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ABSTRACT

In a weakly factorial domain, every nonunit element is a product of primary elements.
Weakly factorial orders are characterized by means of their group of units. If R is a weakly
factorial quadratic order, the fundamental unit of the integral closure of R determines the
form of atoms of R, thereby allowing to compute the following factorization functions on
R. We denote respectively by /(x) and L(x) the inf and sup of the lengths of factorizations
of a nonzero nonunit x € R into a product of irreducible elements. Explicit formulas for
{(x) and L(x) are given, from which the asymptotic behavior of these functions and the
elasticity of R are deduced.
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WEAKLY FACTORIAL QUADRATIC ORDERS

1. GENERAL RESULTS ON WEAKLY FACTORIAL ORDERS

Factorization in an algebraic order R is quite simple to study when R is a PID. For an arbitrary order R such
that every atom is primary the situation is not too far from unique factorization. Then R is called a weakly
factorial domain. In this paper, we characterize and study factorization in weakly factorial quadratic orders. We
begin with recalling some basic definition and results.

Let R be an integral domain.

(1) R is called atomic if each nonzero nonunit is a finite product of irreducible elements (or atoms).

(2) R is called a weakly factorial domain if each nonunit of R is a product of primary elements
(D.D. Anderson and L.A. Mahaney [3]).

(3) R is said to be a half-factorial domain (HFD) if R is atomic and whenever z; - - T, = y1 - - - Y With
z;,y; € R atoms, then m = n (Zaks [15]).

(4) If R is an atomic domain which is not a field, Valenza defined the elasticity of R by
p(R) =sup{m/n |z - Tm =y1" Yn for z;,y; € R atoms} [13].

Moreover, p(R) is said to be realized by a factorization if there are atoms z;,y; € R with
Ty Tm =Y1- - Yn and p(R) = m/n. In particular, the elasticity of an HFD is 1.

Let z be a nonzero nonunit in an atomic domain R. Define as D.F. Anderson and P. Pruis [4] did:
lp(z) =inf{n |z =z;---z,, ; € R irreducible},
Lg(z) =sup{n |z =z - -z,, z; € R irreducible},
Ip(z) = lim lg(z™)/n, Lr(z) = lim Lg(z"™)/n.
n—o0 n—oo

In this work, we use the following notation.

Let d be a square-free integer and consider the quadratic number field K = Q(v/d). It is well-known that the
ring of integers of K is Ox = Z[w], where w = £(1+ Vd) if d = 1 (mod 4) and w = Vd if d = 2,3 (mod 4).
Moreover, Z[w] is a free Z-module with basis {1,w}.

Let x be the (quadratic) character of K. Three types of decomposition of a prime integer p in Z[w] can occur.

e There exists a maximal ideal P in Z[w] such that pZ[w] = P? (p is ramified) and x(p) = 0.

e There exist two maximal ideals P, P, in Z[w] such that pZ[w] = P, N P, (p is decomposed) and
x(p) = 1.
e The ideal pZ[w] is a maximal ideal in Z[w] (p is inert) and x(p) = —1.

For a real quadratic number field K, there is a unique unit € > 1 in Og such that the group of units of Ok
is {£1}x < € > and ¢ is called the canonical fundamental unit.

A quadratic order in K is a subring R of Ok, which is a free Z-module of rank 2 with basis {1,nw} where
n € N*. Then Ok is the integral closure of R = Z[nw] and nOk is the conductor of R.
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For a finite set S, we denote by |S| the number of elements of S. For z € R, we set [z] =sup{n € Z | n < z}.
For an integral domain R, we denote by R its integral closure and by U/(R) its group of units.

Section 2 is devoted to the characterization of weakly factorial quadratic orders, with emphasis on real orders,
with respect to the fundamental unit. Let R = Z[nw] be a real quadratic order such that its integral closure R is
a PID. Let I be the conductor of R and € the fundamental unit of Z[w]. Then R is weakly factorial if and only if
[UR)JU(R)| = [U(R/I)JU(R/T)| = inf{k € N* | n divides bi} where e* = a) + brw, ax,bx € Z. An evaluation
of this number is obtained thanks to the class number formula. In particular, we can build infinite decreasing
sequences of weakly factorial orders.

In Section 3, we obtain all nonassociate atoms of a weakly factorial quadratic order. This allows us to study
the length functions ! and L and their asymptotic behavior.

Another interesting property of weakly factorial orders is the computation of the elasticity of such orders. This
is done in Section 4. Let R = Z[nw] be a weakly factorial quadratic order with n = [[p{*, p; prime integers. If
some p; is decomposed, p(R) = oo. If not, we have p(R) = sup({e; + 1/2 | p; ramified}, {e; | p; inert}).

Before studying the quadratic case, here are properties available in a general context.

First, recall a result of D.D. Anderson and L.A. Mahaney

Theorem 1.1. [3, Theorem 12] Let R be a one-dimensional Noetherian domain. The following statements are
equivalent:

1. R is weakly factorial.
2. Every atom is primary.
3. Pic(R) =0.

If these conditions hold, the integral closure of R is a PID.

Moreover, the following theorem gives a characterization of weakly factorial orders.

Theorem 1.2. Let R be an algebraic order such that its integral closure R is a PID and let I be the conductor
of R. Then R is weakly factorial if and only if |U(R)JU(R)| = |{U(R/I)/U(R/I)|.

Proof. By [12, Theorem 2] R is weakly factorial if and only if U(R)/U(R) — U(R/I)/U(R/I) is an isomor-
phism. When proving this theorem, we showed that U(R)/U(R) — U(R/I)/U(R/I) is always an injective group
morphism. So |U/(R)/U(R)| divides |U(R/I)/U(R/I)|, since this last number is finite, and hence the equality is
equivalent to R being weakly factorial. ]

The following result of F. Halter-Koch allows to work in local orders.

Theorem 1.3. [9, Corollary 1.7] Let H be a weakly factorial monoid. Then every a € H\ H* is a product of
(finitely many) mutually not related primary elements, and this representation is unique up to the order of the
factors and up to associates.

In fact, a weakly factorial domain is a weakly factorial monoid for the multiplicative structure.
Proposition 1.4. Let R be a weakly factorial order and x € R be a nonzero nonunit element.
1. For each P € Max(R), there is a bijection between the set of P-primary atoms of R and the set of atoms
of Rp (up to units).
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2. If z = [1;,(TIT;, i) is a factorization into atoms in R, with x; ; a P;-primary atom for each j, there
ezists u; € U(Rp,) such that z/1 = w; [[;L, #;/1 is a factorization into atoms in Rp, for each i.

3. Ifz/1=wu[I};L, i5/1, ui € U(Rp,), is a factorization into atoms in Rp, for each P; € Max(R) such that
z € P;, with z; ; a P;-primary atom for each j, there exists u € U(R) such that z = ul—[:___l(l_[;"zl Ti ;)
8 a factorization into atoms in R.

4. Ip(2) = ¥ pemax(r) Ire (£/1), Lr(T) = ¥ pemax(r) Lre (2/1).

Proof. Thanks to Theorem 1.3, there is a monoid homomorphism ¢ : R\ {0} = ] pemax(r)(Rp \ {0})/U(RP)
defined by ¢(z) = (¢p((z/1)pP)) PeMax(r), Where pp : Rp\ {0} = (Rp \ {0})/U(Rp) is the canonical map. In
particular, if 2 = (pp((zp/1)P)) PeMax(r), Where zp = 1 for all but finitely many zp,,...,zp, such that zp,
is a P;-primary element, then z = p(zp, ---zp,). It follows that ¢ is surjective and induces an isomorphism
(R\{0})/U(R) —» UPeMax(R) (Rp \ {0})/U(Rp). Then statements (1), (2), and (3) follow easily.

The proof of (4) follows from (3) since the length of a given factorization in R is the sum of the lengths of the
corresponding localized factorizations. 0
2. CHARACTERIZATION OF WEAKLY FACTORIAL QUADRATIC ORDERS

Let R be a quadratic order with conductor I. The orders of the two factor groups U(R)/U(R) and
U(R/I)JU(R/I) appearing in Theorem 1.2 can both be calculated. The class number formula for quadratic
orders gives one of the orders and the study of the fundamental unit gives the second one.

Proposition 2.1. Let R = Z[nw)] be a quadratic order where n = [[pf* € N*, p; prime integers and e; > 1.
The order of U(R/nR)/U(R/nR) is g(n) = n]] (1 _ X(;i)).
i

In particular, if n and m are coprime, we have g(nm) = g(n)g(m).

Proof  Compare the class number formula [Pic(R)| = |Pic(R)|[U(R)/U(R)|"'n]] (1 x(p) (see
H.M. Edwards [7, Chapter 9.6]) and the following formula |Pic(R)| = |Pic(R)||U(R)/U(R)|~* U (R/nR) / (R/nR)|
(see J. Neukirch [11, Theorem 12.12]). o

It remains to get the value of |{/(R)/U(R)|. In the imaginary case, this is quite easy and we recover the well
known imaginary quadratic orders with trivial class group (see D.A. Cox [6, Theorem 7.30]).

Corollary 2.2. There are four non-integrally closed weakly factorial imaginary quadratic orders: Z[2i], Z[2j],

Z[3j], and Z[/=T) where j = 1 (-1 + v/=3).

For a real quadratic order R, we can evaluate |U(Ok)/U(R)| according to the fundamental unit.

Lemma 2.3. Let ¢ be the fundamental unit of the ring of integers Ox = Z[w] of K = QVd) where

d > 0 is square-free and assume that Ok is a PID. Let R = Z[nw],n € N*. Then |U(Ok)/U(R)| is the

least k € N* such that e¥ € R, or equivalently, such that n divides by, where e¥ = ay + byw with ai, b, € Z.

Such an element * is called the fundamental unit of R. In particular, R is weakly factorial if and only if
= |U(Ok /nOk) [U(R/nOK)|.

Proof. We have U(Ok) = {£1}x < € >. Moreover [U(Ok)/U(R)]| is finite and is the order of the class of ¢ in
the factor group U(Ok)/U(R), a finite cyclic group generated by the class of €. This order is in fact the least
k € N* such that e € R. If we sct ¥ = ay + brw with ay, by € Z, we get that [U(Ok)/U(R)| is the least k € N*
such that n divides b;. The end of the proof follows from Theorem 1.2. 0O
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In fact, we can restrict to integers n which are a power of a prime by the following lemma.

Lemma 2.4. Let Ox = Z|w] be the ring of integers of a real quadratic number field K. Let n and m € N*
be two coprime integers and consider R' = Z[nw], R" = Z[mw)] and R = Z[nmw]. Then R = R' N R" and
U(Ok)[UR)| = lem([U(Ok ) /U(R')], [U(Ok) /U(R"))).

Proof. Obviously, we have R C R'NR". Any x € R'NR" can be written z = a+bnw = c+dmw with a,b,c,d € Z.
But ged(n,m) = 1 and {1,w} is a basis combine to yield n divides d so that z € R. Thus R = R'n R".

Now let € be the fundamental unit of Z[w]. Set p = [U(Ok)/U(R)|, ¢ = [U(Ok)[U(R')|, r = [U(Ok)/U(R")]|
and s = lem(g,r). Then we have e® € R' N R" = R so that p divides s. Conversely, as e? € R = R' N R", we get
that ¢ and r divide p, and so does s. o]

Proposition 2.5. Let n and m € N* be two coprime integers. Consider R' = Z[nw] and R" = Z[mw] two
quadratic orders in the same number field K with ring of integers O = Z[w]. Set R = R'NR". Then R is
weakly factorial if and only if R', R" are weakly factorial and [U(Ok)/U(R')|,|U(Ok)JU(R")| are coprime.

Proof. Assume first that K is a real quadratic number field. If R is weakly factorial, so are R’ and R" by [12,
Corollary 2].

Conversely, assume that R' and R" are weakly factorial. It follows that Ok is a PID. By Theorem 1.2,
R is weakly factorial if and only if [U(Ok)/U(R)| = [U(Ok/nmOk)JU(R/nmOk)| = g(nm) = g(n)g(m),
with notation of Proposition 2.1 since n and m are coprime. The same theorem gives |U(Og)/U(R')| =
U(Ok InOk)JU(R' [nOk)| = g(n) and |[U(Ok)/U(R")| = U(Ok /mOk)JU(R" /mOk)| = g(m). But, thanks
to Lemma 2.4, we have |U(Ok)/U(R)| = lem(g(n),g(m)). Then R is weakly factorial if and only if g(n)g(m) =
lem(g(n), g(m)) or equivalently, if and only if g(n) and g(m) are coprime. The two parts of the proposition are
proved in the real case.

We can remark that this situation does not occur in the imaginary case. a

Remark. In [14, Theorem 4.1], R. Wiegand shows that a quadratic order R has torsionfree cancellation if and
only if Pic(R) — Pic(R) is an isomorphism, which is equivalent to R being weakly factorial when R is a PID.
Then, Proposition 2.5 can also be derived from [14, Remark 4.7] by replacing “torsionfree cancellation” by “weak
factoriality”.

Let K be a quadratic number field such that the ring of integers Ox = Z[w] is a PID and let R = Z[nw)]
be a quadratic order in K, where n = [], p{*, pi prime integers. To see whether R is weakly factorial or not,
it is enough to study the orders Z[p{‘w]. A necessary condition for R to be weakly factorial is that the orders
ri = [U(Ok[piOk)/U(Z[p;'w]/p;'Ok)| are pairwise coprime. Proposition 2.1 gives these orders. If p; is a
decomposed or an inert odd prime, r; is even, by Proposition 2.1. So, there is at most one decomposed or inert
odd prime among the p;.

We know (Hasse [13, Chapter 29.3, p. 590]) that if the ring of integers of K = Q(V/d) is a PID, where d > 0
is square-free, then d is one of the following types: (1) d is a prime integer, (2) d = pp', p # p’ prime integers,
p,p' = 2,3 (mod 4). So, there are at most two odd prime integers p; which are ramified in K. This gives the
following corollary.

Corollary 2.6. Let Z[nw] be a weakly factorial real quadratic order with n = [[;_,p{,pi prime integers. Then
r < 4 with at most two p; decomposed or inert (if there are two p; decomposed or inert, then 2 = p; is one of
them and e; = 1) and at most two p; ramified (if 2 is one of them, all p; are ramified).

Proof. We have just proved above a part of the corollary.
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Now, assume that p; = 2 for some ¢, with 2 inert or decomposed and let p; = p be another inert or decomposed
prime dividing n. As p is odd, p£1is even. If e; >1, then r; and r; are both even, so that Z[p{‘w] N Z[p;’w] is
not weakly factorial.

If 2 is ramified and n is even, Z[nw] is not weakly factorial if some decomposed or inert prime p divides n,
since p is odd. O

Set R, = Z[p"w] and consider the decreasing sequence {R,}nen+ of suborders of Z{w], where p is a prime
integer. We are going to study how the weakly factorial condition behaves in the sequence.

First, we give two technical lemmata.

Lemma 2.7. Let K = Q(\/d where d > 0 is square-free. Consider x =r+ sw € K, r,s € Q. For m € N*, set
™ =7 +sw, s eQ.

1. Ifd=2,3 (mod 4), then ' = Y4t o on Chr™*skdE and s' = Yfr, 1y CErm—kskd*T .
2. Ifd=1 (mod 4), thenr' =2"™ 3" .. Ck(2r + s)m—kgkds _ g-m Y hei.0dd Ch(2r + s)m—kgkg s
and ' =21"m Y0 Ch(2r + s)m—kgkg*st
Proof.
(1) fd = 2,3 (mod 4), we have w = Vdso that z™ = (r+sw)™ = S5, Ckrmkskwh = Y18 Ck rm—kgkds
= Y g even Clar™ ¥skd¥ + (Z;"_:l’odd C’;,r"“ks"dkz;l) w which gives the result.

(2) Hd =1 (mod 4), we get = §(1+ Vd) and & = §[(2r + 5) + sVd] s0 2™ = §[(2r' +) + 'V =
7 Lo Cha(@r+8)™*std = (1L even Cha(2r+a)m*std} +~/a'z;"_1 raa Chr ) ek,

Therefore it follows that 7' = 3z 34" oven Chy (20 + 8)™* skdf — LY 0dd CE(2r + )™k skd T
and s’ = 2= Y pey oqa Ch(2r + s)mkgkd Tt o

Lemma 2.8. Let Z[w] be the ring of integers of QV/d) where d > U zs square-free and let &' = a+bpw, a,b € Z,
be a unit of Z[w], with p a prime integer. Forn € N*, set &}, = ¢'*

1. There ezist an,b, € Z such that €, = an + bpp™w.
2. p does not divide a,, for any n € N*.
3. If (p,b) =1, then (p,b,) =1 for anyn € N*, except if p=2 and d = 1 (mod 4). In this case, by is even.

Proof. We have !, = €'l _,. We prove (1) and (3) by induction on n.
(1) is satisfied for n = 1 since €] =¢€'.

Assume that €/,_; = an—1 + bp—19p" 'w, with an_1,bn—1 € Z. Now use Lemma 2.7.

If d = 2,3 (mod 4) the coefficient of w in €}, is Y j_; ,qq Cra P—kpk _ p*(n—Dd*37 | Since p divides Ck for
k=1,...,p—1, then p" divides Cka}_ kok_,p*»=1 for k = 1,...,p — 1. For k = p, the coefficient of d*7 is

bfl_lpp("‘l), divisible by p™ since p(n — 1) > n.
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Ifd =1 (mod 4) the coefficient of win ey, is 2! =P 37, 44 CE(2an-1 Hbp_yp"1)PRpE_ pk(n-1)g* 7 divisible

by p" (same proof as in the previous case when p # 2).
If p = 2 this coefficient is 2”b,_1(an—1 + bn—12""2), which gives the result, since n > 2.
So (1) is proved.
(2) Since €’ and &/, are invertible, e}, & pZ[w], so p does not divide a, for any n € N*.

Let us prove (3) and assume that p does not divide b,—;, with n > 2.

If we have d = 2,3 (mod 4), the same proof as in (1) gives that p"*+! divides CkaZZ%bk_ p*™=1) for

k=2,..,p-1and b’_,pP™ 1) when p # 2. But, for k = 1, we get that pa®_1b,_1p""! = a® L bp_1p"

n—1
is not divisible by p™*!. The proof is straightforward for p = 2.
If d =1 (mod 4) and p # 2, the proof is the same since p does not divide 2a,—1 + by—1p™ 1.
In both cases, p does not divide b,,.
If p=2and d =1 (mod 4), the calculation made in (1) gives that b, = by_1(@n—1 + by—12""2) is odd when
bn-1 is odd, except for n = 2. In fact, a + b is even because a and b are both odd. o

Corollary 2.9. Let ¢ be the fundamental unit of K = Q(v/d), d > 0 square-free. Set R, = Z[p"w], n € N*, p
a prime integer. Let €, be the fundamental unit of R,,.

1. Assume that R, is weakly factorial. Then R, is weakly factorial if and only if e, € Ry \ Rpyy-

2. If Ry is weakly factorial, so is R, for every n € N*, except whenp =2 and d =1 (mod 4). In this case,
only Ry and Ry are weakly factorial.

Proof.

(1) For n € N* set v, = |[U(Ok/p"Ok)/U(R,/p"Ok)|. We have r, = p"~!(p — x(p)) by Proposition 2.1.
Lemma 2.3 gives £, = €™ and R, is weakly factorial if and only if the fundamental unit of R, is g™ +!.
As [U(Ok) /U(Rn41)| divides ry41, we have e™+1 = P € Rp41. Moreover, |[U(Ok)/U(R,)| = r,, implies
[U(Rp)JU(Rnt1)| = p or 1. Tt follows that R,4 is weakly factorial if and only if U{R,) # U(Rn41),
which is equivalent to £, € Ry, \ Rp+1-

(2) Let ' = €™ = a + pbw be the fundamental unit of R;. If R, is weakly factorial, we get by (1) that
€' ¢ Ry and (p,b) = 1.

Assume that p# 2 or d Z 1 (mod 4). By Lemma 2.8 we get that e” e R, \ Ry for every n € N*.
An easy induction using again (1) shows that R,, is weakly factorial for every n € N*.

Ifp=2andd =1 (mod 4), Lemma 2.8 implies that b, is even, where €' = ay +4byw is the fundamental
unit of R, so that €’ € R, which is not weakly factorial. ]

Example. Actually, only four situations of decreasing sequences { R, = Z[p"w]}nen occur.

(1) Let d = 6. Then Z[w] is a PID and € = 5 + 2w € Z[2w], which is not weakly factorial. Now ¢ ¢ Z[3w],
which is weakly factorial, but €* = 485 + 22 - 3%w € Z[3%w], which is not weakly factorial.

(2) Let d = 5. Then Z[w] is a PID and ¢ = w ¢ Z[2w],Z[5w], which are weakly factorial. Now,
€3 = 1+ 2w ¢ Z[2%w)], which is weakly factorial. By Corollary 2.9, Z[2"w] is not weakly factorial
for any n > 2. As €% = 3 + 5w & Z[5%0], we get that Z[5%] is weakly factorial and so is Z[5™w] for any
n € N by Corollary 2.9.
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3. LENGTH FUNCTIONS IN LOCAL WEAKLY FACTORIAL QUADRATIC ORDERS

As we have seen in Proposition 1.4, to determine atoms or lengths of factorization in a weakly factorial order
R we need only to study the localizations Rp for P € Max(R). In fact, it is sufficient to consider the localizations
at the maximal ideals of R which contain the conductor I of R. Actually, if P does not contain I, we have an
isomorphism Rp ~ Rp and Rp is a PID. Let R = Z[nw)], n € N* be a quadratic order. The prime ideals of R
containing the conductor are of the form pZ[n'w], with n = pn’, and p a prime integer dividing n.

Observe that if no decomposed prime divides n, the spectral map Spec(R) — Spec(R) is bijective (see
Section 1). In this case, if p is a prime integer dividing n, there is a unique maximal ideal P in R lying over pZ.
Setting S = Z \ pZ, we have Rs ~ Rp and Rs ~ Rp, which are both local domains, with Rp a DVD. If we
denote by Z' the localization Z g, we are in the following situation: p is an atom in Z', ramified or inert in Rp as
in R. We can again write Rp = Z'[w] with maximal ideal p'Rp, and Rp = Z'[qw], ¢ a power of p. Moreover, Rp
and Rp are both free Z'-modules with basis {1,w} and {1,qw}. We call Rp a local order. If p is a decomposed
prime there is again a unique maximal ideal P in R lying over pZ and isomorphisms Rs ~ Rp and Rs ~ Rp.

Moreover, the groups of units of Rp and Rp are closely linked as can be seen by the following proposition.
Proposition 3.1. Let R = Z[p™w], (p a prime integer) be a weakly factorial quadratic order and let S = Z \ pZ.
Then there is an isomorphism U(R)/U(R) ~ U(Rs)/U(Rs).

Proof. We have obviously an injection f : U(R)/U(R) = U(Rs)/U(R$). Since R is weakly factorial, f is
surjective. Let z = z'/s € U(Rg), ' € R, and s € S. Then z' is comaximal with p” in R. There exists
u € U(R) such that a = uz’ € R by [12, Theorem 2] which gives £ = (u~!/1)(a/s) where u™!/1 is the image
of u~! in U(Rs) and a/s € U(Rg). It follows also that U/(Rs)/U(Rs) is a finite cyclic group generated by the
class of the fundamental unit in the real case (in fact, we can also consider a fundamental unit in the imaginary
case). o

From now on, we work with a local order of the form R, = Z'[p"w] where p is a prime integer, n € N*. Its
maximal ideal is pR,_;. It follows that Ry = Z'[w] and p" Ry is the conductor of R,. We begin to characterize
a family of nonassociate atoms of R, independent of the decomposition of p in Z'[w].

Proposition 3.2. Let R, = Z'[p"w] be a local order, p a prime integer, n € N* |k € {2,...,n} andu € U(Z'[w]).
Then up* is an atom in R, if and only if u € U(Rn_x) \U(Rn—k+1). In this case, up® is an associate of e7p*
where

o j=p" %1 (p—x(p))j with0<j <pkand(pj)=1ifl<k<n.
e 0<j<p"(p— x(p)) where p— x(p) does not divide j if 1 < k =n.
up is an atom in R,, for u € U(Z'[w]) if and only if u € U(Rp—1). Moreover, up is associated to e/p where
o j=p"p—-x(p)j' with0 <j' <pifl<n.
e 0<j<p—x(p)ifl=n.
In addition, if p is inert, all atoms of R, are obtained in this way.
Proof. Let u = a + bw € U(Z'[w]), a,b € Z'. Then = = up* € R, if and only if p"~* divides b if and only if
u € U(Rp—t). If u € U(Rn_g41), we get that up*~! € R, and = = p(up*~!) is not an atom in R,. Conversely,

let u € U(Rn—r) \ U(Rn—k+1) and assume that there exist z’,2" € R, such that z'z"” = up*. If neither z' nor
z" € U(R,), they belong both to pR,,—; so that up*~? € R,_, and u € U(Rn—k+1), a contradiction.

up is obviously an atom as soon as up € R,,.
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Assume that p is inert. Then p is an atom in Ry and generates its maximal ideal. Any nonunit nonzero
element = of R, is of the form z = up*, where u € U(Rp). If k > n, we get that z = (up™)p*~" is not an atom
in R,,. Two parts of the proof are obtained.

Let u € U(Rp) such that = = up* € R,. There exists j € N such that z is associated in R, to &/p*
since U(Ro)/U(R,) is a finite cyclic group generated by the class of . Although the value of j is not unique,
we can determine a least value of j when z is an atom. In fact e/p* and &/'p* are associates in R, if and
only if there exists v € U(R,) such that e/p* = ved'pk if and only if [U(Ro)/U(R,)| divides j — j'. Now
[U(Ro) JU(R,)| = |U(Ro/p"Ro) JU(Rn/p"Ro)| = p"~'(p — x(p)) (this formula holds in the local case). For the
least value of j, we get the condition 0 < j < p"~1(p — x(p)). Moreover, e/ € U(R,_1) \U(Rn_k+1) if and only
if [U(Ro)/U(Rp—x)| divides j and |U(Ro)/U(Rn—k+1)| does not divide j. So we get:

o If1 <k <n,thenel € U(Rn—i)\U(Rn—r+1) if and only if p»~*~1(p— x(p)) divides j and p"~*(p—x(p))
does not divide j, if and only if j = p"~*~!(p — x(p))j’ with 0 < j' < p* and (p,j') = 1.

eIf 1 = k < n, then &p is an atom when in R,. Moreover, condition ¢/ € U(R,_,) where
0<j<p" ' (p—x(p)) is equivalent to j = p"~?(p — x(p))j’ with 0 < j' < p.

e If 1 < k = n, then &ip” € R, and £/ ¢ U(R,) if and only if p — x(p) does not divide j. So we get
condition 0 < j < p"~!(p — x(p)) where p — x(p) does not divide j.

e If 1 = k = n, then ¢’p is always an atom and we get condition 0 < j < p — x(p). O
When p is ramified or decomposed, we have the following additional atoms.

Proposition 3.3. Let R, = Z'[p"w] be a local order, n € N*, p ramified, p ~ p'? in Ry. The atoms of R, are
the up® as in Proposition 3.2 and the up’®™*! for any u € U(Ry). Moreover, the up'*™*! are associated to the
ep?™tl 0<j < pn

Proof. Since p is ramified, there exists an atom p' € Rp such that p ~ p'? in Ry and u € U(Ry) such that
p = up'’. The maximal ideal of R, is pRn_1. By Proposition 3.2, p is an atom of R,,. So there is no atom in R,
of the form u/p'* with u' € U(Ro) and k € N*, k > 2n+1 (if k > 2n+1, we can write u'p’* = (up'®)(u1u'p’* %)

with u~lu/p’* ™% € p"Ry C R,).

Proposition 3.2 provides a characterization of atoms of the form u’p'Zk for some k& € {1,...,n} where
u' € U(Ry). We show by induction on n that the other nonassociate atoms of R, are of the form vp'*"*!

for any v € U(Rp) (*).

e Any atom of R; is in pRy. Now, vp/ % is an atom of R; for any v € Ry. If not, there exist z,y € pRy
such that vp’® = zy, a contradiction. So (*) is shown for n = 1.

e Let n > 1. Assume that () is satisfied for n. An atom of R, ; is of the form u’p’k with k < 2n + 3,
u' € U(Rp). If k is even, we are in the situation of Proposition 3.2. If k is odd with k£ < 2n 4+ 1, we can
set k = 2m + 1 with m < n. Moreover, u'p’k lies in the maximal ideal pR, of R,4;. It follows that

1 12m-—1

v'p € Ry, for some v' € U(Ry), a contradiction by the induction hypothesis.

12n+3 2n+3

First, we have vp € Ry for any v € U(Rp). Now, assume that there is some v € U(Rp) such that vp'
is not an atom in Rpy1. There exist u;,us € U(Rp), k¥ € N, k¥ < 2n + 3 such that
vp*"t? = (ulp’k;)(u2p’2"+3_k'), where ulp'k', uzp’2"+3”k' € pR,, so that uip’k’"2,u’2p'2"+l"k’ € R, for some
uf,uy € U(Rp). One of the exponents of p' is odd and then not less than 2n + 1, by the induction hypothesis.
But ¥ —2<2n+1and 2n+1—- k' < 2n+ 1 lead to a contradiction. So () holds for n + 1.

Because of |U/(Ro)/U(Ry)| = p", we get the number of nonassociate atoms up'>"*'. O
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Proposition 3.4. Let R, = Z'[p™w] be a local order, n € N*, p decomposed. Set p = pips where p; is an atom
of Ry for i = 1,2. The atoms of R, are the up* as in Proposition 3.2 and the up;"p2™™, up,"*™po™ for any
u € U(Rp), m € N*. Moreover, these atoms are associated to the e/pi™"p.™™ and to the e/p, "t ™pa™ for a given
m with 0 < j < p™ —p"~L.

Proof. Since p is decomposed, there exist p;, ps atoms of Ry such that p = p;p;. The maximal ideal of R, is
pRnu_1. So, for any n > 1, any nonzero nonunit element of R,, can be written upip3, where u € U(Rp), r,s € N*,
There is no atom in R, of the form up* with u € U(Ry), k € N*, k > n since we can write up® = (up™)pF—".

We show by induction on n that:

(1) no nonzero nonunit element of R, is of the form upips, u € U(Ry), T # s and inf(r,s) < n.

(2) vpy"p™t™, up, "t ™p,y" are atoms of Ry, for any v € U(Ryp), where m € N*.

e (1) is obvious for n = 1 since the maximal ideal of R, is pRy. If up*p, is not an atom, there exist
z,y € pRy such that upT*ps = zy, a contradiction. So (2) is proved for n = 1.

e Let n > 1 and assume that (1) and (2) are satisfied for n. Consider a nonzero nonunit ¢ = up(p§ €
Rpy1, with u € U(Rp), T # s and inf(r,s) < n+ 1. Then z € pR, implies that up] 'p5~™" € R,
and we can assume that 0 < r < s. As 0 < r—1 < s — 1, it follows that up]~'p5~"! is a nonzero
nonunit element of R, and then 1 < r — 1 < n, a contradiction with (1). Hence (1) holds for n + 1.

Now assume that up;**!p,"*1+™ is not an atom of R, for some u € U(Ry), m € N*. For such u,

there exist u',u” € U(Ry), T1,81,T2,82 € N* such that up,"t1p,"t1+™ = (u/'p]'pl?)(u"p{*p5?) where

uw'pl*ps?, u"pi' p§? are nonunits of Rpiy. It follows that 1y + sy =n+land ro+82 =n+1+m.

1,71 1,81 ri—1,_ro—1 ", 81—1_sa~1

But, since u'p]'p}?, u"pi*p3® € pR,, we obtain u'p* " p* ™, u"pl* T pi?”" € R,. Then up"p;"*™ =
p(u'pfr 521 (' pft T p3~1) is a product of at least two nonunits of R,,. Indeed, (rp — 1) + (85 — 1) =
n—1+m > n > 0. The induction hypothesis on (2) leads to a contradiction, so that we get (2) for

n + 1. The proof is the same for up, "™ p,".

Finally, if n < r < s, we can write up{p} = (p1p2)" "(up?ps™™~"), which is not an atom for any
u € U(Ry).
Because of |U/(Rp)/U(R,)| = p"~!(p — 1), we get the number of nonassociate atoms up; "p;"*™. o

Once the nonassociate atoms are known, we are in a position to give an evaluation of the two length functions
l and L. We have to consider the three possible decompositions of the prime integer p. First we give a lemma
applicable in any case.

Lemma 3.5. Let R, = Z'[p"w] be a local order, n € N*, p a prime integer and z = up® € R, u € U(Rp) such
that 0 < k < 2n. Set s = inf{i € N* | u € U(Rn-i)}. Then s < k. Moreover:

1. z)=14ifs=k

e k<2s

2. U(z)=2ifs<kand { e k=25 and either k=2 or p#2

e k> 2s and k is even

3. U(z)=3ifk=2s#2andp=2orifk>2s, 8#2 andk is odd.
4. l(z)=4 ifp=s=2andk=35.
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Proof. Let z = up* € R, with u € U(Ry) = U(Rp—n). Since {U(R;)}ien is a decreasing sequence, consider
s=inf{i € N* |u € U(Rpn—;)}. Assume s > k > 1so that R, < R,_, and u € U(R,_t), a contradiction.

First, note that whatever is p, only atoms of the form vp* appear in a factorization of up*.
(1) Case l(z) = 1 is given by Propositions 3.2, 3.3, and 3.4.

(2) Case I(z) = 2 is obtained when we can write up® = (u;p*)(uzp*?) with u;p* an atom for i = 1,2.
Assume that this condition is fulfilled and that k; < ko. We have equalities u = uyug and k = k; + kg
with conditions of Proposition 3.2 for u;p* so that R,_k, C Ry—k,, which implies u € Rp_k,.

e If ky = ks = 1, we have k = 2 and any factorization of « has length 2 as soon z is not an atom, that
is, when s = 1. Conversely, if k =2 and s = 1, we get I(z) = 2.

s Assume now that k; > 1, so that us € Rp_k, \ Rn—k,+1-
- Let s> 1,thenu € Ry, \ Ry—s41 so that Ry_,41 < Ry—k, which gives s —1 < k; or s < ks.
But we also have uz = uy 'u. Set t = sup(s, k;). It follows that uz € Ryt \ Rn—g,+1 SO that
ke —1<t<ksandt=ks.

x If k& < s, we obtain that ¢t = s = kg and k < 2s. Conversely, if k¥ < 23, set ko = s
and k; = k — s. Take u; € Rn—h \Rn—k;-H ifky >loru, € Roy if kl‘ = 1. Then
Uy = uu{'1 € Rpu—k, \ Rn—ky+1 so that u;pF is an atom for i = 1,2 and I(z) = 2. Case
U(Rp—k,) = U(Rp—k,+1) cannot happen.

*x If by = s, we obtain that t = s = k; = k; and k = 2s. Conversely, if k = 2s, set k; =
ko = s. There exist uj,us € U(Rn-s) \ U(Rp—s+1) such that u = wujue if and only if
|U(Rp—3s)/U(Rp—s+1)| > 2 and then I(z) = 2. This condition is satisfied if and only if p # 2.

x If k; > s, we obtain that ¢t = k; = k; and k > 23 is even. Conversely, if k > 2s is even, set
k1 = ko = k/2 > 1. There exist u1,uz € U(Rp—k,) \ U(Rn-k,+1) such that u = ujus if and
only if |[U(Rp—k,)/U(Rn-k,+1)| > 1, and in this case I(z) = 2. This condition always holds.

- Let s =1< kg, sothat Ry} C Rp_gy41- As ug = uu{l € Ru_i, \ Rn—k,+1, it follows that
ko —1 < k; and k1 = k2 = k/2 so that k is even. The converse is as in the case k; > s > 1.

(3) Consider the remaining cases for which we have I(z) > 2.
e k=2s#2and p=2. Nowz = p(up*~!) is such that k — 1 < 2s so that [(up*~!) = 2 and I(z) = 3.

e k> 2sand kis odd. Then ¥ =k —1> 2sis even. But 2n > k > k' > 25 gives s < n. We get
I(up*~!) = 2 in every case except when k' = 2s # 2 and p = 2. In this case, we have z = up?**! =
(up®)(p°*+!) with up® an atom. If sisodd, let s = 25'+1 and 4’ € U(Rn_¢—1)\U(Rn_s) which exists
since n > ¢’ + 1. Then u'p**! and u/~1p*+! are atoms such that z = (up®)(u'p® +!)(u'~1p*+!)
which gives [(z) = 3. Finally, let s be even. Assume first s > 4. Since s— 1< s <n and n > 2,
there exist u; € U(Rp—s+1) \ U(Rn-s4+2) and uz € U(Rp-2) \ U(Rp-1) such that u;p*~! and usp?
are atoms. Set uz = uuj'u;’', then = = (uzp®)(u1p®~!)(u2p?). Inequalities 2 < s — 1 < s give
uz € U(Rn—s). But uyus € U(Rp—_s41) leads to us & U(Rn—s+1) so that uzp® is an atom and
l(z) = 3.

(4) Let s =2,k = 5and p = 2, so that u € U(Rp—2)\U(Rp-1). Ifl(z) = 3, there exist u; € U(Rp), 1 =1,2,3
such that up® = (u1p*)(uzp*?)(usp*?) with u;p* atoms. But k; + kg + k3 = 5 gives k; = ky = 1 and
k3 =3 orky =1 and k2 = k3 = 2. Since u € U(Rn—2) \U(Rp—1) and [U(Rn-2)/U(Rp-1)| = 2, there is
no solution in both cases. But we have z = p®(up?) which gives I(z) = 4. (]
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Theorem 3.6. Let R, = Z'[p"w] be a local order, n € N*, p inert and ¢ = up* € R,, u € U(Ry). Set
s=inf{i € N* |u € U(Rn-i)}. Then

1+ [k/n] if n does not divide k and k > 2n
Uz) =14 k/n if n divides k and k > 2n
1,2,3 or 4 under the assumptions of Lemma 3.5
Lz)=k-s5+1
Moreover, l(z) = k/n and L(z) = k.

Proof. Under the assumptions of Lemma 3.5, we get {(z) = 1,2,3, or 4.

Now, let £ > 2n. The least length is obtained by a factorization by the largest atoms, that is to say, by some
vp®, v € U(Ro) \U(Ry). Let k =gn+r, 0 < r < n be the Euclidean division of ¥ by n. Then ¢ > 2.

If r = 0, there exist v1,...,vq € U(Rp) \ U(R1) such that u = vy ---vg since [U(Ro)/U(R:)| =p+12>3
(consider the equation 21 + -+ 2z, =a, a € Z/(p+ 1)Z, x1,...,24 € Z[/(p+ 1)Z\ {0}). Then I(z) = ¢ = k/n.

If r # 0, we get I(z) > q. Moreover, there exists v € U(R,,—,) such that vp” is an atom. Then we use the
previous method to get a factorization of uv™!p? and I(z) = ¢+ 1 = 1+ [k/n].

The greatest length is obtained by a factorization by the smallest atoms, that is to say, by u'p, u' € U(R,-1).
If s = 1, then up is an atom and L(z) = k. Let s > 1 so that u ¢ U(R,_1) and consider a factorization
T = H:zl u;p¥ where the u;p* are atoms such that k; < ... < k;. This provides the decreasing sequence
U(Rp—k,) C ... CU(Rp—k,)- But u = uy-- u; gives u € U(Rp—,) so that s — 1 < k; or s < ky. For ky = s,
we get the factorization up* = (up®)p*~* into k — s + 1 atoms. If k; > s, the exponent of p in z(u;p**)~! is less
than k — s, which gives a factorization of z with smaller length. So L{z) = k — s + 1 in any case.

Consider now the asymptotic behavior. Let m € N* so that z™ = u™p™*. For large values of m, we get
mk > 2n so l(z™) = [km/n] + a, where a = 0 or 1 and {(z) = nzgn I(z™)/m = k/n. In the same way, we get
o0
L(z™) = km — 8, + 1 where s, = inf{i € N* | u™ € U(R,-;)}. But 1 < s, < n so that L(z) = k. O
Theorem 3.7. Let R, = Z'[p"w] be a local order, n € N*, p ramified and p ~ p'? in Ry, and set m = 2n + 1.

Letz =up* € Ry, u e U(Ry). If k is odd, then k > 2n + 1; if k is even, set z = u'p* where k' = k/2,
u' € U(Ry), s =inf{i € N* |u' € U(Rn-;)}. If m divides k, set a = 0; otherwise set a =1. Then

k/2n+1)]+a, if k>2n
I(z) =

1,2,3 or 4 under the assumptions of Lemma 3.5

kf2—s+1if kis even
L(x) =

(k+1)/2—nif kis odd
Moreover, I(z) = k/(2n + 1) and L(z) = k/2.

Proof. By Proposition 3.3, the atoms of R,, are of the form up* as in Proposition 3.2 and the up'2"+1 for any
u € U(Ro). Let z = up'™ € Rn, u € U(Ry). If k < 2n, we get that k is even and assumptions of Lemma 3.5
hold, so l(z) =1,2,3 or 4.
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Assume k> 2n+1=m. Set k=gm +r, 0 <7 < m. The largest atoms are the vp'*"*! for any v € U(Ro).
If r = 0, we can write z = up'"™ so that [(z) = q. If r #0, we get m+ 1 < m + 7 < 2m and q > 1. There exist
u” ur,us € U(Rp), ki1,k2 € N* such that u,-p‘k‘ are atoms with up’k = u"p’(q"nm(ulp'k‘)(uzp'kz) (we have to
consider two cases according to the evenness of m + r). So l(z) = ¢ + 1.

The smallest atoms are of the form vp, v € U(Rn_1). If k is even, set k = 2k’ so that z = u'p* with
u' € U(Rp) and s = inf{t € N* | v’ € U(R,-:)}. Proof of Theorem 3.6 is again valid and shows that
Liz) =k —s+1=%k/2-s+1 I kisodd, P! appears at last one time in the factorization of z.
But, we can write z = (u"p’Q"H)pk%ﬁl—), u" € U(Ry), which gives L(z) = 1+ (k- (2n+1))/2 = (k+1)/2—n.

Consider now the asymptotic behavior. Let m € N* so that z™ = u™p'™*. For large values of m, we get
mk > 4n so [(z™) = [km/(2n + 1)] + a, where @ = 0 or 1 and I(z) = k/(2n + 1). In the same way, we get
L(z™) = km/2+ b where b= 1 — s or 1/2 — n so that L(z) = k/2. m)

Theorem 3.8. Let R, = Z'[p™w] be a local order, n € N*, p decomposed and p = p1ps where p; are two atoms
of Ry for i = 1,2. Let x = up,*'p*? € R,, u € U(Rp). Then ky,ky # 0 and k1 = ko if inf(ky, ks) < n. Set
s=inf{i € N* |u € U(Rp—;)}. Then

1,2,3 or 4 under assumptions of Lemma 3.5

1 4f inf(ky,ke) =n with ky # ko

3 if inf(ky, ko) =2n, ki=ky, p=2,n>40rn=3,s#lorn=4,5s#30rp=3, n=s>1
or k1 —ka| =1, p=2

4if ki =ke=2n,p=2,n=20rn=3,s=1lorn=4,s=3

2 in the other cases

\

inf(ky, ko) +1—s if ki = ke
L(z) =

inf(ky, ko) + 1 —n if ky # ko

Moreover, L(z) = inf(ky, k2) and l(z) = 0.

Proof. By Proposition 3.4, the atoms of R, are the vp* as in Proposition 3.2 and the vp;"pa™t™, up, " ™p," for
any v € U(Rg), m € N*. Let z = up;*1po** € R,, u € U(Rp). Then ki, ks # 0 and k; = ko if inf(ky, ko) < n.
In this case, r = up® with k < n and results are those of Lemma 3.5 for I(z) and Proposition 3.6 for L(z).

e Assume n < inf(ky, k2) < 2n. If k; = kg, only atoms of the form vp* factorize z and we use again Lemma
3.5. Let k; # ky and assume k) < ko. As the largest atoms are of the form vp;"p,"t™, vp "+ py™ for
any v € U(Rp) and m € N*, we can write z = (u”p*1=")(uu" "' pPpk2t7=*1)  where u"p*'~™ is an atom,
if k; >n,sothat [(z) =2 and l(z) = 1if k; = n.

e Assume 2n = inf(k;, k2) = k1.

x If ky = ks, we get z = up*™. Proof of Theorem 3.6 works if [U(Ro)/U(R1)| = p—1 > 3, that is if
p# 2,3 orif n = 1. In this case, l(z) = 2.
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- Let p = 2, so that U(Ry) = U(R;). The largest atoms of R, are of the form vp™~!, v € U(Ry), so
that [(z) > 2. In fact, we can write up®® = ]'[‘;Lluip"z, u; € U(Ry), with u;p* an atom, so that
[(z) =3 in any case (write 2n = (n— 1)+ (n - 1)+ 2 = (n — 1) + (n — 2) + 3), except when n = 2
orn=3,s=1orn=4,s=23, and in this case, I(z) = 4.

- Let p = 3, so that |U(Ro)/U(R:)| = 2. The largest atoms of R, are of the form vp",
v € U(Ro) \U(Ry).

If s < n, we write up®™ = (u1p™)(u;  up™), w1 € U(Ro) \U(R,) which gives I(z) = 2.

If s = n > 1, we cannot write up?® = (u;p")(u2p™), with u;,up € U(Ro) \ U(R;) but
up?™ = p(up?™~1), with 2n — 1 < 2s gives I(z) = 3 by Lemma 3.5. If s = n = 1, we get [(z) = 2.

* If ky < kg, we get I(z) = 2 except if ky = k1 + 1 and p = 2. In this case, [(z) = 3.

o Let inf(k;, k2) > 2n. We can write = (up}p2*2~")(p ¥ ~"pl) so that I(z) = 2.

The smallest atoms of R, are of the form u'p with v’ € U(R,—_1). If k; = ko, we can argue as in Theorem
3.6 and L(z) = k; — s + 1. Assume k; # ko, for instance, k1 < ko, so that n < k; < k. We can then
write & = (uplpe*2tn—k)pki—n and L(z) =1+ k; —n.

Consider now the asymptotic behavior. Let m € N* so that z™ = u™p,™¥1p,™*2. It is obvious that
l—(m) =0 and ﬁ(m) = inf(ki, ko). ]

These results allow a concrete application of the following result of D.D. Anderson, D.F Anderson,
S.T. Chapman, and W.W. Smith [2, Theorem 12] to the monoid of nonzero elements of a local order.

Theorem 3.9. Let H be an atomic monoid and ¢ € H a nonunit such that {y € H | y divides 2™ for some
integer n > 1} has only a finite number of nonassociate irreducible elements. Then Ly(z) and ly(zx) are
each positive rational numbers. Moreover, there are integers m,n > 1 such that ly(z) = ly(z*™)/km and
Ly(z) = Ly(z*™)/kn for all integers k > 1.

In our situation, we know exactly the values of m and n.

Theorem 3.10. Let R, = Z'[p"w] be a local order, n € N*, p inert or ramified and z € R, a nonzero nonunit.
There are m,m' € N* such that [(z) = l(z"™)/rm and L(z) = L(z™™)/rm’ for all r € N*. For instance,
m=2n, m'=p* Y (p+1) ifpisinert and m =2n+ 1, m' = p™ if p is ramified.

Proof. Let p be inert and = = up* € R,,, u € U(Ry). By Proposition 3.6, we have [(z) = k/n and L(z) = k. Set
m = 2n and m’ = p"~!(p + 1) and take any r € N*. Then z™™ = u™™p? ¥ and I(z™™)/rm = 2rkn/2rn? = (z).
In the same way, o™ = u'®" P+Dprke"Hp+1) o pree™ e+ in R since |U(Ro)/U(Rn)| = p™ " (p + 1), s0
that s,,m: = 1. Then L(z™™)/rm' = rkp"~(p+ 1)/rp" 1 (p+ 1) = L(z).

Let p ~ p'2 in Ry ramified and z = up'® € Ry, u € U(Ry). By Proposition 3.7, we have I(z) = k/(2n + 1)
and L(z) = k/2. Set m = 2n + 1, m' = 2p" and take any r € N*. Then z™™ = urmp TR 44 l(z™)/rm =
rk/r(2n + 1) = l(z). In the same way, ™™ = u2?"p/>"*? "~ p?™" in R, since |U(Ro)/U(R,)| = p", so that
Syemt = 1. Then L(z™™)/rm' = rkp™/2rp™ = L(z). m]

Remark. This theorem does not hold for p decomposed since {(z) = 0 for any nonzero nonunit z € R,.
In fact, {y € R, | y divides z* for some k € N*} has an infinite number of nonassociate atoms. For instance, if
z = p" = p,"py", we get that p;"pa" ™" is an atom which divides z™*2 for each m € N*.
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4. ELASTICITY OF A WEAKLY FACTORIAL QUADRATIC ORDER

Since the two length functions /(z) and L(z) are known for every nonzero nonunit element z of a weakly
factorial quadratic order R, it is quite easy to calculate the elasticity of R. Indeed, p(R) = sup{p(z) | = €
R\U(R), = # 0} where we set p(z) = L(z)/l(z) (note that p(z) = 1 if = is an atom). It is enough to work with
a local order R with finitely many atoms in R. The following theorem gives a relation between elasticities of an
order and its localizations.

Theorem 4.1. Let R = Z[nw], n € N* be a weakly factorial quadratic order.
Then p(R) = sup{p(Rp) | P € Max(R), n € P}.

Proof. We apply the result of D.D. Anderson and D.F. Anderson [1, Corollary 2.15] to one-dimensional domains
which gives p(R) = sup{p(Rp) | P € Max(R)}. Moreover, the conductor of R is nR. For P € Max(R) such that
n ¢ P, we get that Rp = (R)p, with (R)p a PID, so p(Rp) = 1. ]

So, we have to reduce to the local case and consider the three possible decompositions of a prime p.

Proposition 4.2. Let R = Z'[p™w] be a local order, p a decomposed prime and n € N*. Then p(R) = oo.

Proof. I(z) < 4 for any nonzero nonunit ¢ € R but L{z) can take any value k € N* (Proposition 3.8). ]

Proposition 4.3. Let R, = Z'[p"w] be a local order, p an inert prime and n € N*. Then p(R,) = n.

Proof. Let z = up* € R,,, u € U(Ryp) and use Proposition 3.6 and Lemma 3.5. Set s = inf{i € N* | u € U(R,-;)}.
Assume that x is not an atom. If k¥ < 2n, then [(z) > 2 and L(z) < 2n gives p(z) < n. If £ > 2n we get also
p(x) < n and p(p®") = n so that p(R,) = n. ]

Proposition 4.4. Let R, = Z'[p"w] be a local order, p a ramified prime and n € N*. Then p(R,) =n + 3.

Proof. Let z = up’k € R,,, u € U(Ry), where p ~ p'? in Ry and use Proposition 3.7 and Lemma 3.5. Assume
that z is not an atom. If ¥ < 2n, then l(z) > 2 and L(z) < n gives p(z) < n/2. Let k > 2n+ 1. Thus
L(z) < k/2 and I(z) > k/(2n + 1) gives p(z) < n + 1/2. Now, consider z = p' 2@+ o6 that plzy=n+1/2
and p(R,) =n+1/2. (|

Gathering these different cases and globalizing, we obtain the following.

€

Theorem 4.5. Let R = Z[nw] be a weakly factorial quadratic order with n = []p§*, p; prime integers, e; > 1.
If one of the p; is decomposed, p(R) = co. If not, we have p(R) = sup({e; + } | p; ramified} {e; | p; inert}).

We recall here the following result of F. Halter-Koch.
Theorem 4.6. [8, Corollary 4] Let R be an order in an algebraic number field and R its integral closure.

1. If for some prime ideal P of R there is more than one prime ideal of R lying over P, then p(R) = .

2. If for every prime ideal P of R there is ezactly one prime ideal of R lying over P, then p(R) is realized
by a factorization and p(R) is rational.
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Remarks

(1) Let R = Z[nw] be a weakly factorial quadratic order such that a decomposed prime p divides n and let
P be the maximal ideal of R containing p. There are two prime ideals in R lying over P so p(R) = oo.

(2) We can remark that in the local case and for any prime, p(R) = L(z)/I(z), for any nonzero nonunit
z € R.

In [5, Theorem 1.4] S.T. Chapman and J.C. Rosales obtained the following result. A Krull monoid M with

C(M) a torsion group is half-factorial if and only if I(z) = L(z) = 1 for every irreducible z € M. This result can
be extended to the case of weakly factorial quadratic orders.

Theorem 4.7. Let R be a weakly factorial quadratic order. Then R is half-factorial if and only if [(z) = L(z)
for every atom z € R.

Proof. One implication is obvious. Assume that I(z) = L(z) for any atom z € R. We can limit to the local
case by [12, Proposition 14] and Proposition 1.4 since any atom is primary. Remark 2 gives p(R) = 1 and R is
half-factorial. We could also use [5, Proposition 1.2] of S.T. Chapman and J.C. Rosales, which omits the Krull

assumption but requires {(z) = L(z) for any nonunit z. o
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