SOME EXACT SOLUTIONS OF EQUATIONS OF MOTION OF AN ELECTRICALLY CONDUCTING FLUID MOVING IN A MAGNETIC FIELD

Rana Khalid Naeem*
Department of Mathematics
University of Karachi
Karachi, Pakistan

الخلاصسة
تعرض هذه الدراسة حلولاً مُـخـــدَّدة لمعادلات المِ يان المستقر لسائل للزج غير قابل للانضغاط

Abstract

Some exact solutions of equations governing the steady motion of a viscous incompressible fluid of finite electrical conductivity in the presence of a magnetic field are determined.

[^0]
SOME EXACT SOLUTIONS OF EQUATIONS OF MOTION OF AN ELECTRICALLY CONDUCTING FLUID MOVING IN A MAGNETIC FIELD

1. INTRODUCTION

In the present paper, the steady viscous incompressible plane flow problem of an electrically conducting fluid having finite electrical conductivity in the presence of a magnetic field is studied with the objective of obtaining some exact solutions. To achieve this objective, the basic flow equations are cast into a new form by introducing the streamfunction ψ, the magnetic flux function ϕ and the new independent variables r, α. The equations are then solved using an inverse method. In this inverse method, we select a form for the vorticity function ω and then determine the streamfunction ψ, the magnetic flux function ϕ and the energy function h from the corresponding differential equations.

We point out that the advantage of the new independent variables r, α is that the solutions which we get are not obtainable through techniques employed by the researchers in the study of MHD plane flows [1-7].

2. FLOW EQUATIONS

The basic non-dimensional equations governing the steady plane flow of a viscous incompressible fluid of finite electrical conductivity, in the presence of a magnetic field are,

$$
\begin{align*}
u_{x}+v_{y} & =0 \tag{1}\\
u u_{x}+v u_{y} & =-P_{x}+\frac{1}{R e}\left(u_{x x}+u_{y y}\right)-R_{H} H_{2}\left(H_{2 x}-H_{1 y}\right) \tag{2}\\
u v_{x}+v v_{y} & =-P_{y}+\frac{1}{R_{e}}\left(v_{x x}+v_{y y}\right)+R_{H} H_{1}\left(H_{2 x}-H_{1 y}\right) \\
u H_{2}-v H_{1} & =\frac{1}{R_{\sigma}}\left(H_{2 x}-H_{1 y}\right)+C_{1} \tag{3}\\
H_{1 x}+H_{2 y} & =0 \tag{4}
\end{align*}
$$

where u, v are the velocity components, H_{1}, H_{2} the components of magnetic field vector \mathbf{H}, p the pressure, $R e$ the Reynolds number, R_{H} the magnetic pressure number, R_{σ} the magnetic Reynolds number, and C_{1} is an arbitrary constant.

Equations (1) and (4), respectively, imply the existence of the streamfunction ψ and magnetic flux function ϕ such that

$$
\begin{align*}
u & =\psi_{y}, \quad v=-\psi_{x} \\
H_{1} & =\phi_{y}, \quad H_{2}=-\phi_{x} . \tag{5}
\end{align*}
$$

The system of Equations (1-4), employing (5), transforms to the following system of partial differential equations

$$
\begin{aligned}
-h_{\eta} & =\frac{1}{R_{e}} \omega_{\xi}+\omega \psi_{\eta}+\frac{R_{H}}{2}\left(\phi_{\xi \xi}+\phi_{\eta \eta}\right) \phi_{\eta} \\
-h_{\xi} & =-\frac{1}{R_{e}} \omega_{\eta}+\omega \psi_{\xi}+\frac{R_{H}}{2}\left(\phi_{\xi \xi}+\phi_{\eta \eta}\right) \phi_{\xi} \\
\psi_{\xi} \phi_{\eta}-\psi_{\eta} \phi_{\xi} & =\frac{1}{R_{\sigma}}\left(\phi_{\xi \xi}+\phi_{\eta \eta}\right)+C_{1} \\
\psi_{\xi \xi}+\psi_{\eta \eta}+2 \omega & =0
\end{aligned}
$$

in the variables $\xi=x+y$ and $\eta=x-y$. In the above system of equations the energy function h is given by

$$
h=p+\frac{1}{4}\left(\psi_{\xi}^{2}+\psi_{\eta}^{2}\right)
$$

Introducing the new independent variables r, α defined by

$$
r=\sqrt{\xi^{2}+\eta^{2}}, \quad \alpha=\tan ^{-1}(\eta / \xi)
$$

the above system of equations is replaced by the following system

$$
\begin{gather*}
-h_{\alpha}=\frac{1}{R_{e}} r \omega_{r}+\omega \psi_{\alpha}+\frac{R_{H}}{2 r^{2}}\left(r^{2} \phi_{r r}+r \phi_{r}+\phi_{\alpha \alpha}\right) \phi_{\alpha} \tag{6}\\
-r h_{r}=-\frac{1}{R_{e}} \omega_{\alpha}+r \omega \psi_{r}+\frac{R_{H}}{2 r}\left(r^{2} \phi_{r r}+r \phi_{r}+\phi_{\alpha \alpha}\right) \phi_{r} \tag{7}\\
r^{2} \phi_{r r}+r\left(1+R_{\sigma} \psi_{\alpha}\right) \phi_{r}+\phi_{\alpha \alpha}-r \psi_{r} R_{\sigma} \phi_{\alpha}+2 C_{1} R_{\sigma} r^{2}=0 \tag{8}\\
r^{2} \psi_{r r}+r \psi_{r}+\psi_{\alpha \alpha}+2 \omega r^{2}=0 \tag{9}
\end{gather*}
$$

of four partial differential equations in four unknowns ψ, ω, ϕ, h as functions of r and α. In Equations (6-7), the energy function h is given by

$$
\begin{equation*}
h=p+\frac{1}{2}\left(\psi_{r}^{2}+\frac{1}{r^{2}} \psi_{\alpha}^{2}\right) \tag{10}
\end{equation*}
$$

Once a solution of this system is determined, the pressure p is found from the definition of the energy function h in (10).

3. SOLUTIONS

In this section, we determine the solutions of the system of Equations (6-9). Our strategy will be to specify ω, and calculate ψ from (9), and use this ψ to determine h and ϕ from (6-8).

(a) Irrotational Flows:

For this type of flows $\omega=0$. Employing this in Equations (6-9), we get

$$
\begin{align*}
h_{\alpha} & =\frac{-R_{H}}{2 r^{2}}\left(r^{2} \phi_{r r}+r \phi_{r}+\phi_{r r}\right) \phi_{\alpha} \tag{11}\\
h_{r} & =\frac{R_{H}}{2 r^{2}}\left(r^{2} \phi_{r r}+r \phi_{r}+\phi_{r r}\right) \phi_{r} \tag{12}\\
r^{2} \phi_{r r}+r\left(1+R_{\sigma} \psi_{\alpha}\right) \phi_{r}+\phi_{\alpha \alpha}-r \psi_{r} R_{\sigma} \phi_{\alpha}+2 C_{1} R_{\sigma} r^{2} & =0 \tag{13}\\
r^{2} \psi_{r r}+r \psi_{r}+\psi_{\alpha \alpha} & =0 . \tag{14}
\end{align*}
$$

A set of solutions of (14) is

$$
\Psi= \begin{cases}A_{1}+A_{2} \ln r+A_{3} \alpha, \tag{15}\\ \left(A_{4} r^{\sqrt{n}}+A_{5} r^{-\sqrt{n}}\right)\left[A_{6} \cos (\sqrt{n} \alpha)+A_{7} \sin (\sqrt{n} \alpha)\right], & n>0 \\ {\left[A_{8} \cos (\sqrt{m} \ln r)+A_{9} \sin (\sqrt{m} \ln r)\right]\left(A_{10} e^{\sqrt{m} \alpha}+A_{11} e^{-\sqrt{m} \alpha}\right),} & n=-m, \quad m>0\end{cases}
$$

where $A_{1}, A_{2}, \ldots, A_{11}, n$ and m are arbitrary constants.
When $C_{1}=0$, a solution of (13) is $\phi=\psi$. Using this in (11-12), we find

$$
h_{\alpha}=0, \quad h_{r}=0
$$

This gives

$$
h=C_{2}
$$

where C_{2} is an arbitrary constant.
Hence, for $C_{1}=0$, a solution of Equations (11-14), in the variables x, y, is

$$
\phi=\psi, \quad h=C_{2} .
$$

When $C_{1} \neq 0$, we determine the solution of (13) as follows:
Assuming $\phi=\psi+f(r)$, the Equation (13) gives

$$
r^{2} f_{r r}+r\left(1+R_{\sigma} \psi_{\alpha}\right) f_{r}+2 C_{1} R_{\sigma} r^{2}=0
$$

A solution of this equation is

$$
\begin{equation*}
f(r)=C_{4}+C_{5} r^{1-C_{3}}-\frac{C_{1} R_{a} r^{2}}{1+C_{3}} \tag{16}
\end{equation*}
$$

provided

$$
\begin{equation*}
\psi_{\alpha}=\left(C_{3}-1\right) / R_{\sigma} . \tag{17}
\end{equation*}
$$

Equation (14), utilizing (17), gives

$$
\begin{equation*}
\psi=C_{6}+C_{7} \ln r+\left(C_{3}-1\right) \alpha / R_{\sigma} \tag{18}
\end{equation*}
$$

wherein C_{6}, C_{7} are arbitrary constants.

Rana Khalid Naeem

Employing (16) and (18) in (11-12), we get

$$
\begin{aligned}
& h_{\alpha}=-R_{H} \frac{\left(C_{3}-1\right)}{R_{\alpha}}\left[\left(1-C_{3}\right)^{2} C_{5} r^{-1-C_{3}}-\frac{4 C_{1} R_{\sigma}}{1+C_{3}}\right] \\
& h_{r}=-R_{H}\left\{\left(1-C_{3}\right)^{2} C_{5} r^{-1-C_{3}}-\frac{4 C_{1} R_{\sigma}}{1+C_{3}}\right\}\left[\frac{C_{7}}{r}+C_{5}\left(1-C_{3}\right) r^{-C_{3}} \frac{-2 C_{1} r R_{\sigma}}{1+C_{3}}\right] .
\end{aligned}
$$

These give

$$
h=\frac{4\left(C_{3}-1\right)}{1+C_{3}} R_{H} C_{1} \alpha+\frac{4 R_{H} C_{1} R_{\sigma}}{1+C_{3}}\left(C_{7} \ln r-\frac{C_{1} R_{\sigma} r^{2}}{1+C_{3}}\right)+C_{8}
$$

provided $C_{5}=0$. In above C_{8} is an arbitrary constant.
Therefore, the expressions for ψ, ϕ, and h, in the physical plane, are

$$
\begin{aligned}
\psi & =C_{6}+\frac{C_{7}}{2} \ln \left(2 x^{2}+2 y^{2}\right)+\frac{1}{R_{\sigma}}\left(C_{3}-1\right) \tan ^{-1}\left[\frac{x-y}{x+y}\right] \\
\phi & =\psi+C_{4}-2 C_{1}\left(x^{2}+y^{2}\right) R_{\sigma} /\left(1+C_{3}\right) \\
h & =\frac{4\left(C_{3}-1\right)}{1+C_{3}} R_{H} C_{1} \tan ^{-1}\left[\frac{x-y}{x+y}\right]+\frac{4 C_{1} R_{H} R_{\sigma}}{1+C_{3}}\left[\frac{C_{7}}{2} \ln \left(2 x^{2}+2 y^{2}\right)-\frac{-2 C_{1}\left(x^{2}+y^{2}\right)}{1+C_{3}} R_{\sigma}\right]+C_{8} .
\end{aligned}
$$

For $\phi=\psi+K(\alpha)$, Equation (13) gives

$$
K_{\alpha \alpha}-r \psi_{r} R_{\sigma} K_{\alpha}+2 C_{1} R_{\sigma} r^{2}=0 .
$$

A solution of this, for $C_{1}=0$, is

$$
\begin{equation*}
K=D_{2}+D_{3} \alpha^{D_{1}} \tag{19}
\end{equation*}
$$

provided

$$
\begin{equation*}
r \psi_{r} R_{\sigma}=D_{1} \tag{20}
\end{equation*}
$$

D_{1}, D_{2}, D_{3} being arbitrary constants.

Employing (20) in (14), we get

$$
\begin{equation*}
\psi=\frac{D_{1}}{R_{\sigma}} \ln r+D_{4} \alpha+D_{5} \tag{21}
\end{equation*}
$$

where D_{4} and D_{5} are arbitrary constants. Equations (11-12) give

$$
h=D_{6}
$$

provided

$$
D_{1}=1
$$

Hence for this case

$$
\begin{aligned}
\psi & =\frac{D_{1}}{2 R_{\sigma}} \ln \left(2 x^{2}+2 y^{2}\right)+D_{4} \tan ^{-1}\left(\frac{x-y}{x+y}\right)+D_{5} \\
\phi & =\psi+D_{3} \tan ^{-1}\left(\frac{x-y}{x+y}\right)+D_{2} \\
h & =D_{6}
\end{aligned}
$$

where D_{6} is an arbitrary constant.

(b) Rotational Flows:

For this type of flow, the vorticity ω is non-zero. Let us determine the solutions of Equations (6-9) for these flows employing some forms of ω.
(i) When $\omega=\omega_{o}$ (constant), the Equations (6-9) give:

$$
\begin{align*}
-h_{\alpha} & =\frac{R_{H}}{2 r^{2}}\left(r^{2} \phi_{r r}+r \phi_{r}+\phi_{\alpha \alpha}\right) \phi_{\alpha}+\omega_{o} \psi_{\alpha} \tag{22}\\
-h_{r} & =\frac{R_{H}}{2 r^{2}}\left(r^{2} \phi_{r r}+r \phi_{r}+\phi_{\alpha \alpha}\right) \phi_{r}+\omega_{o} \psi_{r} \tag{23}\\
r^{2} \phi_{r r}+r\left(1+R_{\sigma} \psi_{\alpha}\right) \phi_{r}+\phi_{\alpha \alpha}-r \psi_{r} R_{\sigma} \phi_{\alpha}+2 C_{1} R_{\sigma} r^{2} & =0 \tag{24}\\
r^{2} \psi_{r r}+r \psi_{r}+\psi_{\alpha \alpha}+2 \omega_{o} r^{2} & =0 \tag{25}
\end{align*}
$$

Rana Khalid Naeem

For $\phi=\psi$, the Equation (24) and (25) give

$$
\begin{equation*}
r^{2} \psi_{r r}+r \psi_{r}+\psi_{\alpha \alpha}+2 C_{1} R \sigma r^{2}-0 \tag{26}
\end{equation*}
$$

and

$$
\omega_{o}=C_{1} R_{\sigma}
$$

The general solution of (26) is

$$
\begin{equation*}
\psi=A_{3}-\frac{A_{1}}{2} \alpha^{2}+A_{2} \alpha+A_{4} \ln r+\frac{A_{5}}{2}(\ln r)^{2}-\frac{C_{1}}{2} R_{\sigma} r^{2} \tag{27}
\end{equation*}
$$

where A_{1}, \ldots, A_{5} are arbitrary constants.
Equations (22-23), employing $\phi=\psi$ and (27), give

$$
\begin{align*}
h_{\alpha} & =\left(2 R_{H}-1\right) C_{1} R_{\sigma}\left[-A_{1} \alpha+A_{2}\right] \\
h_{r} & =\left(2 R_{H}-1\right) C_{1} R_{\sigma}\left[\frac{A_{4}}{r}-C_{1} R_{\sigma} r+\frac{A_{5}}{r} \ln r\right] \tag{28}
\end{align*}
$$

Integration of (28) yields:

$$
h=\left(2 R_{H}-1\right) C_{1} R_{\sigma}\left[A_{4} \ln r-\frac{C_{1}}{2} R_{\sigma} r^{2}-\frac{A_{1} \alpha^{2}}{2}+A_{2} \alpha+\frac{A_{5}}{2}(\ln r)^{2}\right]+A_{6}
$$

where A_{6} is an arbitrary constant.
Therefore, a solution of (22-25), in the physical plane, is

$$
\begin{aligned}
\psi= & A_{3}+A_{2} \tan ^{-1}\left(\frac{x-y}{x+y}\right)-\frac{A_{1}}{2}\left\{\tan ^{-1}\left(\frac{x-y}{x+y}\right)\right\}^{2}+\frac{A_{4}}{2} \ln \left(2 x^{2}+2 y^{2}\right) \\
& +\frac{A_{5}}{8}\left[\ln \left(2 x^{2}+2 y^{2}\right)\right]^{2}-C_{1} R_{\sigma}\left(x^{2}+y^{2}\right) \\
\phi= & \psi \\
h= & \left(2 R_{H}-1\right) C_{1} R_{\sigma}\left\{\frac{A_{4}}{2} \ln \left(2 x^{2}+2 y^{2}\right)-C_{1} R_{\sigma}\left(x^{2}+y^{2}\right)+\frac{A_{5}}{8}\left[\ln \left(2 x^{2}+2 y^{2}\right)\right]^{2}\right. \\
& \left.-\frac{A_{1}}{2}\left[\tan ^{-1}\left(\frac{x-y}{x+y}\right)\right]^{2}-A_{2} \tan ^{-1}\left(\frac{x-y}{x+y}\right)\right\}+A_{6} .
\end{aligned}
$$

If we take $\phi=\psi+f(r)$, the Equations (24-25) give

$$
\begin{align*}
& r^{2} f_{r r}+r\left(1+R_{\sigma} \psi_{\alpha}\right) f_{r}=2\left(\omega_{o}-C_{1} R_{o}\right) r^{2} \\
& r^{2} \psi_{r r}+r \psi_{r}+\psi_{\alpha \alpha}+2 C_{1} R_{\sigma} r^{2}=0 . \tag{29}
\end{align*}
$$

A solution of (29) is

$$
\begin{align*}
\psi & =A_{7}+A_{8} \ln r-\frac{r^{2} \omega_{o}}{2}+\left(A_{6}-1\right) \alpha / R_{\sigma} \tag{30}\\
f & =A_{9}+A_{10} r^{1-A_{6}}+\frac{1}{1+A_{6}}\left(\omega_{o}-C_{1} R_{\sigma}\right) r^{2} \tag{31}
\end{align*}
$$

wherein A_{6}, \ldots, A_{10} are arbitrary constants.
Equations (22-23), utilizing $\phi=\psi+f(r)$ and (30-31), give

$$
\begin{align*}
-h_{\alpha} & =\frac{\omega_{o}\left(A_{6}-1\right)}{R_{\sigma}}+\frac{R_{H}}{2 r^{2}}\left[-2 r^{2} \omega_{o}+r^{2} f_{r r}+r f_{r}\right]\left(\frac{A_{6}-1}{R_{\sigma}}\right) \tag{32}\\
-h_{r} & =\omega_{o}\left(\frac{A_{8}}{r}-\omega_{o} r\right)+\frac{R_{H}}{2 r^{2}}\left[-2 r^{2} \omega_{o}+r^{2} f_{r r}+r f_{r}\right]\left(\frac{A_{\delta}}{r}-\omega_{o} r\right) . \tag{33}
\end{align*}
$$

Integration of (32) yields

$$
\begin{equation*}
h=\frac{\omega_{o}\left(A_{6}-1\right)}{R_{\sigma}} \alpha+\frac{R_{H}}{2 r^{2} R_{\sigma}}\left(-2 r^{2} \omega_{o}+r^{2} f_{r r}+r f_{r}\right)\left[A_{6}-1\right] \alpha+K_{1}(r) \tag{34}
\end{equation*}
$$

where $K_{1}(r)$ is an unknown function to be determined. This function $K_{1}(r)$ is determined from the fact that the expression for h_{r} obtained from (34) must be the same as that given by (33).

Differentiating (34) w.r.t. r, we get

$$
\begin{equation*}
h_{r}=\frac{-R_{H}}{2 R_{\sigma}}\left(A_{6}-1\right) \alpha\left[\frac{1}{r^{2}}\left(-2 r^{2} \omega_{o}+r^{2} f_{r r}+r f_{r}\right)\right]_{r}+K_{r} . \tag{35}
\end{equation*}
$$

Equations (33) and (35) give the same expression for h_{r} provided

Rana Khalid Naeem

$$
\begin{equation*}
\left[\frac{1}{r^{2}}\left(-2 r^{2} \omega_{o}+r^{2} f_{r r}+r f_{r}\right)\right]_{r}=0 \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{r}=-\omega_{o}\left(\frac{A_{8}}{r}-\omega_{o} r\right) \frac{-R_{H}}{2}\left[-C_{1} R_{\sigma}-\omega_{o}+\left(\frac{\omega_{o}-C_{1} R_{\sigma}}{r^{2}}\right)\right]\left(\frac{A_{8}}{r}-\omega_{o} r\right) . \tag{37}
\end{equation*}
$$

Equation (36) gives

$$
\begin{equation*}
r^{2} f_{r r}+r f_{r}=\left(A_{11}+2 \omega_{o}\right) r^{2} \tag{38}
\end{equation*}
$$

where A_{11} is an arbitrary constant. The function $f(r)$ in (31) satisfies (38) provided

$$
\begin{aligned}
A_{6} & =1 \\
A_{11} & =-2 C_{1} R_{\sigma} .
\end{aligned}
$$

Integration of Equation (37) yields

$$
K=\left[-\omega_{o}+\frac{R_{H}}{2}\left(\omega_{o}+C_{1} R_{\sigma}\right)\right]\left(A_{8} \ln r-\frac{\omega_{o} r^{2}}{2}\right)-\frac{R_{H}}{2}\left(\omega_{o}-C_{1} R_{\sigma}\right)\left[\frac{-A_{8}}{2 r^{2}}-\omega_{o} \ln r\right]+A_{12}
$$

where A_{12} is an arbitrary constant.
Therefore, the expressions for ψ, ϕ, h are

$$
\begin{aligned}
\psi= & A_{7}+\frac{A_{8}}{2} \ln \left(2 x^{2}+2 y^{2}\right)-\omega_{o}\left(x^{2}+y^{2}\right) \\
\phi= & -C_{1} R_{\sigma}\left(x^{2}+y^{2}\right)+\frac{A_{8}}{2} \ln \left(2 x^{2}+2 y^{2}\right)+A_{7}^{*} \\
h= & {\left[-\omega_{o}+\frac{R_{H}}{2}\left(\omega_{o}+C_{1} R_{\sigma}\right)\right]\left\{\frac{A_{8}}{2} \ln \left(2 x^{2}+2 y^{2}\right)-\omega_{o}\left(x^{2}+y^{2}\right)\right\} } \\
& -\frac{R_{H}}{2}\left(\omega_{o}-C_{1} R_{\sigma}\right)\left[\frac{-A_{8}}{4\left(x^{2}+y^{2}\right)}-\frac{\omega_{o}}{2} \ln \left(2 x^{2}+2 y^{2}\right)\right]+A_{12}
\end{aligned}
$$

where $A_{7}^{*}=A_{7}+A_{9}$.
(ii) For $\omega=g(r)$, the solution of Equation (6-9), is

$$
\begin{aligned}
\psi= & e_{7}+\frac{e_{8}}{2} \ln \left(2 x^{2}+2 y^{2}\right)-\frac{e_{1}}{2}\left(x^{2}+y^{2}\right) \ln \left(2 x^{2}+2 y^{2}\right)+\left(e_{1}-\epsilon_{2}\right)\left(x^{2}+y^{2}\right)+\frac{1}{R_{H}-1} \tan ^{-1}\left[\frac{x-y}{x+y}\right]+e_{9} \\
\phi= & \frac{2 R_{\sigma}}{R_{e} R_{H}}\left(R_{H}-1\right)\left\{\frac{e_{1}}{2}\left(x^{2}+y^{2}\right) \ln \left(2 x^{2}+2 y^{2}\right)+\left(e_{2}-\frac{e_{1}}{2}\right)\left(x^{2}+y^{2}\right)-\left(e_{3}+C_{1} R_{H} R_{\sigma}\right)\left(x^{2}+y^{2}\right)\right\}+e_{6} \\
h= & -\frac{e_{1}}{R_{\sigma}} \tan ^{-1}\left(\frac{x-y}{x+y}\right)+\left[e_{9}+\frac{1}{R_{H}-1} \tan ^{-1}\left(\frac{x-y}{x+y}\right)\right] \\
& +\left\{\frac{-e_{1}}{2} \ln \left(2 x^{2}+2 y^{2}\right)-e_{2}+e_{3}\right\}\left[e_{9}+\frac{1}{R_{H}-1} \tan ^{-1}\left(\frac{x-y}{x+y}\right)\right]+\frac{e_{1} e_{2}}{8}\left[\ln \left(2 x^{2}+2 y^{2}\right)\right]^{2} \\
& +\frac{e_{8}}{2}\left(e_{2}-e_{3}\right) \ln \left(2 x^{2}+2 y^{2}\right)+\left\{\frac{e_{2} D_{2}+D_{1}\left(e_{2}-e_{3}\right)}{2}\right\}\left[\ln \left(2 x^{2}+2 y^{2}\right)-1\right]\left(x^{2}+y^{2}\right) \\
& +\frac{e_{1} D_{1}}{4}\left\{\left[\ln \left(2 x^{2}+2 y^{2}\right)\right]^{2}-2 \ln \left(2 x^{2}+2 y^{2}\right)+2\right\}\left(x^{2}+y^{2}\right)+\left(e_{2}-e_{3}\right) D_{2}\left(x^{2}+y^{2}\right)+e_{10}
\end{aligned}
$$

where $e_{1} \ldots, e_{10}$ are the arbitrary constants and

$$
\begin{aligned}
& D_{1}=\left[\frac{2\left(R_{H}-1\right)}{R_{H}}-1\right] e_{1} \\
& D_{2}=\left\{\frac{3 e_{1}}{2}-2 e_{2}\left[1-\frac{R_{H}-1}{R_{H}}\right]-\frac{2 e_{3}\left(R_{H}-1\right)}{R_{H}}-2 C_{1}\left(R_{H}-1\right) R_{\sigma}\right\}
\end{aligned}
$$

and e_{1}, e_{3}, C_{1} satisfy

$$
\left(\frac{5 R_{H}-4}{R_{H}-1}\right) e_{1}+2 e_{2}=2\left(1-R_{H}\right) C_{1} R_{\sigma}
$$

CONCLUSIONS

In the present work, we have determined some exact solutions of equations of motion of an electrically conducting fluid moving in a magnetic field.

REFERENCES

[1] H. Alfven, Cosmical Electrodynamics, Oxford: Clarendon Press, 1950.
[2] G. Kingston and R. Talibot, "The Solutions to a Class of Magnetohydrodynamic Flows with Orthogonal Magnetic and Velocity Distributions", Z. Angew. Math. Phys., 20 (1969) pp.956-965.
[3] V. I. Nath and O. P. Chandna, "On Plane Viscous Magnetohydrodynamic Flows", Quart. Appl. Math., 31 (1973), pp. 351-362.
[4] O. P. Chandna and H. Toews, "Plane Constantly-Inclined MHD Flow with Isometric Geometry", Quart. Appl. Math., 35 (1977), pp.331-337.
[5] R. M. Barron and O. P. Chandna, "Hodograph Transformations and Solutions in Constantly-Inclined MHD Plane Flows", Eng. Math., 15 (1981), pp.221-220.
[6] O. P. Chandna, C. E. Stoeros, and M. K. Swaminathan, "Some Solutions for Finitely Conducting Viscous MHD Plane Flows", Quart. Appl. Math., July 1984, pp.143-158.
[7] O. P. Chandna and N. Rudraiah, "Solutions for Steady Plane Aligned Electromagneto-Gasdynamics", Quart. Appl. Math., April 1985, pp.85-95.

Paper Received 10 January 1993; Revised 5 April 1993; Accepted 14 July 1993.

[^0]: *Address for correspondence:
 A-221 Sector II-A
 North Karachi, Karachi 75850
 Pakistan

