 0. This is also impossible. 


Hence rlUE j3u(x) cIsf(U rlA)!;;.S and converse is similar: x E cltz rI cIs zs;;;;, riVE j3v(x) clif(VnA)) n rl UE j3u(X) clt(f(UriA), 

since z is a cluster point of3(x). Let us take a member YoE n VE j3v(x) cls(f(V n A)) n nUE j3u(x) clt(f(U nA)) and 


YoE clAz}. 


We know that X is preseparated; then there exists G E (j,i) AyO(Y), HE (i,})Ay O(Y), such that YoE G, z E H, and 

G n H =0. It can be written that nv E j3v(x) cls(f(V n A)) s: H for x EH; it follows that Y E G n H =1: 0, 
which is a contradiction. This means that Y E clAz}. In the same way we have YoE cls{z}. Hence nv E j3v(x) 
cIAf(V n A)) n nu e j3u(x) clt(f(U n A)) = cltz n cIsz = {z} by bi Ay-Tl of X. We shall show that f is 
(j,i)AyAi-continuous. Let S be a (i,)) Ay-neighborhood of f(x) then f(x) E n (cit feU n A) ~ S. We have for 

U ..... UnE ~u(X), cltf(UI nA) n ... cItf(UnnA) ~S. Since Y\S is (i,}) Ay-COmpact, U= U1... Un E ~u(x) gives that 
cltf(U n A)) ~ S. We havef(x) E cItf(U n A)) ~ S for each x E U. This means that f'(U) ~ Sand f' is 

(i,}) AyJ4-continuous. In the same way f is (i,})AyA~-continuous. Hence the theorem is proved. 

Theorem 4.2. Let (X, tl' t2) be a semi bi Ay-TI space and (Y,s,t) be a semi bi AyT2(j,i)Ay-compact space. If f is a 
(j,i)AyAi-continuous function on X to Ythen it has a (j,i) AyAi-continuous extension over (y X,P I,P2) to (Y,s,t). 

Proof Let F be an (i,}) Ay-closed set, K a (j,i) Ay-closed set in Yand F n K =0. Thenf-I(F) nf-I(K) = 0 and by 

Theorem 3.2,f-1(F)'t nf-I(K)j =0 since f is (j,i) AyAi-continuous. Hence if h is a (j,i) AyJ4-embedding function on 
X to y X then 0 = cl (h(f-l(F)) n clP2 (h(f-1(K)) cf-1(F)'t nf-l(K)j. Hence the proof is completed by Theorem 4.1. 

P' 


We come now to an important property of the Wallman compactification on bitopological spaces. 


Definition 4.2. Let (X, t .. t2)' (Y,s, t) are bispaces and f be a function on X to Y. If f satisfies the following conditions: 

(i) 	 f is (i,}) AyAi-continuous; 

(ii) 	 f is (i,}) Ay~-closed; 

(iii) 	 f-l(y) ~X is (i,}) AyAi-compact for each y E Y, then f is called the bi AyAi-perfect function. 

Theorem 4.3. Let (X, tI, t2)' (Y,s,t) be finite bi Ay-normal semi bi Ay-TI bispaces. Let (y X, ti, tn, (yY,s* ,t*) be respectively 
their Wallman compactification, andfbea bi AyAi-perfect function on X to Y. Then there exists a (j,i) AyAi-continuous 
extension r of f on yX to yY and we havef-l(g(Y») = heX), where g is an embedding function on Y to y(Y) and h is a 

(j,i) AyAi-embedding function on X to y X. 

Proof Let F s: yY be (i,}) Ay-closed, K ~ YY be (j,i) Ay-elosed and F n K =0, (gof)-I(F) n ( goftl(K) = 0 gives that 

clt~( goftI(F) n cIt~ (goftl(K) = 0, since (gof) is (i,})AyAi-continuous, and by Theorem 3.2. It follows that, by Theorem 
3.3. and Theorem 4.2, (gof) has (i,)) AyAi-continuous extensionfon y X toyY. To show thatf-I(g(¥») =h(X), lety E Yand 

g(y) =~Y' Iff(~) =~y for ~ E Y X, then we must find an x E X such that ~ =~x. We have clt~ (h(f-l(cls (y))) =«f-l(cls(Y))'t 
and ~ =~Y' We have clt~ (h(f-l(cIt(y))) =«f-I(cls(y))j, since (f-l(cls(Y)) is an (i,)) Ay-closed set in X. and(f-l(cIt(y) is a 
(j,i) Ay-closed set in X and by Theorem 3.2. This gives that ~ E (f-1(cls(y))i n (f-1(clt(y))t On the contrary, let 

~!i! (f-l(cliY))'t. From Theorem 3.3 (yX, 'tj, tn is semi bi Ay-T2' then there exists G, H ~ yX such that ~ E G E (i,})Ay O(yX), 
(f-l(cIs(Y»j* ~ H E (j,i)AyO (y X), G n H = 0. 'We have ~!i! (yX)\G E (i,)) Aye (yX). By Proposition 4.3, there exists an 
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(i,j)Ay-closed set in X such that J3 f Ft, YX\G k F;*, h-1(H) E (j,i) AyO(X), which implies thatf(X\h-I(H» E (j,i)AyC(Y) 
since f is (j,i) AyA~-closed~et T =YX\[f(X\h-1(H»]l E (j,i)'AyO(yY). If J3yf Tthen J3yE [f(X\h-I(H»]l and this gives 
that y E (f(X\h-I(H» such that y = fez). But x f h-1(H) gives that h(z) f Hand h(z) f «f-l(cls(Y»{ hence z f f-l(cls(Y» and 
f-l(z) f (cls(Y». But this conflicts with y E fez). This gives that J3y E T, yX\G c F;* gives X\h- l (G) .s;, F and 
(X\F) k h-l(G) (X\F) n h-l(H)\ =0, since G n H =0. This means thatfu (XVt-l(H» = x. Now we have «XVt-l(H),X) E J3 
or (X, F) E J3 since J3 is maximal, FE (i,j)AyC(X) and (XVt-I(H» E (j,i) Ay C(X). If (X, F) E J3 then J3 E F;*. But this is a 
contradiction. Then we have «X\h-I(H», X) E J3.1t means that J3E [XVt-l(H)]! =clt ; (h(XVt-l(H». The (j,i) 'AyA..:}'-continuity 
of f and f{J3) = J3ygives that J3 E fl-I(T) E (j,i) AyO(yX). Thenf-I(T) nh(XVt-I(H) *0 andxE XVt-I(H),J(J3x) =gof(x) ET. 
We have hex) f H, g(f(x» E y X\[f(X\h-1(H»]j and thenf(x) f f(X\h-I(H», x f X\h-1(H), hex) E H. But this is a contradic
tion. Thus J3 E «f-1(clsCy»(. It can be shown that J3 E (f-l(clt(y»j in the same way. Then we have (f-1(clsCy»f-l(cl,(y»E J3 
and for each (F,K) E J3, F n K nf-l(cliY» nf-1(clrCy» = F n K nf-l(clsCy) n clt(Y» = F n K nf-l(y) *0 since (Y,s,t) 

is semi bi Ay-TI there exists an x E X such that x E F n K nf-l(y) for all (F,K) E J3, sincef-l(y) is (j,i) Ay-COmpact. This 
gives J3 k J3x· The maximality of J3 gives that J3 = J3x and then f(x) y completes the proof. 
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