WALLMAN COMPACTIFICATION FOR BITOPOLOGICAL SPACES

B.M. Taher
Department of Mathematics
Faculty of Science
Tanta University
Tanta, Egypt

| الملاصسة :
يـهدف هـا البحث إلى دراسة تصميت (ولمان) من النوع bi $\lambda_{\gamma}-T_{0}$ والنوع bi $\lambda_{\gamma}-R_{0}$ والتي من أهـم
خصـائصها: أن تصميت ولمان للفراغات الثنائية التوبولوجية يكنّ شبه bi $\lambda_{\gamma}-T_{2}$ اذا واذا فقط كان الفراغ
الثناني التوبولوجي
على تصميت ولان للفراغات الثنائية التوبولوجية.

Abstract

The purpose of the present study is to construct a Wallman compactification for the larger classes which are $\mathrm{bi} \lambda_{\gamma}-T_{0}$ and $\mathrm{bi} \lambda_{\gamma}-R_{0}$. Some characterizations are given; also one of our main results is that the Wallman compactification of a bitopological space (X, τ_{1}, τ_{2}) is semi bi $\lambda_{\gamma}-T_{2}$ iff $\left(X, \tau_{1}, \tau_{2}\right)$ is finite bi λ_{γ}-normal. A near type of extension over Wallman compactification of bispaces is also studied.

Key Words and Phrases: $(j, i) \lambda_{\gamma}$-open ($(j, i) \lambda_{\gamma}$-closed) set, $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-homeomorphism, ($j, i) \lambda_{\gamma}$-compact, bi λ_{γ}-normal, Wallman compactification for bispaces, and bi λ_{γ}-continuous extension.

AMS (1980) Classification Code: 54 D35, 54 C20, 54D10, 54D15, 54C25

WALLMAN COMPACTIFICATION FOR BITOPOLOGICAL SPACES

1. INTRODUCTION

For brevity we refer to a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ (see [1]) as a bispace. Throughout the present paper, $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \sigma_{1}, \sigma_{2}\right)$ (or simply X and Y) always mean bispaces and $f: X \rightarrow Y$ represents a function. For a T_{1}-space (X, τ), consider Wallman compactification ($\chi,\left(X^{*}, \omega\right)$) [2] consisting of the set X^{*} of all ultraclosed filters on X. The topology ω on X^{*} generated by $\left\{U^{*}: U \in \tau\right\}$, where $U^{*}=\left\{F \in X^{*}: U \in \tau\right\}$ and the dense embedding $\chi: X \rightarrow X^{*}$ defined by setting $\chi(x)=\rho(x)=\{A \subseteq X, x \in A\}$. In 1980 [2] Asha Singal and Sunder Lal studied a Wallman type compactification for pairwise T_{1} spaces. In 1980 [3] Dvalishvili constructed the Wallman compactification of the completely regular bispaces. We denote the closure (interior) operator with respect to (w.r.t.) the topologies $\tau_{i}(i=1,2)$ by $\mathrm{cl}_{\tau_{i}}\left(\right.$ int $\left._{\tau_{i}}\right)$ respectively. In 1979, Kasahara [4] defined an operation α on a topology τ on a non-empty set X to be a function of τ onto the power set $P(X)$ such that $G \subseteq G^{\alpha}$, for every $G \in \tau$, where G^{α} denotes the value of α at G. The family of all operations α is denoted by $O_{\tau(X)}$. In 1983, Abd ElMonsef et al. [5] generalized Kasahara's operation by introducing an operation on the power set $P(X)$ of a topological space (X, τ). A function $\Delta: P(X) \rightarrow P(X)$ (resp. $\delta: P(X) \rightarrow P(X)$) is said to be an operation on $P(X)$ of type I [5] (resp. of type II) [5], if int ${ }_{\tau}(A) \subseteq A^{\Delta}\left(\right.$ resp. $\left.\mathrm{cl}_{\tau}(A) \supseteq A^{\delta}\right)$, for every $A \in P(X)$, where $A^{\Delta}\left(A^{\delta}\right)$ denotes the value of $\Delta(\delta)$ at A. The family of all operations of type I (resp. of type II) is denoted by $O_{P(X)}$ (resp. $O_{P(X)}^{\prime}$).

2. BI λ_{γ}-CLOSED FILTER

Let $\{i \neq j, i, j=1,2\}$, always.
Definition 2.1 [6]. A function $\lambda_{\gamma}: P(X) \rightarrow P(X)$ is called a (j, i) operation on $P(X)$ of a bispace $\left(X, \tau_{1}, \tau_{2}\right)$, if λ_{γ} is an operation on $P(X)$ of type I and also of type II with respect to $\left(X, \tau_{j}\right)$ and $\left(X, \tau_{i}\right)$ respectively; i.e, int $\tau_{\tau_{j}}(A) \subseteq A^{\lambda_{\gamma}}\left(\right.$ resp. cl $\left.\tau_{i}(A) \supseteq A^{\lambda_{r}}\right)$ for every $A \in P(X)$, where $A^{\lambda_{\gamma}}$ denotes the value of λ_{γ} at A.

Definition 2.2 [6]. A subset A of a bispace (X, τ_{1}, τ_{2}) is called a (j, i) λ_{γ}-open set, if $A \subseteq A^{\lambda_{\gamma} .} A$ is (j, i) λ_{γ}-closed set if $X \backslash A \subseteq(X \backslash A)^{\lambda_{\gamma}}$ or $A \supseteq X \backslash(X \backslash A)^{\lambda_{\gamma}}$.

It is easy to get corresponding statements for $(j, i) \lambda_{\gamma}$-closed in bispaces. In a bispace $\left(X, \tau_{1}, \tau_{2}\right)$, the class of $(j, i) \lambda_{\gamma}$-open $\left((j, i) \lambda_{\gamma}\right.$-closed) will be denoted by ($\left.j, i\right) \lambda_{\gamma} O(X)\left((j, i) \lambda_{\gamma} C(X)\right)$.

Definition 2.3 [6]. Let A be a subset of a bispace (X, τ_{1}, τ_{2}). Then the intersection of all $(j, i) \lambda_{\gamma}$-closed sets containing A is called $(j, i) \lambda_{\gamma}$-closure of A and is denoted by $(j, i) \lambda_{\gamma}-\mathrm{cl}(A)$.

Definition 2.4 [7]. A function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is called $(j, i) \lambda_{\gamma}$-continuous if the inverse image of each σ_{j}-open set in Y is $(j, i) \lambda_{r}$-open set in X.

Definition 2.5 [7]. A function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $(j, i) \lambda_{\gamma}^{*}$-open $\left((j, i) \lambda_{\gamma}^{*}\right.$-closed) if the image of every τ_{j}-open (τ_{j}-closed) set in X is a $(j, i) \lambda_{\gamma}^{*}$-open $\left((j, i) \lambda_{\gamma}^{*}\right.$-closed) set in Y, where $\lambda_{\gamma}^{*}: P(Y) \rightarrow P(Y)$.

Definition 2.6 [7]. A function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$ continuous, if the inverse image of each $(j, i) \lambda_{\gamma}^{*}$-open set in Y is $(j, i) \lambda_{\gamma}$-open in X.

Definition 2.7 [7]. A function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is called $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$ open [$(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-closed], if the image of each $(j, i) \lambda_{r}$-open $\left((j, i) \lambda_{\gamma}\right.$-closed) set in X is a $(j, i) \lambda_{\gamma}^{*}$-open (($\left.j, i\right) \lambda_{\gamma}^{*}$-closed) set in Y.

Definition 2.8 [7]. Two bispaces X and Y are called $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-homeomorphic equivalent, if there exists a bijective function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ such that f is $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$ continuous and $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$ open such function f is called $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$ homeomorphism.

Definition 2.9 [8]. A family $\beta_{i}\left(\beta_{j}\right)$ of $(i, j) \lambda_{\gamma}$-closed $\left((j, i) \lambda_{\gamma}\right.$-closed) subsets of a bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is called $(i, j) \lambda_{\gamma}$-closed ($(j, i) \lambda_{\gamma}$-closed) filter if:
(i) $\varnothing \notin \beta_{i}\left(\beta_{j}\right)$;
(ii) if $A, B \in \beta_{i}\left(\beta_{j}\right)$, implies $A \cap B \in \beta_{i}\left(\beta_{j}\right)$;
(iii) if $B \supseteq A \in \beta_{i}\left(\beta_{j}\right)$, implies $B \in \beta_{i}\left(\beta_{j}\right)$.

Definition 2.10 [8]. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bispace, $\beta_{i}\left(\beta_{j}\right)$ is $(i, j) \lambda_{\gamma}$-closed $\left((i, j) \lambda_{\gamma}\right.$-closed) filter, then $\beta=\beta_{i} \times \beta_{j}$ is called a bi λ_{γ}-closed filter on X if $(A, B) \in \beta$, implies $A \cap B \neq \varnothing$, for each $A \in \beta_{i}, B \in \beta_{j}$, where β_{i}, β_{j} are called the families of first and second coordinates respectively of the bi λ_{γ}-closed filter β.
If $\Phi=\Phi_{i} \times \Phi_{j}$ is another bi λ_{γ} closed filter, then we say $\Phi \geq \beta$ if $\beta_{j} \subseteq \Phi_{j}$. It is clear that \geq is a partial order relation in the collection of all bi λ_{γ}-closed filters.
A maximal bi λ_{γ}-closed filter is called a bi λ_{γ}-ultraclosed filter (i.e. a bi λ_{γ}-closed filter that is not contained in any other bi λ_{r}-closed filter).

Lemma 2.1 [8].

(i) For each bi λ_{γ}-closed filter Φ there is a bi λ_{γ}-ultraclosed filter Q containing Φ.
(ii) If $\Phi=\Phi_{i} \times \Phi_{j}$ is a bi λ_{γ}-ultraclosed filter and there is $A_{j} \in(j, i) \lambda_{\gamma}$-closed sets in X such that $\Phi_{j} \cup A_{j}$ is a bi λ_{γ}-closed filter and $A_{j} \cap A \neq \varnothing$ for each $A \in \Phi_{j}$, then $A_{j} \in \Phi$.
(iii) If $U, V \in(j, i) \lambda_{\gamma} C(X), \Phi$ is a bi λ_{γ}-ultraclosed filter, then $U \cup V \in \Phi$ implies $U \in \Phi$ or $V \in \Phi$.
(iv) If Φ_{1}, Φ_{2} are bi λ_{γ}-ultraclosed filters on $X, \Phi_{1} \neq \Phi_{2}$, there exists a $(i, j) \lambda_{\gamma}$-closed set C_{1}, a $(j, i) \lambda_{\gamma}$-closed set C_{2}, such that $C_{1} \in \Phi_{1}, C_{2} \in \Phi_{2}, C_{1} \cap C_{2}=\varnothing$.

Definition 2.11 [9]. If $E \subseteq X$ is finite joint closed, then there is an open dual family $\left\{\left(U_{\infty}, V_{\infty}\right): \propto \in A\right.$: so $\left.E=X \backslash\left\{U_{\propto} \cap V_{\propto}\right): \propto \in A\right\}$ and this family is finite.

Definition 2.12. A bispace (X, τ_{1}, τ_{2}) is called finite bi λ_{γ}-normal if for any finite joint closed set E and any ($\left.j, i\right) \lambda_{\gamma}$-closed set F with $E \cap F=\varnothing$, there exist $U \in(i, j) \lambda_{\gamma} O(X), V \in(j, i) \lambda_{r} O(X)$ with $U \cap V=\varnothing$, and $E \subseteq U, F \subseteq V(E \subseteq V, F \subseteq U)$.
For $x \in X, \beta_{x}=\beta_{i x} \times \beta_{j x}$, where $\beta_{i x}\left(\beta_{j x}\right)$ is a family of all subsets of $\beta_{i}\left(\beta_{j}\right)$ containing x such that if $(A, B) \in \beta_{x}$ then $A \cap B \neq \varnothing$, for each $A \in \beta_{i x}, B \in \beta_{j x}$.

Proposition $2.1[8] . \beta_{x}=\beta_{i x} \times \beta_{j x}$ is a bi λ_{γ}-ultraclosed filter.
Definition 2.13 [8]. A bispace (X, τ_{1}, τ_{2}) is called:
(i) bi $\lambda_{\gamma}-R_{o}$ if each ($\left.j, i\right) \lambda_{\gamma}$ open set O and each $x \in O,(j, i) \lambda_{\gamma}-\mathrm{cl}\{x\} \subseteq O$;
(ii) bi $\lambda_{\gamma}-T_{o}$ if for each two distinct points x, y of X, there exists a $(i, j) \lambda_{r}$-open set U such that $x \in U, y \notin U$ or $y \in U$, $x \notin U$;
(iii) bi $\lambda_{\gamma} R_{1}$ if for each two distinct points x, y of X such that ($\left.j, i\right) \lambda_{\gamma}$-cl $\{x\} \neq(j, i) \lambda_{\gamma}$-cl $\{y\}$, there exists a $(i, j) \lambda_{\gamma}$-open set U and a $(j, i) \lambda_{\gamma}$-open set V such that $(j, i) \lambda_{\gamma}-\mathrm{cl}\{x\} \subseteq U,(j, i) \lambda_{\gamma}-\mathrm{cl}\{y\} \subseteq V, U \cap V=\varnothing$;
(iv) bi $\lambda_{\gamma} T_{1}$ if for two distinct points x, y of X, there exists a $(i, j) \lambda_{\gamma}$-open set U containing x to which y does not belong and a $(j, i) \lambda_{\gamma}$-open set V containing y to which x does not belong;
(v) bi $\lambda_{\boldsymbol{\gamma}}-\boldsymbol{T}_{2}$ if for each two distinct points x, y of X, there exists a $(i, j) \lambda_{\gamma}$-open set U and a $(j, i) \lambda_{\gamma}$-open set V such that $x \in U, y \in V, U \cap V=\varnothing$.

Proposition 2.2. If $x \in X$, then $\cap\left\{\beta_{i x} \cup \beta_{j x}\right\}=\{x\}$.

3. WALLMAN COMPACTIFICATION FOR BISPACES

Definition 3.1 [7]. A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is called $(j, i) \lambda_{\gamma}$-compact if every $(j, i) \lambda_{\gamma}$-open cover X has a finite subcover.
A bispace which is bi $\lambda_{\gamma}-R_{k}$ and bi $\lambda_{\gamma}-T_{k}$ is called semi bi $-\lambda_{\gamma}-T_{k+1}, k \in\{0,1,2\}$.
Definition 3.2 [7]. A subset A of a bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is called $(j, i) \lambda_{\gamma}$ dense if for any $(j, i) \lambda_{\gamma}$-open set G such that $G \cap A \neq \varnothing$.
Definition 3.3 [7]. Abispace $\left(X, \tau_{1}, \tau_{2}\right)$ is called $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-embeddable in a bispace (Y, s, t) if there exists a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-homeomorphism from (X, τ_{1}, τ_{2}) onto a $(j, i) \lambda_{\gamma}$ dense subpace ($\left.Y, s, t\right)$.

Definition 3.4 [8]. If $\gamma X=\left\{\beta: \beta\right.$ is a bi λ_{γ}-ultraclosed filter on $\left.X\right\}, K_{i}$ (resp. K_{j}) be a $(i, j) \lambda_{\gamma}$-closed (resp-($\left.j, i\right) \lambda_{\gamma}$-closed) set. We let $K_{i}^{*}=\left\{\beta \in \gamma X,\left(K_{i}, X\right) \in \beta\right\}, K_{j}^{*}=\left\{\beta \in \gamma X,\left(X, K_{j}\right) \in \beta\right\}$, Then we can define $C_{i}=\left\{K_{i}^{*}, K_{i}\right.$ is $(i, j) \lambda_{\gamma}$-closed $\}$, $C_{j}=\left\{K_{j}^{*}, K_{j}\right.$ is $(j, i) \lambda_{\gamma}$-closed $\}$.

Proposition 3.1 [8]. $C_{i}\left(C_{j}\right)$ is a base for the closed subsets of a topology P_{1} (a topology p_{2}) on γX.
Definition 3.5 [8]. A bispace $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ is called a $(i, j) \lambda_{\gamma}$-compactification of a bispace $\left(X, \tau_{1}, \tau_{2}\right)$ if there exists a ($j, i) \lambda_{\gamma}$-embedding function from $\left(X, \tau_{1}, \tau_{2}\right)$ onto $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ and if $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ is $(j, i) \lambda_{\gamma}$-compact.

Theorem 3.1 [8]. A bispace $\left(\gamma X, P_{1}, P_{2}\right)$ is $(j, i) \lambda_{\gamma}$-compactification of a bispace $\left(X, \tau_{1}, \tau_{2}\right)$.
We called $\left(\gamma X, P_{1}, P_{2}\right)$ its Wallman compactification.
Theorem 3.2 [8]. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bispace and $\left(\gamma X, P_{1}, P_{2}\right)$ its Wallman compactification. Then the following statements hold:
(i) for each $(i, j) \lambda_{\gamma}$-closed set K in X, we have $K_{i}^{*}=\mathrm{cl}_{p_{i}} f(K)$ and with a corresponding result for $(j, i) \lambda_{\gamma}$-closed sets;
(ii) for $(i, j) \lambda_{\gamma}$-closed sets K_{1}, K_{2} we have $\left(K_{1} \cap K_{2}\right)^{*}=K_{1}^{*} \cap K_{2}^{*},\left(K_{1} \cup K_{2}\right)^{*}=K_{1}^{*} \cup K_{2}^{*}$, and with the corresponding results for $(j, i) \lambda_{\gamma}$-closed sets;
(iii) for each $(i, j) \lambda_{\gamma}$-closed set $K \subseteq X$ and a $(j, i) \lambda_{\gamma}$-closed set $T \subseteq X$ we have $K_{i}^{*} \cap T_{i}^{*} \neq \varnothing$ iff $K \cap T \neq \varnothing$.

Proposition 3.2 [8]. The Wallman compactification $\left(\gamma X, P_{1}, P_{2}\right)$ is bi $\lambda_{\gamma}-T_{1}$.
Theorem 3.3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bispace and ($\gamma X, P_{1}, P_{2}$) its Wallman compactification. Then $\left(\gamma X, P_{1}, P_{2}\right)$ is semi bi $\lambda_{\gamma-} T_{2}$ iff (X, τ_{1}, τ_{2}) is finite bi λ_{γ}-normal.

Proof. Let $\delta, \beta \in \gamma X$ and $\delta \neq \beta$. This implies $\delta \nsubseteq \beta$ and $\beta \not \subset \delta$. If $\delta \nsubseteq \beta$, then there exist $\left(A_{1}, A_{2}\right) \in \delta$ such that $\left(A_{1}, A_{2}\right) \notin \beta$. This gives that $\left(A_{1}, X\right) \notin \beta$ or $\left(X, A_{2}\right) \notin \beta$. Hence there exist $B_{1} \in \tau_{1}$-closed, $B_{2} \in \tau_{2}$-closed such that $\left(B_{1}, B_{2}\right) \in \beta$ and $A_{1} \cap B_{1} \cap B_{2}=\varnothing$ or $A_{2} \cap B_{1} \cap B_{2}=\varnothing, E=B_{1} \cap B_{2}=X \backslash\left[\left(X \backslash B_{1}\right) \cup\left(X \backslash B_{2}\right)\right]$ is a finite closed set, and $A_{1} \cap E=\varnothing$ or $A_{2} \cap E=\varnothing$. Then we have from hypothesis $(i, j) \lambda_{\gamma}$-open and ($\left.j, i\right) \lambda_{\gamma}$-open sets which are disjoint and contain respectively A_{1}, E (or E, A_{2}). From these sets we can obtain the desired $(i, j) \lambda_{\gamma}$-open and ($\left.j, i\right) \lambda_{\gamma}$-open sets in γX which verifies that $\left(\gamma X, P_{1}, P_{2}\right)$ is bi $\lambda_{\gamma}-T_{2}$. In the same way, if $\delta, \beta \in \gamma X, \delta \notin \mathrm{cl}_{p_{1}} \beta$ (resp. $\delta \notin \mathrm{cl}_{p_{2}} \beta$) then we have a $(i, j) \lambda_{\gamma}$-open set U and a $(j, i) \lambda_{\gamma}$ open set V such that $\delta \in U, \beta \in V$ (resp. $\delta \in V, \beta \in U$) and $U \cap V=\varnothing$. This means ($\gamma X, P_{1}, P_{2}$) is semi-bi $\lambda_{\gamma}-T_{2}$. Conversely, let $E \cap F \subseteq X, E \cap F=\varnothing$, where F is an $(i, j) \lambda_{\gamma}$-closed set, $E=X \backslash \cup\left(U_{\alpha} \cap V_{\alpha}\right)$, where U_{α} is a τ_{i}-open set, $V \alpha$ is a τ_{j}-open set, $\alpha=1,2 \ldots \ldots n$. We can write $E=\cup\left(F_{k} \cap K_{k}\right)$ where F_{k} are τ_{i}-closed sets and K_{k} are τ_{j}-closed sets, $k=1,2 \ldots m$. It follows that $F_{k} \cap K_{k} \cap F=\varnothing$, for each $k=1,2 \ldots m$. By Theorem $3.2(i)$, we get $\mathrm{cl}_{p_{1}}\left(F_{k}\right) \cap \operatorname{cl}_{p_{2}}\left(K_{k}\right) \cap \operatorname{cl}_{p_{1}}(F)=\varnothing$. If $\delta \in \mathrm{cl}_{p_{1}}\left(F_{k}\right) \cap \mathrm{cl}_{p_{2}}\left(K_{k}\right)$ and $\mathfrak{J} \in \mathrm{cl}_{p_{1}}(F)$, then $\delta \notin \mathrm{cl}_{p_{1}} \mathfrak{J}$.

Since $\left(X, \tau_{1}, \tau_{2}\right)$ is semi bi $\lambda_{\gamma}-T_{2}$, we have $\delta \in U \in(i, j) \lambda_{\gamma} O(\gamma X), \mathfrak{I} \in V \in(j, i) \lambda_{\gamma} O(\gamma X)$ and $U \cap V=\varnothing$. We know that $\mathrm{cl}_{p_{1}}\left(F_{k}\right) \cap \mathrm{cl}_{p_{2}}\left(K_{k}\right)$ and $\mathrm{cl}_{p_{1}}(F)$ are $(j, i) \lambda_{\gamma}$-compact $\left((i, j) \lambda_{\gamma}\right.$-compact). It follows that $\mathrm{cl}_{p_{1}} F_{k} \cap \mathrm{cl}_{p_{2}} K_{k}$ and $\mathrm{cl}_{p} F$ can be covered respectively by $(j, i) \lambda_{\gamma}$-open $\left((i, j) \lambda_{\gamma}\right.$-open) sets which are disjoint. The inverse images of these sets separate E, F. Hence $\left(\gamma X, P_{1}, P_{2}\right)$ is bi λ_{γ}-normal. A similar proof holds when F is $(j, i) \lambda_{\gamma}$-closed.

Theorem 3.4. Let $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ be a bi $\lambda_{\gamma}-T_{1}$ compactification of a bispace $\left(X, \tau_{1}, \tau_{2}\right)$. Then $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ and $\left(\gamma X, P_{1}, P_{2}\right)$ are ($j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-homeomorphic iff the following conditions are satisfied (f_{1} is the $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$ embedding function from $\left(X, \tau_{1}, \tau_{2}\right)$ to $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$).
(i) $\quad\left(\mathrm{cl}_{\tau_{1}^{*}} f(K): K\right.$ is a $(i, j) \lambda_{\gamma}$-closed set in $\left.X\right)$ is a base for the closed subsets of the topology τ_{1}^{*} and with a similar result for the topology τ_{2}^{*}.
(ii) Let K_{1}, K_{2} be a $(i, j) \lambda_{\gamma}$-closed sets in X and F_{1}, F_{2} be $(j, i) \lambda_{\gamma}$-closed sets in X. Then:

$$
\begin{aligned}
& \mathrm{cl}_{\tau_{1}^{*}} f_{1}\left(K_{1} \cap K_{2}\right)=\operatorname{cl}_{\tau_{1}^{*}} f_{1}\left(K_{1}\right) \cap \mathrm{cl}_{\tau_{1}^{*}} f_{1}\left(k_{2}\right) ; \\
& \operatorname{cl}_{\tau_{2}^{*}} f_{1}\left(F_{1} \cap F_{2}\right)=\mathrm{cl}_{\tau_{2}^{*}} f_{1}\left(F_{1}\right) \cap \operatorname{cl}_{\tau_{2}^{*}} f_{1}\left(F_{2}\right) .
\end{aligned}
$$

Proof. We assume that the conditions are satisfied. We want to see that $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ and $\left(\gamma X, P_{1}, P_{2}\right)$ are $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-homeomorphic. We define a function $g:\left(\gamma X, P_{1}, P_{2}\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ in the following way. For each $\mathfrak{I} \in \gamma X,\left\{\operatorname{cl}_{\tau_{2}^{*}} f(E), \mathrm{cl}_{\tau_{1}^{*}} f(F)\right\}_{(E, F) \in \mathfrak{J}}$. Define a bi λ_{γ}-closed filter \mathfrak{I}_{1} which has a cluster point x in $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$; this point is unique. Otherwise, if $y \in \cap \cap_{\left(E_{1}, F_{1}\right) \in \mathfrak{I}_{1} E_{1} \cap F_{1} \text { and } y \neq x, \mathfrak{I} \subseteq \mathfrak{I}_{1} \text {, then we get a contradiction from conditions (ii) and (iii), because }\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right) ~}^{\text {a }}$ is bi $\lambda_{\gamma}-T_{1}$ and \mathfrak{I} is a bi λ_{γ}-ultraclosed filter. This leads us to set $g(\mathfrak{I})=x$, so defining the function g it is clear that $g^{-1}\left(\mathrm{cl}_{\tau_{1}^{*}} f_{1}(K)\right)=\left(\mathrm{cl}_{p} f_{1}(K)\right)$ and $g^{-1}\left(\mathrm{cl}_{\tau_{2}^{*}} f_{1}(K)\right)=\left(\mathrm{cl}_{p_{2}} f_{1}(K)\right)$. From the conditions and these equations we can get ($j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuity of g. Let $x_{1} \in X^{*}$. We define a bi λ_{γ}-closed filter $\beta_{1}=\left\{(F, K): F \subseteq X\right.$ is $(j, i) \lambda_{\gamma}$-closed, $K \subseteq X$ is $(i, j) \lambda_{\gamma}$-closed, $x_{1} \in\left(\mathrm{cl}_{\tau_{1}^{*}} f_{1}(K)\right) \cap\left(\mathrm{cl}_{\tau_{2}^{*}} f_{1}(F)\right)$. If \mathfrak{I}_{1} is a bi λ_{γ}-ultraclosed filter containing β_{1} then $g\left(\mathfrak{I}_{1}\right)=y_{1}$, implies that $x_{1}=y_{1}$. It follows that g is onto.

We now see that g is a one-to-one function. Let $\mathfrak{I}, \beta \in \gamma X$ and $g(\beta)=g(\mathfrak{I})=x$. If $\beta=\mathfrak{I}$ then, from maximality of \mathfrak{I} and β, there exist $B_{1} \in \tau_{1}$-closed, $B_{2} \in \tau_{2}$-closed such that $\left(B_{1}, B_{2}\right) \in \beta,\left(F_{1}, F_{2}\right) \in \mathfrak{I}$ and $B_{1} \cap B_{2} \cap F_{1} \cap F_{2}=\varnothing$. The third condition gives us $\mathrm{cl}_{\tau_{2}^{*}} f_{1}\left(B_{1}\right) \cap \mathrm{cl}_{\tau_{2}^{*}}^{*} f_{1}\left(F_{1}\right) \cap \mathrm{cl}_{\tau_{1}^{*}} f_{1}\left(F_{2}\right) \cap \mathrm{cl}_{\tau_{1}^{*}} f_{1}\left(B_{2}\right)=\varnothing$. But from the definition of g we have $x \in \operatorname{cl}_{\tau_{2}^{*}} f_{1}\left(B_{1}\right)$ $\cap \mathrm{cl}_{\tau_{2}^{*}} f_{1}\left(F_{1}\right) \cap \mathrm{cl}_{\tau}^{*} f_{1}\left(F_{2}\right) \cap \mathrm{cl}_{\tau_{1}^{*}} f_{1}\left(B_{2}\right) \neq \varnothing$; this is a contradiction. It can be shown that $g\left(K_{i}^{*}\right)=\operatorname{cl}_{\tau_{2}^{*}} f_{1}(K), g\left(F_{j}^{*}\right)=\operatorname{cl}_{\tau_{2}^{*}}^{*} f_{1}(F)$, for each $K \subseteq X$ is an $(i, j) \lambda_{\gamma}$-closed set and $F \subseteq X$ is $(j, i) \lambda_{\gamma}$-closed. This means that g is a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-closed function (i.e. g^{-1} is $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$ continuous). Finally it is clear that $g_{o} f=f_{1}$. Theorem 4.2 gives the necessity.

Proposition 3.3. Let $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ be a semi bi $\lambda_{\gamma}-T_{2}$ bispace which is a compactification of $\left(X, \tau_{1}, \tau_{2}\right)$. Then $\wp_{\tau_{1}^{*}}=\left\{\mathrm{cl}_{\tau_{1}^{*}} F: F\right.$ is $(i, j) \lambda_{\gamma}$-closed in $\left.X\right\}$ is a base for the closed subsets of the topology τ_{1}^{*} and in the same way $\wp_{\tau_{2}^{*}}=\left\{\mathrm{cl}_{\tau_{2}^{*}} F: F\right.$ is ($j, i) \lambda_{\gamma}$-closed in $\left.X\right\}$ is a base for the closed subsets of the topology τ_{2}^{*}.

Proof. Let $F_{1} \subseteq X^{*}$ be a τ_{1}^{*}-closed set, $x \in X^{*}$ and $x_{1} \notin F_{1},\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ is semi- $\lambda_{\gamma} T_{2}$ and $i F_{1}$ is $(i, j) \lambda_{\gamma}$-compact. It follows that $x_{1} \in X^{*} \backslash F_{1}=U_{1}$ is τ_{1}^{*}-open, $F_{1} \subseteq V_{1} \in(j, i) \lambda_{\gamma}$-open in X^{*} such that $U_{1} \cap V_{1}=\varnothing$. Let $F=X \backslash\left[X^{*} \backslash \mathrm{cl}_{\tau_{1}^{*}} V_{1} \cap X\right]$. Since $\mathrm{cl}_{\tau_{1}^{*}} V_{1} \subseteq X^{*} \backslash U_{1}$, implies $U_{1} \cap \mathrm{cl}_{\tau_{1}^{*}} V_{1}=\varnothing$, hence $U_{1} \cap \mathrm{cl}_{\tau_{1}^{*}} F=\varnothing$, implies $x \notin \mathrm{cl}_{\tau_{1}^{*}} F$.

Let us assume that F_{1} is not a subset of $\mathrm{cl}_{\tau_{1}^{*}} F$. Then we can take $y \in F_{1}$ such that $y \notin \mathrm{cl}_{\tau_{1}^{*}}{ }^{* F}$. There exists a τ_{1}^{*}-open set $U_{2}=X^{*} \backslash \mathrm{cl}_{\tau_{1}^{*}} F$ such that $y_{1} \in U_{2}$ and $U_{2} \cap F=\varnothing$. We know that $y_{1} \in F_{1} \subseteq V_{1}$. Then $y_{1} \in U_{2} \cap V_{1} \neq \varnothing$ so $y_{1} \in \mathrm{cl}_{\tau_{1}^{*}} V_{1}$, but $y_{1} \notin F$, implies $y_{1} \in X \backslash F=X^{*} \backslash\left(\mathrm{cl}_{\tau_{1}^{*}} V_{1} \cap X\right)=X^{*} \backslash \mathrm{cl}_{\tau_{1}^{*}} V_{1}$, implies $y_{1} \notin \mathrm{cl}_{\tau_{1}^{*}} V_{1}$. We have a contradiction. Hence we have $F_{1} \subseteq \mathrm{cl}_{\tau_{1}^{*}} F$.

Definition 3.6 [1]. A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise regular if for any τ_{i}-closed set $F, x \notin F$ there exist two disjoint upon sets U, V, such that $x \in U, F \subseteq V$.

Proposition 3.4. Let $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ be a semi bi $\lambda_{\gamma} T_{2}$ space which is a compactification of $\left(X, \tau_{1}, \tau_{2}\right)$. Let ρ be a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$ continuous function on X^{*} to γX such that $\rho(x)=\{x\}$, for each $x \in X$. Also, f_{1}, f_{2} are $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-embedding functions on X to respectively $X^{*}, \gamma X$. If $F \subseteq X$ is a $(i, j) \lambda_{\gamma^{\prime}}$-closed set, then $\rho^{-1}\left(\mathrm{cl}_{\tau}^{*}\left(f_{1}(F)\right)\right) \subseteq\left(\mathrm{cl}_{\tau_{1}^{*}}\left(f_{1}(F)\right)\right.$.

Proof. If there exists a member $x \in \rho^{-1}\left(\operatorname{cl}_{\tau_{1}^{*}}\left(f_{1}(F)\right)\right)$ and $x \notin\left(\mathrm{cl}_{\tau_{1}^{*}}\left(f_{2}(F)\right)\right)$, then $\rho(x)=\beta=\operatorname{cl}_{\tau_{1}^{*}}\left(f_{1}(F)\right)$ and $(X, F) \in \beta$. It can be shown that $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ is pairwise regular; then there exists $U_{1} \in \tau_{1}^{*}, V_{1} \in \tau_{2}^{*}$ such that $x \in U_{1}, \mathrm{cl}_{1}^{*}\left(f_{2}(F)\right) \subseteq V_{1}, U_{1} \cap V_{1}=\varnothing$. We can obtain a τ_{2}-closed set $K=\left(X \cap\left(X^{*} \backslash V_{1}\right)\right)$ in X such that $\tau_{\tau_{1}^{*}}\left(f_{2}(F)\right) \subseteq V_{1} \subseteq X^{*} \backslash U_{1}$ and $\left(X^{*} \backslash U_{1}\right) \cap X=F_{1}$ is a τ_{1}-closed

B. M. Taher

set in X. Then we have $F \subseteq X \backslash K \subseteq F_{1}$, so $F \cap\left(X^{*} \backslash V_{1}\right)=\varnothing, K \cap F_{1}=\varnothing$, implies $(X, F) \notin \beta$ and $(K, X) \notin \beta, \beta \in \gamma X \backslash K_{\tau}^{*}$, $x \in \rho^{-1}\left(\gamma X \backslash K_{\tau_{2}^{*}}^{*}\right)$ is a (2,1) λ_{γ}-open set in X^{*} (because $\rho(x)=\beta, \rho$ is $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$ continuous). On the other hand, $x \in X^{*} \backslash l_{\tau}^{*} F_{1}$, then there exists a member $z \in \rho^{-1}\left(\gamma X \backslash K_{\tau_{2}^{*}}^{*}\right) \cap\left(\left(X^{*} \backslash c l_{\tau}^{*} F\right) \cap X\right)$, but X is $(j, i) \lambda_{\gamma}$-dense subset of X^{*} and γX. Thus $\left.\rho^{-1}\left(\gamma X \backslash K_{\tau_{2}^{*}}\right) \cap X \neq \varnothing,\left(X^{*} \backslash c l_{\tau}^{*} F_{1}\right) \cap X\right) \neq \varnothing$ and $\rho^{-1}\left(\gamma X \backslash K_{\tau_{2}^{*}}^{*}\right) \cap\left(X^{*} \backslash \operatorname{cl}_{\tau_{1}^{*}} F_{1}\right) \cap X \neq \varnothing$. It follows that $z \notin K \cup F_{1}=X$ and this a contradiction $\left(x \notin \mathrm{cl}_{\tau_{1}}^{*}\left(f_{1}(F)\right)\right.$. Hence the proposition is proved.

Theorem 3.5. If a bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is finite bi λ_{γ} normal then $\left(\gamma X, P_{1}, P_{2}\right)$ is the projectively largest semi bi $\lambda_{\gamma}-T_{2}$ compactification of $\left(X, \tau_{1}, \tau_{2}\right)$.

Proof. Let ρ be a ($j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous function from any semi bi $\lambda_{\gamma}-T_{2}$ compactification $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}\right)$ of $\left(X, \tau_{1}, \tau_{2}\right)$ to ($\gamma X, P_{1}, P_{2}$). It will be enough to show that ρ is a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-homeomorphism.
(i) Let $\beta \in \gamma X$ and define $\delta=\left\{\left(\operatorname{cl}_{\tau_{2}^{*}}^{*}, \mathrm{cl}_{\tau_{1}^{*}} K\right):(F, K) \in \beta\right\}$. δ has a cluster point $x_{1} \in X$; let $\rho\left(x_{1}\right)=\beta$. If $\rho\left(x_{1}\right)=\beta_{1}$ then, $\beta \neq \beta_{1}$ we have a member $(F, K) \in \beta,(F, K) \notin \beta_{1}$. Then $\beta_{1} \notin\left(\gamma X \backslash F_{\tau_{2}^{*}}\right)$ or $\beta_{1} \notin\left(\gamma X \backslash K_{\tau_{1}^{*}}^{*}\right)$. It follows that $x_{1} \in \rho^{-1}\left(\gamma X \backslash F_{\tau}^{*}\right)$ is a $(2,1) \lambda_{\gamma}$-open set in X^{*} or $x_{1} \in \rho^{-1}\left(\gamma X \backslash K_{\tau}^{*}\right)$ is a $(1,2) \lambda_{\gamma}$-open set in $X^{*},(F, K) \in \beta$ gives that $x_{1} \in\left(\mathrm{cl}_{\tau_{2}^{*}} F \cap \mathrm{cl}_{\tau_{1}^{*}} K\right)$ and $\rho^{-1}\left(\gamma X \backslash F_{\tau_{2}^{*}}\right) \cap K \neq \varnothing, \rho^{-1}\left(\gamma X \backslash K_{\tau_{1}^{*}}\right) \cap F \neq \varnothing$. But these are impossible. It means $\beta_{1}=\beta$ and ρ is onto.
(ii) Let $x_{1}, x_{2} \in X^{*}, \rho\left(x_{1}\right)=\rho\left(x_{2}\right)=\beta$ and $x_{1} \neq x_{2}$. We have $x_{1} \notin \mathrm{cl}_{\tau}^{*} X_{2}$ or $x_{2} \notin \mathrm{cl}_{\tau}^{*} X_{2}$ (where X_{2} is another compactification of X). Since X is bi $\lambda_{\gamma}-T_{1}$, there exists a $(j, i) \lambda_{\gamma}$-closed set F in X by Proposition 3.3 such that $x_{1} \notin \mathrm{cl}_{\tau_{1}^{*}} F$, $\mathrm{cl}_{\tau_{2}^{*}} X_{2} \subseteq \mathrm{cl}_{\tau_{1}^{*}} F$. It follows by Proposition 3.4 that $\rho^{-1}\left(\mathrm{cl}_{p_{1}} F\right) \subseteq \mathrm{cl}_{\tau_{1}^{*}} F$. Then $x_{1} \notin \rho^{-1}\left(\mathrm{cl}_{p_{1}} F\right), \beta=\rho\left(x_{1}\right)=\rho\left(x_{2}\right) \in \mathrm{cl}_{p_{1}} F$; on the other hand $x_{2} \in \mathrm{cl}_{\tau_{1}^{*}} X_{2} \subseteq \mathrm{cl}_{\tau}^{*} F$ gives that $\rho\left(x_{2}\right) \in \mathrm{cl}_{p_{1}} F$; this is a contradiction. It means that ρ is one to one.
(iii) Let F be a ($i, j) \lambda_{\gamma}$-closed set in X^{*} and $\rho(F)$ not be $(i, j) \lambda_{\gamma}$-closed in γX. Take $\beta \in \operatorname{cl}_{p_{1}} \rho(F)$ and $\beta \notin \rho(F)$, i.e., $\mathrm{cl}_{p_{1}} \rho(F) \nsubseteq \rho(F)$. There exists a $(i, j) \lambda_{\gamma}$-closed set in X; by Proposition 4.3 we have $\rho^{-1}(\beta) \notin \mathrm{cl}_{\tau}^{*} K$ and $F \subseteq \mathrm{cl}_{\tau}^{*} K$. It follows that $\rho(F) \subseteq \operatorname{cl}_{p_{1}} \rho(K)$ and $\beta \in \operatorname{cl}_{p_{1}} \rho(F) \subseteq \operatorname{cl}_{p_{1}} \rho(K)$, implies $\rho^{-1}(\beta) \in \rho^{-1}\left(\operatorname{cl}_{p_{1}} K\right)$. On the other hand, $\rho^{-1}(\beta) \notin \rho^{-1}\left(\mathrm{cl}_{\tau_{1}^{*}} K\right)$ contradicts Proposition 3.4. It means that ρ is a $(i, j) \lambda_{\gamma}$-closed function. Hence the theorem is proved.

Remark 3.1.

(i) If $i=j$ then we return to the ordinary case of Wallman compactification as in [10].
(ii) If every τ_{j}-closed set is a τ_{i}-open set in bispace $\left(X, \tau_{1}, \tau_{2}\right)$, then we return to the pairwise case of Wallman compactification as in [3].

4. THE BI λ_{γ}-CONTINUOUS EXTENSION OVER THE WALLMAN COMPACTIFICATION FOR BISPACES

Definition 4.1 [8]. A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is called bi λ_{γ}-regular if for each τ_{j}-closed set $F, x \notin F$, there exist two disjoint sets U, V such that $x \in V \in(j, i) \lambda_{\gamma} O(X), F \subseteq U \in(i, j) \lambda O(X)$.

Lemma 4.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be bi λ_{γ}-regular. If $x, y \in X, x \in A \in \tau_{1}$-open and $y \notin A$ then there exist two disjoint sets U, V such that $x \in U \in(i, j) \lambda_{\gamma} O(X), y \in V \in(j, i) \lambda_{\gamma} O(X), \mathrm{cl}_{\tau_{2}} U \cap \mathrm{cl}_{\tau_{1}} V=\varnothing$.

The following theorem is a generalization of the extension problem in Engelking [11] for bispace.

Theorem 4.1. Let A be a ($j, i) \lambda_{\gamma}$-dense subspace of X and f is a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous function of A to a semi bi $\lambda_{\gamma}-T_{2}(j, i) \lambda_{\gamma}$-compact space Y. The function f has a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous extension f^{\prime} over X iff for every pair $F \in(i, j) \lambda_{\gamma} C(Y), K \in(j, i) C(Y), f \cap K=\varnothing$, then the inverse images $\mathrm{cl}_{\tau_{2}}\left(f^{-1}(K)\right) \cap \mathrm{cl}_{\tau_{1}}\left(f^{-1}(F)\right)=\varnothing$.

Proof. Let f^{\prime} be an extension of f and $F \in(i, j) \lambda_{\gamma} C(Y), K \in(j, i) C(Y), F \cap K=\varnothing$, then $\varnothing=f^{\prime-1}(F \cap K)=f^{\prime-1}(F) \cap f^{\prime-1}(K)=$ $\operatorname{cl}_{\tau_{1}}\left(f^{\prime-1}(F)\right) \cap \mathrm{cl}_{\tau_{2}}\left(f^{-1}(K)\right)$ and this gives that $\mathrm{cl}_{\tau_{1}}\left(f^{-1}(F)\right) \cap \operatorname{cl}_{\tau_{2}}\left(f^{-1}(K)\right)=\varnothing$. We shall prove that the condition is sufficient.

Let $x \in X$, denote by $\beta(x)$ the family of all $(j, i) \lambda_{\gamma}$-neighborhood of x and define $\mathfrak{I}(x)=\left\{\left(\mathrm{cl}_{t} f(U \cap A)\right.\right.$, $\left(\mathrm{cl}_{s} f(V \cap A)\right\}$, $(U, V) \in \beta(x) . J(x)$ is a base for a bi λ_{γ}-closed filter in Y. Then it has a cluster point z in (Y, s, t). We shall show that z is unique and define $f^{\prime}(x)=z$. At first if $f^{\prime}(x) \in S \in(i, j) \lambda_{\gamma} O(Y)$, then $\cap \mathrm{cl}_{t} f(U \cap A) \subseteq S$ and if $f^{\prime}(x) \in T \in(j, i) \lambda_{\gamma} O(Y)$, then $\cap \mathrm{cl}_{s}(f(V \cap A)) \subseteq T$. If we take a member $y \in \cap \mathrm{cl}_{t}(f(U \cap A)), y \notin S$, there exists $S_{1} \in(i, j) \lambda_{\gamma} O(Y), T_{1} \in(j, i) \lambda_{y} O(Y)$, by Lemma 4.1, such that $f^{\prime}(x) \in S_{1}, y \in T_{1}, \mathrm{cl}_{t} S_{1} \cap \mathrm{cl}_{s} T_{1}=\varnothing, \mathrm{cl}_{\tau_{2}}\left(f^{-1}\left(S_{1}\right)\right) \cap \mathrm{cl}_{\tau_{1}}\left(f^{-1}\left(T_{1}\right)\right)=\varnothing$. By assumption, $x \in X$ gives that $x \in X \mid \mathrm{cl}_{\tau_{2}}\left(f^{-1}\left(S_{1}\right)\right)$ or $x \in X \mid \mathrm{cl}_{\tau_{1}}\left(f^{-1}\left(T_{1}\right)\right)$.
(i) If $x \in X \backslash \operatorname{lc}_{\tau_{1}}\left(f^{-1}\left(T_{1}\right)\right)$ then $y \in \operatorname{cl}_{t}\left(f\left(A \cap X \backslash \operatorname{cl}_{\tau_{1}}\left(f^{-1}\left(T_{1}\right)\right)\right.\right.$ and $T_{1} \cap\left(f\left(A \cap X \backslash \operatorname{cl}_{\tau_{1}}\left(f^{-1}\left(T_{1}\right)\right) \neq \varnothing\right.\right.$. But this is impossible.
(ii) If $x \in X \backslash \operatorname{cl}_{\tau_{2}}\left(f^{-1}\left(S_{1}\right)\right)$ then $f^{\prime}(x) \in \mathrm{cl}_{s}\left(f\left(A \cap X \operatorname{cl}_{\tau_{2}}\left(f^{-1}\left(S_{1}\right)\right)\right.\right.$ and $S_{1} \cap\left(f\left(A \cap X \backslash \mathrm{cl}_{\tau_{2}}\left(f^{-1}\left(S_{1}\right)\right) \neq \varnothing\right.\right.$. This is also impossible. Hence $\cap_{u \in \beta u(x)} \mathrm{cl}_{s} f(U \cap A) \subseteq S$ and converse is similar: $x \in \mathrm{cl}_{t} z \cap \mathrm{cl}_{s} z \subseteq \cap_{v \in \beta v(x)} \mathrm{cl}_{s}(f(V \cap A)) \cap \cap \cap_{u \in \beta u(x)} \mathrm{cl}_{t}(f(U \cap A)$), since z is a cluster point of $\mathfrak{I}(x)$. Let us take a member $y_{0} \in \cap_{v \in \beta v(x)} \mathrm{cl}_{s}(f(V \cap A)) \cap \cap_{u \in \beta u(x)} \mathrm{c}_{f}(f(U \cap A))$ and $y_{0} \in \operatorname{cl}_{s}\{z\}$.
We know that X is preseparated; then there exists $G \in(j, i) \lambda_{\gamma} O(Y), H \in(i, j) \lambda_{\gamma} O(Y)$, such that $y_{0} \in G, z \in H$, and $G \cap H=\varnothing$. It can be written that $\cap_{v \in \beta v(x)} \operatorname{cl}_{s}(f(V \cap A)) \subseteq H$ for $x \in H$; it follows that $y \in G \cap H \neq \varnothing$, which is a contradiction. This means that $y \in \mathrm{cl}_{s}\{z\}$. In the same way we have $y_{0} \in \operatorname{cl}_{s}\{z\}$. Hence $\cap_{\nu \in \beta v(x)}$ $\mathrm{cl}_{s}(f(V \cap A)) \cap \cap_{u \in \beta u(x)} \mathrm{cl}_{t}(f(U \cap A))=\mathrm{cl}_{t} z \cap \mathrm{cl}_{s} z=\{z\}$ by bi $\lambda_{\gamma}-T_{1}$ of X. We shall show that f is ($j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous. Let S be a $(i, j) \lambda_{\gamma}$-neighborhood of $f(x)$ then $f(x) \in \cap\left(\mathrm{cl}_{t} f(U \cap A)\right) \subseteq S$. We have for $U_{1}, \ldots U_{n} \in \beta_{u}(x), \mathrm{cl}_{t} f\left(U_{1} \cap A\right) \cap \ldots \mathrm{cl}_{t} f\left(U_{n} \cap A\right) \subseteq S$. Since $Y \backslash S$ is $(i, j) \lambda_{\gamma}$-compact, $U=U_{1} \ldots U_{n} \in \beta_{u}(x)$ gives that $\left.\mathrm{cl}_{t} f(U \cap A)\right) \subseteq S$. We have $\left.f(x) \in \mathrm{cl}_{t} f(U \cap A)\right) \subseteq S$ for each $x \in U$. This means that $f^{\prime}(U) \subseteq S$ and f^{\prime} is $(i, j) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous. In the same way f is $(i, j) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous. Hence the theorem is proved.

Theorem 4.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a semi bi $\lambda_{\gamma}-T_{1}$ space and (Y, s, t) be a semi bi $\lambda_{\gamma} T_{2}(j, i) \lambda_{\gamma}$-compact space. If f is a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous function on X to Y then it has a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous extension over $\left(\gamma X, P_{1}, P_{2}\right)$ to (Y, s, t).

Proof. Let F be an $(i, j) \lambda_{\gamma}$-closed set, K a $(j, i) \lambda_{\gamma}$-closed set in Y and $F \cap K=\varnothing$. Then $f^{-1}(F) \cap f^{-1}(K)=\varnothing$ and by Theorem 3.2, $f^{-1}(F)_{i}^{*} \cap f^{-1}(K)_{j}^{*}=\varnothing$ since f is $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous. Hence if h is a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-embedding function on X to γX then $\varnothing=\mathrm{cl}_{p_{1}}\left(h\left(f^{-1}(F)\right) \cap \mathrm{cl}_{p_{2}}\left(h\left(f^{-1}(K)\right) \subset f^{-1}(F)_{i}^{*} \cap f^{-1}(K)_{j}^{*}\right.\right.$. Hence the proof is completed by Theorem 4.1.

We come now to an important property of the Wallman compactification on bitopological spaces.
Definition 4.2. Let $\left(X, \tau_{1}, \tau_{2}\right),(Y, s, t)$ are bispaces and f be a function on X to Y. If f satisfies the following conditions:
(i) f is $(i, j) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous;
(ii) f is $(i, j) \lambda_{\gamma} \lambda_{\gamma}^{*}$-closed;
(iii) $f^{-1}(y) \subseteq X$ is $(i, j) \lambda_{\gamma} \lambda_{\gamma}^{*}$-compact for each $y \in Y$, then f is called the bi $\lambda_{\gamma} \lambda_{\gamma}^{*}$-perfect function.

Theorem 4.3. Let $\left(X, \tau_{1}, \tau_{2}\right),(Y, s, t)$ be finite bi λ_{γ}-normal semi bi $\lambda_{\gamma}-T_{1}$ bispaces. Let $\left(\gamma X, \tau_{1}^{*}, \tau_{2}^{*}\right),\left(\gamma Y, s^{*}, t^{*}\right)$ be respectively their Wallman compactification, and f be a bi $\lambda_{\gamma} \lambda_{\gamma}^{*}$-perfect function on X to Y. Then there exists a $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous extension f^{\prime} of f on γX to γY and we have $f^{-1}(g(Y))=h(X)$, where g is an embedding function on Y to $\gamma(Y)$ and h is a (j, i) $\lambda_{\gamma} \lambda_{\gamma}^{*}$-embedding function on X to γX.

Proof. Let $F \subseteq \gamma Y$ be $(i, j) \lambda_{\gamma}$-closed, $K \subseteq \gamma Y$ be $(j, i) \lambda_{\gamma}$-closed and $F \cap K=\varnothing,\left(g_{o} f\right)^{-1}(F) \cap\left(g_{o} f\right)^{-1}(K)=\varnothing$ gives that $\mathrm{cl}_{\tau_{1}^{*}}\left(g_{o} f\right)^{-1}(F) \cap \mathrm{cl}_{\tau_{2}^{*}}\left(g_{o} f\right)^{-1}(K)=\varnothing$, since $\left(g_{o} f\right)$ is $(i, j) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous, and by Theorem 3.2. It follows that, by Theorem 3.3. and Theorem 4.2, $\left(g_{o} f\right)$ has $(i, j) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuous extension f on γX to γY. To show that $f^{-1}(g(Y))=h(X)$, let $y \in Y$ and $g(y)=\beta_{y}$. If $f(\beta)=\beta_{y}$ for $\beta \in \gamma X$, then we must find an $x \in X$ such that $\beta=\beta_{x}$. We have $\mathrm{cl}_{\tau_{1}^{*}}\left(h\left(f^{-1}\left(\mathrm{cl}_{s}(y)\right)\right)=\left(\left(f^{-1}\left(\mathrm{cl}_{s}(y)\right)_{i}^{*}\right.\right.\right.$ and $\beta=\beta_{y}$. We have $\operatorname{cl}_{\tau_{2}^{*}}\left(h\left(f^{-1}\left(\operatorname{cl}_{t}(y)\right)\right)=\left(\left(f^{-1}\left(\mathrm{cl}_{s}(y)\right)_{j}^{*}\right.\right.\right.$, since $\left(f^{-1}\left(\mathrm{cl}_{s}(y)\right)\right.$ is an $(i, j) \lambda_{\gamma}-\operatorname{closed}^{2} \operatorname{set}$ in X, and $\left(f^{-1}\left(\mathrm{cl}_{t}(y)\right.\right.$ is a (j,i) λ_{γ}-closed set in X and by Theorem 3.2. This gives that $\beta \in\left(f^{-1}\left(\mathrm{cl}_{s}(y)\right)_{i}^{*} \cap\left(f^{-1}\left(\mathrm{cl}_{f}(y)\right)_{j}^{*}\right.\right.$. On the contrary, let $\beta \notin\left(f^{-1}\left(\mathrm{cl}_{s}(y)\right)_{i}^{*}\right.$. From Theorem $3.3\left(\gamma X, \tau_{1}^{*}, \tau_{2}^{*}\right)$ is semi bi $\lambda_{\gamma}-T_{2}$, then there exists $G, H \subseteq \gamma X$ such that $\beta \in G \in(i, j) \lambda_{\gamma} O(\gamma X)$, $\left(f^{-1}\left(\mathrm{cl}_{s}(y)\right)_{j}^{*} \subseteq H \in(j, i) \lambda_{\gamma} O(\gamma X), G \cap H=\varnothing\right.$. We have $\beta \notin(\gamma X) \backslash G \in(i, j) \lambda_{\gamma} C(\gamma X)$. By Proposition 4.3, there exists an
$(i, j) \lambda_{\gamma}$-closed set in X such that $\beta \notin F_{i}^{*}, \gamma X \backslash G \subseteq F_{i}^{*}, h^{-1}(H) \in(j, i) \lambda_{\gamma} O(X)$, which implies that $f\left(X \backslash h^{-1}(H)\right) \in(j, i) \lambda_{\gamma} C(Y)$ since f is $(j, i) \lambda_{\gamma} \lambda_{y}^{*}$-closed. Let $T=\gamma X \backslash\left[f\left(X \backslash h^{-1}(H)\right)\right]_{j}^{*} \in(j, i) \lambda_{\gamma} O(\gamma Y)$. If $\beta_{y} \notin T$ then $\beta_{y} \in\left[f\left(X \backslash h^{-1}(H)\right)\right]_{j}^{*}$ and this gives that $y \in\left(f\left(X \backslash h^{-1}(H)\right)\right.$ such that $y=f(z)$. But $x \notin h^{-1}(H)$ gives that $h(z) \notin H$ and $h(z) \notin\left(\left(f^{-1}\left(\mathrm{cl}_{s}(y)\right)_{i}^{*}\right.\right.$ hence $z \notin f^{-1}\left(\mathrm{cl}_{s}(y)\right)$ and $f^{-1}(z) \notin\left(\operatorname{cl}_{s}(y)\right)$. But this conflicts with $y \in f(z)$. This gives that $\beta_{y} \in T, \gamma X \backslash G \subseteq F_{i}^{*}$ gives $X \backslash h^{-1}(G) \subseteq F$ and $(X \backslash F) \subseteq h^{-1}(G)(X \backslash F) \cap h^{-1}(H) \backslash=\varnothing$, since $G \cap H=\varnothing$. This means that $f \cup\left(X \vee h^{-1}(H)\right)=X$. Now we have $\left(\left(X \backslash h^{-1}(H), X\right) \in \beta\right.$ or $(X, F) \in \beta$ since β is maximal, $F \in(i, j) \lambda_{\gamma} C(X)$ and $\left(X \vee V^{-1}(H)\right) \in(j, i) \lambda_{\gamma} C(X)$. If $(X, F) \in \beta$ then $\beta \in F_{i}^{*}$. But this is a contradiction. Then we have $\left(\left(X \backslash h^{-1}(H)\right), X\right) \in \beta$. It means that $\beta \in\left[X V^{-1}(H)\right]_{j}^{*}=\mathrm{cl}_{\tau_{2}^{*}}^{*}\left(h\left(X \vee h^{-1}(H)\right)\right.$. The $(j, i) \lambda_{\gamma} \lambda_{\gamma}^{*}$-continuity of f^{\prime} and $f^{\prime}(\beta)=\beta_{y}$ gives that $\beta \in f^{\prime-1}(T) \in(j, i) \lambda_{\gamma} O(\gamma X)$. Then $f^{-1}(T) \cap h\left(X \backslash h^{-1}(H) \neq \varnothing\right.$ and $x \in X \vee h^{-1}(H), f\left(\beta_{x}\right)=g_{\theta} f(x) \in T$. We have $h(x) \notin H, g(f(x)) \in \gamma X \backslash\left[f\left(X \backslash h^{-1}(H)\right)\right]_{j}^{*}$ and then $f(x) \notin f\left(X \backslash h^{-1}(H)\right), x \notin X \backslash h^{-1}(H), h(x) \in H$. But this is a contradiction. Thus $\beta \in\left(\left(f^{-1}\left(\operatorname{cl}_{s}(y)\right)_{i}^{*}\right.\right.$. It can be shown that $\beta \in\left(f^{-1}\left(\mathrm{cl}_{t}(y)\right)_{j}^{*}\right.$ in the same way. Then we have $\left(f^{-1}\left(\mathrm{cl}_{s}(y)\right) f^{-1}\left(\mathrm{cl}_{t}(y)\right) \in \beta\right.$ and for each $(F, K) \in \beta, F \cap K \cap f^{-1}\left(\operatorname{cl}_{s}(y)\right) \cap f^{-1}\left(\operatorname{cl}_{t}(y)\right)=F \cap K \cap f^{-1}\left(\operatorname{cl}_{s}(y) \cap \mathrm{cl}_{t}(y)\right)=F \cap K \cap f^{-1}(y) \neq \varnothing$ since (Y, s, t) is semi bi $\lambda_{\gamma}-T_{1}$ there exists an $x \in X$ such that $x \in F \cap K \cap f^{-1}(y)$ for all $(F, K) \in \beta$, since $f^{-1}(y)$ is $(j, i) \lambda_{\gamma}$-compact. This gives $\beta \subseteq \beta_{x}$. The maximality of β gives that $\beta=\beta_{x}$ and then $f(x)=y$ completes the proof.

REFERENCES

[1] J.C. Kelly, "Bitopological Spaces", Proc. London Math. Soc., 13(3) (1963), pp. 71-89 (MR 26 \# 729).
[2] A.R. Singal and S. Lal, "A Wallman Type Compactification for Bitopological Spaces", Bull. Inst. Math. Acad. Sinica, 11(1) (1983), pp. 23-29.
[3] B.P. Dvalishvili, "Compactification of Bitopological Spaces", Uspekhi Math., Nauk., 35(3) (1980), pp. 171-174.
[4] S. Kasahara, "Operation Compact Spaces", Math. Japonica, 24(1) (1979), pp. 97-105.
[5] M.E. Abd El-Monsef, F.M. Zeyada, and A.S. Mashhour, "Operation on the Power Set $P(X)$ of a Topological Space (X, τ) ", Colloquium on Topology, Eger-Hungary, August 9-13, 1983.
[6] A.M. Kozea and B.M. Taher, "Basic (i,j) λ_{γ}-Bitopological Concepts", Delt. J., 19(2) (1995), pp. 84-101.
[7] M.E. Abd El-Monsef, A.M. Kozea, and B.M. Taher, "Compactification of Bitopological Spaces", AJSE, 22(1A) (1997), pp. 99-105.
[8] B.M. Taher, "Compactifications of Topological Spaces", Ph.D. Thesis, Tanta University, 1996.
[9] L.M. Brown, "Dual Covering Theory, Confluence Structure and the Lattices of Bicontinuous Functions", Ph.D. Thesis, University of Glasgow, 1980.
[10] W.J. Thron, Topological Structures. New York: Holt Rinehart and Winston, 1966.
[11] R. Engelking, General Topology. Wroclaw, Poland: Wroclawska Drukarnia Naukova, 1977.
Paper Received 7 June 1998; Revised 21 January 2000; Accepted 16 May 2000.

