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1. INTRODUCTION 

Several years have passed since the first formula for 
magnetoconductivity in the transverse configuration 
was proposed by Titeica [1J on intuitive grounds, but 
controversy regarding the quantum transport at high 
magnetic fields still remains. In subsequent years, a 
rigorous justification of Titeica's method has been 
given by the development of several quantum­
theoretical formalisms [2J in the strict Born approxi­
mation (SBA). These works interpret the transverse 
magnetoresistance in terms of the migration of the 
centers of the cyclotron orbits and their subsequent 
scattering by imperfections in solids. A divergence 
difficulty encountered in these works was removed by 
the assumed existence of any of the cutoff mechanisms 
postulated, but no satisfactory explanation of the ex­
perimental results has been given in terms of the above 
theoretical picture. In particular, for acoustic-phonon 
scattering, the above theories predict a quadratic-in­
magnetic-field dependence of the transverse magneto­
resistance [2J, whereas the experiments tend to in­
dicate an approximate linear behavior at high mag­
netic fields. 
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On the other hand, by extending the scattering 
dynamics beyond the SBA, the results obtained [3,4J 
in the dressed Born approximation (DBA) are free 
from divergence difficulty and indicate a linear de­
pendence on magnetic field for acoustic-phonon scat­
tering, in agreement [5J with the experimental results 
on n-Ge [6J. Arora and co-workers [4J have indicated 
that the iterative solution of Liouville's equation for 
the density matrix in DBA has built into it a Breit ­
Wigner type of collision broadening, which is re­
sponsible for the removal of the divergence difficulty. 
A quantum-limit analysis [7J at high magnetic fields 
gives a linear-in-magnetic-field dependence of the mag­
netoresistance for acoustic-phonon scattering which is 
shown to dominate at sufficiently high fields. 

More recently, Barker [8J and Hajdu [9J have 
attempted to resolve the controversies regarding quan­
tum transport theories in crossed electric and magnetic 
fields. They indicate that the inclusion of the 'initial­
state-correlation' effect produces significant modifi­
cations at intermediate and high-field strengths. This 
effect is equivalent to the interference effect described 
in detail by Hajdu and Keiter [10J. The conclusions 
arrived at by Barker [8J and Hajdu [91 are in favor of 
Titeica's formula [1]. But, unfortunately, as with pre­
vious works [2J, these conclusions are not supported 
by the experimental observations on semiconducting 
materials. Furthermore, no quantum-limit analysis is 
made to study the magnetic field dependence at high 
magnetic fields. 
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In the light of these conflicts, we review the assump­
tions and approximations in a magnetotransport 
theory, both in the SBA and the DBA, by using the 
more powerful superoperator technique originally 
used by Mori [11]. In Section 2, we present the 
solution of the density matrix in the SBA and emphas­
ize the importance of the interference effect. In Section 
3, we present the magnetoconductivity in the DBA by 
extending the scattering dynamics beyond the SBA. 
The results so arrived at are analyzed in the quantum 
limit. In the concluding section, we summarize the 
results and indicate the importance of a still bett~r 

approximation-the generalized Born approximation 
(GBA), which is important for low-temperature quan­
tum effects in degenerate semiconductors. 

2. STRICT BORN APPROXIMATION 

The Hamiltonian of an electron of effective mass m* 
interacting with the lattice and externally applied elec­
tric field E in the presence of a magnetic field B in the 
z-direction with magnetic potential A = (0, Bx, 0) is 
given by: 

:¥f= .7t'o +:¥f' (t ) (2.1) 

with 

(2.3) 

(2.4) 

where the time factor est describes the slow develop­
ment of the system from time t = - 00 when the elec­
tric field is applied to the steady state at t =0. V is the 
interaction potential of the electron interacting with 
various lattice imperfections. The eigenvalue solution 
of .7t'o is well known with eigenfunctions CfJnk = Ink> 
and eigenvalues Enk given by [7] 

Ink> =exp[i(kyy+kzz)]CfJn((x-xk)/A,), n=O, 1, 2 ... 

(2.5) 

Enk = (n+1)hwc+h2k;/2m* (2.6) 
with 

A, = (h/m* WJ 1/2 (2.7) 


x
k 

= -A,2k
y (2.8) 


where CfJ n is the harmonic oscillator type wavefunction 

centered at xk. k stands for (ky' kz). The matrix 
elements of the one-electron current operator 
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J op = -evop are given by 

< n' k' IJx Ink) = - (ihe /21/2 A,m*) 

x {(n + 1)1/2 bn ',n+ 1 - n 1/ 2 bn',n-1} bk, k (2.9) 

<n'k'IJ y Ink)= -(he/21 /2A,m*) 

x{(n+l)1 /2bn"n+1 +n 1/2bn',n_1}bk'k (2.10) 

<n'k'IJzlnk)= -(ehkz/m*)bn'nbk'k (2.11) 

The expectation value of the current J can be found 
from the statistical mechanics prescription: 

J = Tr(pJ op) =: L<o:lp 10:') <0:' IJoplo:) (2.12) 
lXIX' 

where the matrix elements <0: Ipi 0:') of the density 
matrix P are obtained from the solution of Liouville's 
equation: 

ihap fat = [.Yt',p] (2.13) 

in the representation of.Yt' 0 (0: = nk). p is assumed to 
consist of an equilibrium part Po (:¥fo+V) and non­
equilibrium part p': 

p = Po (.Yt'o +V) + p' est (2.14) 

Here the Po (.Yt'o +V) is chosen for the density matrix 
instead of Po (:¥fo) in the previous work [7], in order 
to include the initial-state-correlation effect. By sub­
stituting Equations (2.1) and (2.14) in Equation (2.13) 
and defining superoperators denoted by carets as 
AB=:[A,B], we have for the formal solution of p' a 
superoperator equation: 

(2.15) 

with 

RF=(Ko+v+f-ihs)-1 (2.16) 

Po (:¥fo+V) can be expressed in terms of Po (Jf'0) by 
assuming weak perturbation V and following the same 
procedure as used for F above: 

Po (.7t'o +V) = Po (.tto)- R (s)V Po (.Yt'o) s -+0 + 

(2.17) 

with 

(2.18) 

Both RF and R can be expanded into a perturbation 
series by using Dyson's Equation [12]: 

(2.19) 

with 

(2.20) 

to give 
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RF~Ro-RoCV+F) Ro 

+ Ro (V + F)Ro (V + F)Ro +. . . (2.21) 

R~ Ro - Ro VRo + Ro VRo VRo - . . . (2.22) 

In the Ohmic limit and the SBA, we keep terms linear 
in F and up to second order in V. The linear terms in 
V drop out in taking the ensemble average over the 
lattice quantum numbers. In this approximation, the 
density matrix PSBA is given by 

PSBA = Po(.1fo) - RoE' Po(.Yeo) - RoFRoVRoVpo(.1t'o) 

- RoVRoFRoVpo(.1t'o) - RoVRoVRoE'p 0(.1t'0) 

(2.23) 

The matrix elements of the first equilibrium term 
Po (.1t'0) are diagonal, diagonal elements being the 
Fermi-Dirac distribution function fa.=f(E ,J = 
{ exp [(Ea. - 0/kB TJ + 1} -1 where (is the Fermi energy: 

«X'IPo(.1t'o)I(X) = !"kfJn'nfJk'k (2.24) 

The matrix elements of the scattering-independent 
Hall term RoF Po by using the properties of super­
operators [12J, are given by 

(2.25) 

with 

and Fa.'a. are the matrix elements of F=eE·r. 

The term RoFRoV RoVpo(.1t'o) is due to the change 
in the chemical potential [10J arising from the initial­
state correlations and vanishes when the matrix 
elements are taken [10]. The matrix elements of the 
interference term RoVRoFRoVPo(.1t'o)' where F is 
sandwiched between two V's, for E II x, are given by 

«x' IRoVRoFRoVpo I(X) 

~eE [ df = __x I (Xa. - Xp) d- fJ(Ea.P) 

E~a. p Ep 


df ]+ (x a.' - Xp) dEp fJ(Ea.'p) Va.'pVPa. 

+ fa.'a. F a.,jn I [I Va.' pI2 fJ(Epa.) + IVa. p12 fJ(EPa.')] (2.27) 
Ea.'a. p 

Here, we have used the properties of superoperators 
[12J and those of isotropic scattering interactions. The 
principal part in using the identity 

lim (x - is) -1 = P(l/x) + j.nfJ(x) (2.28) 
5-0+ 

vanishes for isotropic scattering interactions in the 
elastic limit and is negligible for inelastic processes. 
The first term in Equation (2.27) involves the motion 
of the centers of the cyclotron orbits, whereas the 
second involves the motion about the center. The 
former gives the well-known Titeica formula [13, 14J .. 
However, rigorous quantum transport theories 
justifying the method of Titeica neglect the latter. The 
latter term is, in fact, equivalent to the term obtained 
from expansion up to first order in (we L) -1 of the 
previous results [4J. There is yet another way of 
writing Equation (2.27). With = (n + 1, k) and(x' 

(X = nk and using the properties of isotropic scattering 

interactions [14J, Equation (2.27) can be shown to be 

proportional to 


1 df _ 1 1 df - 1 f(n + 1) n - 1 ) 


( 2dE Lnk + 2dE L(n+l)k - I1w'-L nk ,(n+1)k

nk (n+ l)k c 

(2.29) 

with 

-1 1 -1 1 -1 
L nk,(n + 1)k = 2" L nk + 2L (n + 1)k (2.30) 

(2.31) 

It is clear from the above expressions that the 

interference effect vanishes for the classical case of 

large quantum numbers (n + 1 ~ n). But for high 

magnetic fields when electrons populate the Landau 

levels with low n, this effect is appreciable. ff: the 

divergence arising from L -1, owing to the slowly 

moving electrons parallel to the magnetic field 

(k ~ 0), is removed by using a cutoff mechanism, the 
z 
magnetoresistance anSIng from the former is 

proportional to B 2, whereas that obtained from the 

latter is proportional to B. In such cases, we can say 

that the motion about the center of the cyclotron orbit 

is negligible at high fields, justifying the validity of 

Titeica formulae which takes into account the motion 

of the center only. 


We are still left with the last term in Equation (2.23) 

which we arbitrarily call the scattering-transport term. 

The matrix elements of this term are equal in 

magnitude but opposite in sign to that of the 

interference term given by Equation (2.27). The 

interference term thus has a destructive effect on the 

scattering-transport term and cancels it exactly, at 

least in the Ohmic limit and SBA. We thus conclude 

from the above results that no magnetoconductivity 

can be obtained in SBA; only the Hall conductivity is 
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obtained from the Hall term RoFPo m this 
approximation. 

3. DRESSED BORN APPROXIMATION 

In Section 2, we have shown that, by including the 
initial-state correlations, no magnetoconductivity can 
be obtained in SBA. In fact, considerable simplifica­
tion could have been obtained if we chose from the 
beginning: 

p(t) = Po(.tt'o) + p'est
, s ~ 0+ (3.1) 

a procedure which has been objected to by many 
workers as not being the correct one as it does not 
include the initial-state correlations. Actually, any 
choice of Po is a good choice provided consistent 
approximations are made. For example, if we choose 
Po(.tt'o + F), we should be aware of the nondiagonal 
matrix elements [15] it contains because of the 
presence of F; these were neglected in the work of 
Adams and Holstein [13]. It may also be noted that V 
is nondiagonal, whereas the electronic operators are 
all diagonal in lattice quantum numbers [4, 1975, p. 
2287]. Therefore, VPo(,)'t'o) vanishes identically when 
the trace over the lattice quantum numbers is taken. In 
this case the Ohmic-limit solution of the density 
matrix is 

(3.2) 

If R is analyzed using the Dyson Equation (2.19) up 
to second order in V, we have 

This equation is different from Equation (2.22) as this 
is exact, involving R at the end instead of Ro' If the 
trace over the lattice quantum numbers is taken in 
Equation (3.3), the linear term in V drops out. The 
resulting equation can be rewritten by using the Dyson 
Equation in reverse: 

o 
R = (.tt'o - I (s) - ihs)-1 (3.4) 

with 

(3.5) 

The same result could be obtained by the diagram 
method and can be made even more general [12]. We 
thus see Ro "in the Hall term RoF Po in SBA is now 
dressed by including L 0 (s) in the denominator, 
justifying the nomenclature DBA. The matrix elements 
of p obtained [4, 1980] by using the properties of 
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su peroperators are 

(a'ipla) = f/)rx'rx + (a'IF poloa) (3.6) 
Erx,rx- rrx'rx 

The second term in Equation (3.7) vanishes for 
acoustic-phonon scattering, but makes an important 
contribution for ionized-impurity scattering. Equa­
tion (3.6) has built in it a collision broadening of 
the Breit-Wigner type in the denominator. This 
broadening is responsible for removal of the 
divergence difficulty. By using Equations (3.6) and 
(2.9)-(2.11) in Equation (2.12), the magneto­
conductivity tensor (T defined by (J) = (T' E is 
obtained as 

(3.9) 

with 

2 -1 e t 
(J = -" f(n+ 1) nk,(n~l)k (3.10)

1 m* L. 2 2 
nks nk,(n + l)k We + t nk,(n + l)k 

e we 
(J2 = *2 

I f(n+l) --~-- (3.11) 
m nks nk,(n+l)k w 2 + t -2 

c nk,(n + l)k 

The expression for (J 3 could have been obtained from the 
Boltzmann transport equation because of the diagonal 
nature of the matrix elements for Jz' The above 
components reduce to those obtained from the 
Boltzmann transport equation in the low-field limit 
when tnk = t(E), where E = h 2 k2 /2m* is the classical 
energy of an electron. In the zero-field limit, (T becomes 
diagonal with all diagonal components equal to (Jo: 

e2 df 
(J0 = - 3 ~ (hk/m*)2 dE t (E), (3.13) 

where k = (kx' ky, kz) is the classical wavevector. 

In the quantum limit (hwc » kB T), only n = 0 level 
can be assumed to be appreciably populated. For 
acoustic-phonon scattering, the components in the 
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quantum limit are given by 

2 
(J = 2ne /lT:;; 1 [In (3n 1/2 kB T)2 - yJ (3.14) 

1 3nm*wd<BT 2h/to 

(J = n e2/m*w (3.15)2 e c 

(J 3 = 	3nee2tokBT /m*hw c (3.16) 

with 

to 1 = 3(2m*kBT)3/2 8 i /8n 1/2 Pd U2 h4 

where y = 0.577 is the Euler constant, to is the zero­
field relaxation time, 8 1 is the deformation potential 
constant, Pd is the material density, and u the speed of 
sound. The magnetoresistivity ratios Pxx/Po~(Jo(Jd(J~ 
and Pzz / Po = (Jo/(J 3 are then given by 

Pxx/Po = 32:~~ [lnex~;r:BTy -yJ (3.17) 

Pzz/Po = hWc/3k BT (3.18) 

We thus see that the magnetoresistance, both 
transverse and longitudinal, is a linear function of the 
magnetic field, in agreement with actual observations. 
For ionized-impurity scattering, the magnetoresistance 
decreases with magnetic field [16] . Thus at high 
magnetic fields, the acoustic-phonon scattering always 
dominates. 

4. CONCLUSIONS 

We have shown that the SBA is not suitable for 
studying electronic transport at high magnetic fields. 
On the other hand, the DBA can be successfully used 
for describing electronic transport at high magnetic 
fields. In the above analysis, we have used the 
nondegenerate statistics. If electrons are degenerate, 
then an electron behaves like a quasi-particle in the 
field of many scatterers. In this case r O of Equation 
(3.7) needs to be dressed further involving the so-called 
generalized Born approximation (GBA). This GBA is 
necessary to include collision damping in the correct 
interpretation of low-temperature quantum effects of 
the oscillatory type [8, 12]. If the magnetic field is 
sufficiently high that the lowest Landau level is well 
above the Fermi level which may still be in the 
conduction band, a degenerate system will behave like 
a nondegenerate one. It is expected that in ultra-high 
magnetic fields, when hwc I"V for metals, even these ( 

will behave like semiconductors. The DBA is thus 
expected to be a good approximation at high magnetic 
fields. With the availability of high magnetic fields, it is 
hoped that the above presentation will be useful for 
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interpreting experimental results in terms of more 
realistic theoretical models. 
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