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ABSTRACT 

In a weakly factorial domain, every nonunit element is a product of primary elements. 
Weakly factorial orders are characterized by means of their group of units. IfR is a weakly 
factorial quadratic order, the fundamental unit of the integral closure of R determines the 
form of atoms of R, thereby allowing to compute the following factorization functions on 
R. We denote respectively by lex) and L(x) the inf and sup of the lengths of factorizations 
of a nonzero nonunit x E R into a product of irreducible elements. Explicit formulas for 
lex) and L(x) are given, from which the asymptotic behavior of these functions and the 
elasticity of R are deduced. 
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WEAKLY FACTORIAL QUADRATIC ORDERS 

1. 	 GENERAL RESULTS ON WEAKLY FACTORIAL ORDERS 

Factorization in an algebraic order R is quite simple to study when R is a PID. For an arbitrary order R such 
that every atom is primary the situation is not too far from unique factorization. Then R is called a weakly 
factorial domain. In this paper, we characterize and study factorization in weakly factorial quadratic orders. We 
begin with recalling some basic definition and results. 

Let R be an integral domain. 

(1) 	 R is called atomic if each nonzero nonunit is a finite product of irreducible elements (or atoms). 

(2) 	 R is called a weakly factorial domain if each nonunit of R is a product of primary elements 
(D.D. Anderson and L.A. Mahaney [3]). 

(3) 	 R is said to be a half-factorial domain (HFD) if R is atomic and whenever Xl ... Xm = Yl ... Yn with 

Xi, Yj E R atoms, then m = n (Zaks [15]). 

(4) 	 If R is an atomic domain which is not a field, Valenza defined the elasticity of R by 

p(R) = sup{mln IXl ... Xm = Yl ... Yn for Xi, Yj E R atoms} [13]. 

Moreover, p(R) is said to be realized by a factorization if there are atoms Xi, Yj E R with 
Xl ... Xm = Yl ... Yn and p(R) = min. In particular, the elasticity of an HFD is 1. 

Let X be a nonzero nonunit in an atomic domain R. Define as D.F. Anderson and P. Pruis [4] did: 

IR(x) = inf{n I X = Xl·· ·Xn , Xi E R irreducible}, 

LR(X) = sup{n I X = Xl·· ·Xn , Xi E R irreducible}, 

In this work, we use the following notation. 

Let d be a square-free integer and consider the quadratic number field K = Q(y'd). It is well-known that the 

ring of integers of K is OK = Z[w], where w = ~(1 + Vd) if d == 1 (mod 4) and w = Vd if d == 2,3 (mod 4). 
Moreover, Z [w] is a free Z-module with basis {I, w}. 

Let X be the (quadratic) character of K. Three types of decomposition of a prime integer p in Z[w] can occur. 

• There exists a maximal ideal P in Z[w] such that pZ[w] = p 2 (p is ramified) and X(p) = o. 
• There exist two maximal ideals 	Pl , P2 in Z[w] such that pZ[w] = Pl n P2 (p is decomposed) and 

X(p) = 1. 

• 	The ideal pZ[w] is a maximal ideal in Z[w] (p is inert) an~ X(p) = -1. 

For a real quadratic number field K, there is a unique unit € > 1 in OK such that the group of units of OK 
is {±1} x < € > and € is called the canonical fundamental unit. 

A quadratic order in K is a subring R of OK, which is a free Z-module of rank 2 with basis {I, nw} where 
n E N*. Then OK is the integral closure of R = Z[nw] and nOK is the conductor of R. 
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For a finite set S, we denote by lSI the number of elements of S. For x E lR, we set [x] = sup{n E Z In::; x}. 
For an integral domain R, we denote by R its integral closure and by U(R) its group of units. 

Section 2 is devoted to the characterization of weakly factorial quadratic orders, with emphasis on real orders, 

with respect to the fundamental unit. Let R = Z[nw] be a real quadratic order such that its integral closure R is 
a PID. Let I be the conductor of Rand e the fundamental unit of Z[w]. Then R is weakly factorial if and only if 

IU(R)/U(R) I = IU(R/I)/U(R/I) I = inf{k E N* I n divides bk} where ek = ak +bkw, ak,bk E Z. An evaluation 
of this number is obtained thanks to the class number formula. In particular, we can build infinite decreasing 
sequences of weakly factorial orders. 

In Section 3, we obtain all nonassociate atoms of a weakly factorial quadratic order. This allows us to study 
the length functions I and L and their asymptotic behavior. 

Another interesting property of weakly factorial orders is the computation of the elasticity of such orders. This 

is done in Section 4. Let R = Z[nw] be a weakly factorial quadratic order with n = TIp:', Pi prime integers. If 
some Pi is decomposed, peR) =00. If not, we have peR) =sup({ei + 1/21 Pi ramified}, {ei IPi inert}). 

Before studying the quadratic case, here are properties available in a general context. 

First, recall a result of D.O. Anderson and L.A. Mahaney 

Theorem 1.1. [3, Theorem 12] Let R be a one-dimensional Noetherian domain. The following statements are 

equivalent: 

1. 	 R is weakly factorial. 

2. 	 Every atom is primary. 

3. 	 Pic(R) =O. 

If these conditions hold, the integral closure of R is a PID. 

Moreover, the following theorem gives a characterization of weakly factorial orders. 

Theorem 1.2. Let R be an algebraic order such that its integral closure R is a PID and let I be the conductor 

of R. Then R is weakly factorial if and only if IU(R)/U(R) I= IU(R/ I)/U(R/1)1. 

Proof. By [12, Theorem 2] R is weakly factorial if and only if U(R)/U(R) -+ U(R/ I)/U(R/ I) is an isomor­
phism. When proving this theorem, we showed that U(R)/U(R) -+ U(R/ I)/U(R/ I) is always an injective group 
morphism. So IU(R)/U(R) I divides IU(R/I)/U(R/I)I, since this last number is finite, and hence the equality is 
equivalent to R being weakly factorial. 0 

The following result of F. Halter-Koch allows to work in local orders. 

Theorem 1.3. [9, Corollary 1.7] Let H be a weakly factorial monoid. Then every a E H \ H X is a product of 

(finitely many) mutually not related primary elements, and this representation is unique up to the order of the 

factors and up to associates. 

In fact, a weakly factorial domain is a weakly factorial monoid for the multiplicative structure. 

Proposition 1.4. Let R be a weakly factorial order and x E R be a nonzero nonunit element. 

1. 	 For each P E Max(R), there is a bijection between the set of P-primary atoms of R and the set of atoms 

of Rp (up to units). 
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2. 	 If x =n~=l (nj~l Xi,j) is a factorization into atoms in R, with Xi,j a Pi-primary atom for each j, there 
exists Ui E U(RpJ such that x/I =Ui nj~l xi,j/1 is a factorization into atoms in RPi for each i. 

3. 	 If x/I = Ui nj~l Xi,j /1, Ui E U(Rpi)' is a factorization into atoms in Rpi for each Pi E Max(R) such that 

x E Pi, with Xi,j a Pi-primary atom for each j, there exists U E U(R) such that x =Un~=l (nj~l Xi,j) 
is a factorization into atoms in R. 

Proof. Thanks to Theorem 1.3, there is a monoid homomorphism ip : R \ {O} -+ l1PEMax(R)(Rp \ {O} )/U(Rp) 
defined by ip(x) = (ipp((x/1)p))PEMax(R), where ipp : Rp \ {O} -+ (Rp \ {O} )/U(Rp) is the canonical map. In 
particular, if z = (ipp((xp/1)P))PEMax(R), where Xp = 1 for all but finitely many XPll'" ,xP.. such that XPi 
is a Pi-primary element, then z = ip(XPl ... xP.. ). It follows that ip is surjective and induces an isomorphism 

(R \ {O})/U(R) -+ l1PEMax(R)(Rp \ {O})/U(Rp). Then statements (1), (2), and (3) follow easily. 

The proof of (4) follows from (3) since the length of a given factorization in R is the sum of the lengths of the 
corresponding localized factorizations. 0 

2. 	 CHARACTERIZATION OF WEAKLY FACTORIAL QUADRATIC ORDERS 

Let R be a quadratic order with conductor I. The orders of the two factor groups U(R)/U(R) and 
\ 

U(R/I)/U(R/I) appearing in Theorem 1.2 can both be calculated. The class number formula for quadratic 
orders gives one of the orders and the study of the fundamental unit gives the second one. 

Proposition 2.1. Let R =Z[nw] be a quadratic order where n = np~i E N*, Pi prime integers and ei 2:: 1. 

The order of U(RjnR)jU(RjnR) is g(n) =n I1 (1- X~i)). 

In particular, if nand m are coprime, we have g(nm) = g(n)g(m). 

Proof. Compare the class number formula IPic(R)I = IPic(R)IIU(R)jU(R)I-1n I1 (1 - X~i)) (see 

H.M. Edwards [7, Chapter 9.6]) and the following formula IPic(R)1 = IPic(R)IIU(R)/U(R)I-1IU(R/nR)/U(R/nR)1 
(see J. Neukirch [11, Theorem 12.12]). 0 

It remains to get the value of IU(R)/U(R)I. In the imaginary case, this is quite easy and we recover the well 
known imaginary quadratic orders with trivial class group (see D.A. Cox [6, Theorem 7.30]). 

Corollary 2.2. There are four non-integrally closed weakly factorial imaginary quadratic orders: Z[2i], Z[2j], 

Z[3j], and Z[A where j ~(-1 + v'=3). 

For a real quadratic order R, we can evaluate IU(OK)/U(R) I according to the fundamental unit. 

Lemma 2.3. Let c be the fundamental unit of the ring of integers OK = Z[wJ of K = Q(Vd) where 
d > 0 is square-free and assume that OK is a PID. Let R = Z[nw], n E N*. Then IU(OK )/U(R)I is the 
least k E N* such that ck E R, or equivalently, such that n divides bk, where ck = ak + bkw with ak, bk E Z. 
Such an element ck is called the fundamental unit of R. In particular, R is weakly factorial if and only if 

k = IU(OK/nOK)/U(R/nOK)I. 

Proof. We have U(OK) = {±l}x < c >. Moreover IU(OK)/U(R)I is finite and is the order of the class of c in 
the factor group U(OK)/U(R), a finite cyclic group generated by the class of c. This order is in fact the least 
k E N* such that ck E R. If we S(:,t ck =ak + bkw with ak, bk E Z, we get that IU(OK )/U(R)I is the least k E N* 
such that n divides bk. The end of the proof follows from Theorem 1.2. o 
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In fact, we can restrict to integers n which are a power of a prime by the following lemma. 

Lemma 2.4. Let OK = Z[w] be the ring of integers of a real quadratic number field K. Let nand m E N* 
be two coprime integers and consider R' = Z[nw], R" = Z[mw] and R = Z[nmw]. Then R = R' n R" and 
IU(OK )/U(R)I = lcm(IU(OK )/U(R')I, IU(OK )/U(R") I). 

Proof. Obviously, we have R c R'nR". Any x E R'nR" can be written x = a+bnw = c+dmw with a, b, c,d E Z. 

But gcd( n, m) = 1 and {I, w} is a basis combine to yield n divides d so that x E R. Thus R = R' n R". 


Now let £ be the fundamental unit of Z[w]. Set P IU(OK )/U(R)I, q = IU(OK )/U(R')I, r IU(OK )/U(R") 1 

and s = lcm(q, r). Then we have £8 E R' n R" = R so that P divides s. Conversely, as £P E R = R' n R", we get 
that q and r divide p, and so does s. 0 

Proposition 2.5. Let nand m E N* be two coprime integers. Consider R' = Z[nw] and R" Z[mw] two 
quadratic orders in the same number field K with ring of integers OK = Z[w]. Set R R' n R". Then R is 
weakly factorial if and only if R',R" are weakly factorial and IU(OK)/U(R')I, IU(OK)/U(R") 1 are coprime. 

Proof. Assume first that K is a real quadratic number field. If R is weakly factorial, so are R' and R" by [12, 
Corollary 2]. 

Conversely, assume that R' and R" are weakly factoriaL It follows that OK is a PID. By Theorem 1.2, 

R is weakly factorial if and only if IU(OK )/U(R)I = IU(OK /nmOK )/U(R/nmOK) 1 g(nm) = g(n)g(m), 
with notation of Proposition 2.1 since nand m are coprime. The same theorem gives IU(OK )/U(R')I = 
IU(OK /nOK )/U(R' /nOK)1 = g(n) and IU(OK )/U(R")I = IU(OK /mOK )/U(R" /mOK)1 = g(m). But, thanks 
to Lemma 2.4, we have IU(OK )/U(R)I = lcm(g(n),g(m)). Then R is weakly factorial if and only if g(n)g(m) = 
lcm(g(n),g(m)) or equivalently, if and only if g(n) and g(m) are coprime. The two parts of the proposition are 
proved in the real case. 

We can remark that this situation does not occur in the imaginary case. o 

Remark. In [14, Theorem 4.1], R. Wiegand shows that a quadratic order R has torsionfree cancellation if and 
only if Pic(R) -+ Pic(R) is an isomorphism, which is equivalent to R being weakly factorial when R is a PID. 
Then, Proposition 2.5 can also be derived from [14, Remark 4.7] by replacing "torsion free cancellation" by "weak 

factoriality" . 

Let K be a quadratic number field such that the ring of integers OK = Z[w] is a PID and let R = Z[nw] 
be a quadratic order in K, where n = niP~i, Pi prime integers. To see whether R is weakly factorial or not, 
it is enough to study the orders Z[P~iW]. A necessary condition for R to be weakly factorial is that the orders 

ri IU(OK /p~i OK )/U(Z[P~iW]/p~iOK)1 are pairwise coprime. Proposition 2.1 gives these orders. If Pi is a 
decomposed or an inert odd prime, ri is even, by Proposition 2.1. So, there is at most one decomposed or inert 

odd prime among the Pi. 

We know (Hasse [13, Chapter 29.3, p. 590]) that if the ring of integers of K =Q(y'd) is a PID, where d > 0 
is square-free, then d is one of the following types: (1) d is a prime integer, (2) d pp', P 1:- p' prime integers, 
p,p' == 2,3 (mod 4). So, there are at most two odd prime integers Pi which are ramified in K. This gives the 

following corollary. 

Corollary 2.6. Let Z[nw] be a weakly factorial real quadratic order with n n~=lp~i ,Pi prime integers. Then 
r ~ 4 with at most two Pi decomposed or inert {if there are two Pi decomposed or inert, then 2 = Pi is one of 
them and ei I} and at most two Pi ramified {if 2 is one of them, all Pi are ramified}. 

Proof. We have just proved above a part of the corollary. 
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Now, assume that Pi = 2 for some i, with 2 inert or decomposed and let Pj = P be another inert or decomposed 

prime dividing n. As P is odd, P ± 1 is even. If ei >1, then ri and rj are both even, so that Z[P~iW] n Z[Pjiw] is 

not weakly factorial. 

If 2 is ramified and n is even, Z [nw] is not weakly factorial if some decomposed or inert prime p divides n, 
since p is odd. 0 

Set Rn = Z[pnw] and consider the decreasing sequence {Rn}nEN* of suborders of Z[w], where p is a prime 

integer. We are going to study how the weakly factorial condition behaves in the sequence. 

First, we give two technical lemmata. 

Lemma 2.7. Let K = Q(Vd) where d> 0 is square-free. Consider x = r + sw E K, r,s E Q. For mE N*, set 
xm = r' + s'w, r',s' E Q. 

1
I'ld - 2 3 ( d 4) h '- ",m Ck m-k kd!!. d' - ",m Ck m-k kd lo ­1. 	 J =, mo , t en r - L.."k=O,even mr S 2 an s - L.."k=I,odd mr S ~. 

2. 	 If d == 1 (mod 4), then r' = 2-m E~o,even C~(2r + s)m-kskd~ - 2-m E~l,odd C~(2r + s)m-kskdlo;l 

and s' = 2I - m ",m Ck (2r + s)m-k skd~ .L.."k=l,odd m 

Proof. 

(1) 	 If d == 2,3 (mod 4), we have w = Vd so that xm = (r+sw)m = E~o C~rm-k skwk =E~o C~rm-kskd~ 

",m Ck m-k kdlo (",m Ck m-k kd!!..=.!.) h' h' th It= 	L.."k=O,even m r S 2 + L.."k=l,odd m r S 2 W W IC gIves e resu . 

(2) 	 If d == 1 (mod 4), we get w = ~(1 + Vd) and x = H(2r + s) + sVd] so xm = ~[(2r' + s') + s'Vd] = 
1

I 	 ",m Ck (2 + )m-k kd!!. - I [",m Ck (2 + )m-k kd!!. + fJd ",m Ck (2 + )m-k kd lo - ]
2.... L.."k=O mrs S 2 - 2.... L.."k=O,even mrs S 2 ya L.."k=l,odd mrs S 2. 

Therefore it follows that r' = 2!.. E~o,even C~(2r + s)m-kskd~ - 2!.. E~l,odd C~(2r + s)m-kskdlo;l 
1 

, 	 I ",m Ck (2 )m-k kd lo -and s 	= 2.... - 1 L.."k=l,odd m r + s s ~ . o 

Lemma 2.8. Let Z[w] be the ring of integers ofQ(Vd) where d > 0 is square-free and letc' = a+bpw, a,b E Z, 
n-l 

be a unit of Z[w], with p a prime integer. For n E N* , set c~ = c'P 

1. 	 There exist an, bn E Z such that c~ = an + bnpnw. 

2. 	 p does not divide an for any n E N* . 

3. 	 If (p, b) = 1, then (p, bn) = 1 for any n E N*, except if p = 2 and d == 1 (mod 4). In this case, b2 is even. 

Proof. 	We have c~ = C'~_l' We prove (1) and (3) by induction on n. 

(1) is satisfied for n = 1 since c~ = c'. 


Assume that C~_I = an-l + bn_1pn-Iw, with an-I, bn- l E Z. Now use Lemma 2.7. 


If d == 2,3 (mod 4) the coefficient of w in c~ is E~=l,odd C;a~-=-~ b~_lpk(n-l)dlo;l. Since p divides C; for 

k 	= 1, ... ,p - 1, then pn divides C;a~=~ b~_lpk(n-l) for k = 1, ... ,p - 1. For k = p, the coefficient of d~ is 

~_Ipp(n-l), divisible by pn since p(n - 1) ~ n. 
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If d == 1 (mod 4) the coefficient of w in e~ is 21- p E~=l,Odd C;(2an-l +bn_1pn-l )P-kb~_lpk(n-l)dl!.j!, divisible 

by pn (same proof as in the previous case when p f:. 2). 

If p 2 this coefficient is 2nbn_1(an-l + bn_12n- 2), which gives the result, since n ;::: 2. 

So (1) is proved. 

(2) Since e' and e~ are invertible, e~ rt pZ[w], so p does not divide an for any n E N*. 

Let us prove (3) and assume that p does not divide bn - l , with n ;::: 2. 

If we have d == 2,3 (mod 4), the same proof as in (1) gives that pn+l divides C;a~=~ b~_lpk(n-l) for 

k 	= 2, ... ,p - 1 and ~_lpp(n-l) when p f:. 2. But, for k = 1, we get that pa~=~bn_1pn-1 = a~=~bn_1pn 

is not divisible by pn+l. The proof is straightforward for p = 2. 

If d == 1 (mod 4) and p f:. 2, the proof is the same since p does not divide 2an-l + bn_1pn-l. 

In both cases, p does not divide bn . 

If p = 2 and d == 1 (mod 4), the calculation made in (1) gives that bn = bn-t{an-l + bn_12n- 2) is odd when 

bn- 1 is odd, except for n =2. In fact, a + b is even because a and b are both odd. 0 

Corollary 2.9. Let e be the fundamental unit of K = Q(vd), d > 0 square-free. Set Rn = Z[pnw], n E N*, p 
a prime integer. Let en be the fundamental unit of Rn. 

1. 	 Assume that Rn is weakly factorial. Then Rn+1 is weakly factorial if and only if en E Rn \ Rn+1. 

2. 	 If R2 is weakly factorial, so is Rn for every n E N*, except when p = 2 and d == 1 (mod 4). In this case, 

only Rl and R2 are weakly factorial. 

Proof 

(1) 	For n E N* set rn = /U(OK/pnOK)/U(Rn/pnOK) I. We have rn = pn-l(p - x(P)) by Proposition 2.1. 
Lemma 2.3 gives en = ern and Rn+l is weakly factorial if and only if the fundamental unit of Rn+l is ern+1 • 

As IU(OK)/U(Rn+dl divides rn+l, we haveern+1 = e~ E Rn+l . Moreover, /U(OK)/U(Rn)1 = rn implies 
IU(Rn)/U(Rn+dl = p or 1. It follows that Rn+l is weakly factorial if and only if U(Rn) f:. U(Rn+d, 
which is equivalent to en E Rn \ Rn+l . 

rl(2) 	Let e' = e = a + pbw be the fundamental unit of R 1. If R2 is weakly factorial, we get by (1) that 

e' rt R2 and (p, b) = 1. 
.. -1 

Assume that p f:. 2 or d't 1 (mod 4). By Lemma 2.8 we get that e'P E Rn \ Rn+l for every n E N*. 
An easy induction using again (1) shows that Rn is weakly factorial for every n E N* . 

If p = 2 and d == 1 (mod 4), Lemma 2.8 implies that ~ is even, where e,2 = a2 +4b2w is the fundamental 
unit of R2, so that e,2 E R3 , which is not weakly factorial. 0 

Example. Actually, only four situations of decreasing sequences {Rn = Z[pnW]}nEN occur. 

(1) 	Let d = 6. Then Z[w] is a PID and e = 5 + 2w E Z[2w], which is not weakly factorial. Nowe rt Z[3w], 
3which is weakly factorial, but e =485 + 22· 32w E Z[32w], which is not weakly factorial. 

(2) 	Let d = 5. Then Z[w] is a PID and e = w rt Z[2w], Z[5w], which are weakly factorial. Now, 
e3 = 1 + 2w ¢ Z[22w], which is weakly factorial. By Corollary 2.9, Z[2nw] is not weakly factorial 

5for any n > 2. As e = 3 + 5w ¢ Z[52w], we get that Z[52w] is weakly factorial and so is Z[5nw] for any 
n E N by Corollary 2.9. 
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3. LENGTH FUNCTIONS IN LOCAL WEAKLY FACTORIAL QUADRATIC ORDERS 

As we have seen in Proposition 1.4, to determine atoms or lengths of factorization in a weakly factorial order 
R we need only to study the localizations Rp for P E Max(R). In fact, it is sufficient to consider the localizations 
at the maximal ideals of R which contain the conductor I of R. Actually, if P does not contain I, we have an 
isomorphism Rp ~ Rp and Rp is a PID. Let R = Z[nw], n E N* be a quadratic order. The prime ideals of R 

containing the conductor are of the form pZ[n'w], with n =pn', and p a prime integer dividing n. 

Observe that if no decomposed prime divides n, the spectral map Spec(R) -t Spec(R) is bijective (see 
Section 1). In this case, if p is a prime integer dividing n, there is a unique maximal ideal P in R lying over pZ. 

Setting S = Z \ pZ, we have Rs ~ Rp and Rs ~ Rp, which are both local domains, with Rp a DVD. If we 
denote by ZI the localization Zs, we are in the following situation: p is an atom in Z/, ramified or inert in Rp as 
in R. We can again write Rp = Z/[W] with maximal ideal p'Rp, and Rp = Z/[qW], q a power of p. Moreover, Rp 

andRp are both free Z/-modules with'basis {1,w} and {1,qw}. We call Rp a local order. Ifpisadecomposed 
prime there is again a unique maximal ideal Pin R lying over pZ and isomorphisms Rs ~ Rp and Rs ~ Rp. 

Moreover, the groups of units of Rp and Rp are closely linked as can be seen by the following proposition. 

Proposition 3.1. Let R = Z[pnw], (p a prime integer) be a weakly factorial quadratic order and let S Z \pZ. 

Then there is an isomorphism U(R)/U(R) ~ U(Rs)/U(Rs). 

Proof. We have obviously an injection f : U(R)/U(R) -t U(Rs)/U(R~). Since R is weakly factorial, f is 
surjective. Let x = x'ls E U(Rs), x' E R, and s E S. Then x' is comaximal with pn in R. There exists 
u E U(R) such that a = ux' E R by [12, Theorem 2] whieh gives x = (u- 1 /l)(als) where u-1II is the image 
of u-1 in U(Rs) and als E U(Rs). It follows also that U(Rs)/U(Rs) is a finite cyclic group generated by the 
class of the fundamental unit in the real case (in fact, we can also consider a fundamental unit in the imaginary 
case). 0 

From now on, we work with a local order of the form Rn = Z'[pnw] where p is a prime integer, n E N*. Its 
maximal ideal is pRn-l. It follows that Ro = Z/[W] and pnRo is the conductor of Rn. We begin to characterize 
a family of nonassociate atoms of Rn independent of the decomposition of pin Z/[W]. 

Proposition 3.2. Let Rn = Z'[pnw] be a local order, p a prime integer, n E N* ,k E {2, ... , n} and u E U(Z/[W]). 

Then upk is an atom in Rn if and only if u E U(Rn-k) \ U(Rn-k+t}. In this case, upk is an associate of £ipk 

where 

• j = pn-k-l(p _ X(p»j' with 0 < j' < pk and (p,j') = 1 if 1 < k < n. 

• 0 < j < pn-l(p - X(P» where p - X(p) does not divide j if 1 < k n. 

up is an atom in Rn for u E U(Z'[w]) if and only if u E U(Rn-t}. Moreover, up is associated to £ip where 

• j pn-2(p - X(p»j' with 0 ~ j' < p if 1 < n. 

• 0 ~ j < p x(p) if 1 = n. 

In addition, if p is inert, all atoms of Rn are obtained in this way. 

Proof. Let u = a + bw E U(Z'[w]), a, b E Z'. Then x = upk E Rn if and only if pn-k divides b if and only if 
u E U(Rn-k). If u E U(Rn-k+t}, we get that upk-l E Rn and x = p(upk-l) is not an atom in Rn. Conversely, 
let u E U(Rn- k) \ U(Rn- k+ t) and assume that there exist x', x" E Rn such that x'x" = upk. If neither x' nor 
x" E U(Rn), they belong both to pRn- 1 so that upk-2 E R n- 1 and u E U(Rn-k+t}, a contradiction. 

up is obviously an atom as soon as up ERn. 
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Assume that p is inert. Then p is an atom in Ro and generates its maximal ideal. Any nonunit nonzero 

element x of Rn is of the form x = upk, where u E U(Ro). If k > n, we get that x (upn)pk-n is not an atom 

in Rn. Two parts of the proof are obtained. 


Let u E U(Ro) such that x = upk ERn. There exists j E N such that x is associated in Rn to Eipk 
since U(Ro)/U(Rn) is a finite cyclic group generated by the class of E. Although the value of j is not unique, 
we can determine a least value of j when x is an atom. In fact Eipk and Ei' pk are associates in Rn if and 
only if there exists v E U(Rn) such that Eipk = vEi'pk if and only if IU(Ro)/U(Rn)1 divides j j'. Now 
IU(Ro)/U(Rn)I = IU(Ro/pn Ro)/U(Rn/pnRo)1 = pn-l (p - X(p)) (this formula holds in the local case). For the 
least value of j, we get the condition 0::; j < pn-l(p - X(P)). Moreover, Ei E U(Rn- k) \U(Rn-k+d if and only 

if IU(Ro)/U(Rn-k)1 divides j and IU(Ro)/U(Rn-k+dl does not divide j. So we get: 

• 	If 1 < k < n, then Ei E U(Rn-k) \U(Rn-k+d if and only if pn-k-l (p- X(p)) divides j and pn-k(p_ X(p)) 
does not divide j, if and only if j =pn-k-l(p - X(p))j' with 0 < j' < pk and (p,j') = 1. 

• 	If 1 = k < n, then Eip is an atom when in Rn. Moreover, condition Ei E U(Rn- 1 ) where 
0::; j < pn-l(p X(p)) is equivalent to j = pn-2(p - X(p))j' with 0 ::; j' < p. 

• 	If 1 < k = n, then Eipn E Rn and Ei f/. U(Rd if and only if p - X(p) does not divide j. So we get 
condition 0 < j < pn-l(p X(p)) where p - X(p) does not divide j. 

• 	If 1 k n, then Eip is always an atom and we get condition 0 ::; j < p - X(p). o 

When p is ramified or decomposed, we have the following additional atoms. 

Proposition 3.3. Let Rn = Z'(pnw] be a local order, n E N*, p ramified, p '" p,2 in Ro. The atoms of Rn are 
the upk as in Proposition 3.2 and the up,2n+l for any u E U(Ro). Moreover, the up,2n+l are associated to the 
Eip,2n+l, 0::; j < pn. 

Proof. Since p is ramified, there exists an atom p' E Ro such that p '" p,2 in Ro and U E U(Ro) such that 
p =up'2 

• The maximal ideal of Rn is pRn- l . By Proposition 3.2, p is an atom of Rn. So there is no atom in Rn 
of the form u'p,k with u' E U(Ro) and k E N*, k > 2n+ 1 (if k > 2n+ 1, we can write u'p,k = (up,2)(U- 1U'p,k-2) 
with u- 1u'p,k-2 E pn Ro eRn). 

Proposition 3.2 provides a characterization of atoms of the form u'p,2k for some k E {I, ... , n} where 
u' E U(Ro). We show by induction on n that the other nonassociate atoms of Rn are of the form vp,2n+l 

for any v E U (Ro) (*). 

• 	Any atom of Rl is in pRo. Now, Vp,3 is an atom of Rl for any v E Ro. If not, there exist x, y E pRo 
such that Vp,3 = xy, a contradiction. So (*) is shown for n = 1. 

• 	Let n ~ 1. Assume that (*) is satisfied for n. An atom of R n+1 is of the form u'p,k with k ::; 2n + 3, 
u' E U(Ro). If k is even, we are in the situation of Proposition 3.2. If k is odd with k ::; 2n + 1, we can 
set k = 2m + 1 with m ::; n. Moreover, u'p,k lies in the maximal ideal pRn of R n+1 . It follows that 
v'p,2m-l ERn, for some v' E U(Ro), a contradiction by the induction hypothesis. 

First, we have vp,2n+3 E Rn+l for any v E U(Ro). Now, assume that there is some v E U(Ro) such that vp,2n+3 

is 	 not an atom in R n+1 • There exist Ut, U2 E U(Ro), k' E N*, k' < 2n + 3 such that 

2 +3 k' 2n+3 k' k' 2n+3 k' k' 2 2n+l k'
vp' n = (UIP' )(U2P' -), where UIP' ,U2P' - E pRn so that u~p' - ,u~p' - E Rn for some 

u~ ,u~ E U (Ro). One of the exponents of p' is odd and then not less than 2n + 1, by the induction hypothesis. 
But k' 2 < 2n + 1 and 2n + 1 k' < 2n + 1 lead to a contradiction. So (*) holds for n + 1. 

Because of IU(Ro)/U(Rn)I= pn, we get the number of nonassociate atoms up,2n+l. 	 o 
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Proposition 3.4. Let Rn =Z'[pnwJ be a local order, n E N*, P decomposed. Set P =P1P2 where Pi is an atom 
of Ro for i = 1,2. The atoms of Rn are the upk as in Proposition 3.2 and the UP1 nP2n+m, UPl n+mP2n for any 
U E U(Ro), mE N*. Moreover, these atoms are associated to the gip1 nP2 n+m and to the gip1 n+mp2n for a given 
m with 0:5 j < pn _ pn-1. 

Proof· Since P is decomposed, there exist PbP2 atoms of Ro such that P =PlP2· The maximal ideal of Rn is 
pRn- 1. So, for any n ~ 1, any nonzero nonunit element of Rn can be written uprp~, where U E U(Ro), r,8 E N*. 

There is no atom in Rn of the form upk with u E U(Ro), k E N*, k > n since we can write upk = (upn)pk-n. 

We show by induction on n that: 

(1) no nonzero nonunit element of Rn is of the form uprp~, u E U(Ro), r f:. 8 and inf(r,8) < n. 

(2) VPl np2n+m, VP1 n+mp2n are atoms of Rn for any v E U(Ro), where mEN"' . 

• 	(1) is obvious for n 1 since the maximal ideal of R1 is pRo. If UpiP2 is not an atom, there exist 
x, y E pRo such that UpiP2 = xy, a contradiction. So (2) is proved for n = 1. 

• Let n ~ 1 and assume that (1) and (2) are satisfied for n. Consider a nonzero nonunit x = uprp~ E 

Rn+l , with u E U(Ro), r f:. 8 and inf(r,8) < n + 1. Then x E pRn implies that Up~-lp;-l E Rn 
and we can assume that 0 < r < 8. As 0 :5 r - 1 < 8 - 1, it follows that Up~-lp;-l is a nonzero 
nonunit element of Rn and then 1 :5 r 1 < n, a contradiction with (1). Hence (1) holds for n + 1. 

Now assume that UP1 n+1P2n+1+m is not an atom of Rn+1 for some u E U(Ro), m E N*. For such u, 
there exist u',u" E U(Ro), r1,81,r2,82 E N* such that UP1n+lp2n+1+m = (u'p~lp;2)(ullprlp~2) where 

u'p~lp;2 ,u"pr1 p~2 are nonunits of Rn+1. It follows that r1 + 81 = n + 1 and r2 + 82 = n + 1 + m. 
But, since U'p?p;2, u"prlp~2 E pRn, we obtain U'p~1-1p;2-1, u"prl-1p~2-l ERn. Then UP1 nP2 n+m 
p(u'p~1-1p;2-1)(u"prl-1p~2-1) is a product of at least two nonunits of Rn. Indeed, (r2 -1) + (82 -1) = 
n 1 + m ~ n > O. The induction hypothesis on (2) leads to a contradiction, so that we get (2) for 
n + 1. The proof is the same for UPl n+mp2n. 

Finally, if n < r < 8, we can write uprp~ = (P1P2t-n(upfp;+n-r), which is not an atom for any 
u E U(Ro). 

Because of IU(Ro)/U(Rn) I= pn-1(p -1), we get the number of nonassociate atoms UP1 nP2n+m. 0 

Once the nonassociate atoms are known, we are in a position to give an evaluation of the two length functions 
land L. We have to consider the three possible decompositions of the prime integer p. First we give a lemma 
applicable in any case. 

Lemma 3.5. Let Rn =Z'[pnw] be a local order, n E N*, p a prime integer and x =upk ERn, U E U(Ro) such 
that 0 < k < 2n. Set 8 = inf{i E N* Iu E U(Rn-d}. Then 8 :5 k. Moreover: 

1. 	 I (x) =1 if 8 = k 

• k < 28 

2. 	 l(x) = 2 if 8 < k and 1• k = 28 and either k = 2 or p f:. 2 

• k > 28 and k is even 

3. 	 l(x) =3 if k =28 f:. 2 and p 2 or if k > 28, 8 f:. 2 and k is odd. 

4. 	 l(x) =4 if p = 8 = 2 and k = 5. 
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Proof; Let x = upk E Rn with u E U(~) = U(Rn-n). Since {U(Ri)hEN is a decreasing sequence, consider 
8 =inf{i E N* !u E U(Rn-i)}. Assume 8 > k 2:: 1 so that Rn-k < Rn- Band u rt U(Rn-k), a contradiction. 

First, note that whatever is p, only atoms of the form vpi appear in a factorization of upk. 

(1) 	 Case lex) =1 is given by Propositions 3.2, 3.3, and 3.4. 

(2) 	 Case lex) = 2 is obtained when we can write upk = (Ulpkl)(U2pk2) with Uipk i an atom for i = 1,2. 
Assume that this condition is fulfilled and that kl :$ k2. We have equalities u = Ul U2 and k kl + k2 
with conditions of Proposition 3.2 for Uipk i so that Rn-k1 C Rn-k2' which implies u E Rn-k2' 

• 	If kl = k2 = 1, we have k = 2 and any factorization of x has length 2 as soon x is not an atom, that 
is, when 8 = 1. Conversely, if k 2 and 8 = 1, we get lex) = 2. 

• Assume now that k2 > 1, so that U2 E Rn-k2 \ Rn- k2+1. 

- Let 8 > 1, then u E Rn- B\ Rn-B+l so that Rn-B+l < Rn-k2 which gives 8 - 1 < k2 or 8 :$ k2. 
But we also have U2 = u11u. Set t = SUp(8, kd. It follows that U2 E Rn- t \ Rn- k2+1 so that 
k2 - 1 < t :$ k2 and t = k2. 

* If kl < 8, we obtain that t = 8 = k2 and k < 28. Conversely, if k < 28, set k2 = 8 
and kl k - 8. Take Ul E Rn-kl \ Rn-k1+l if kl > 1 or Ul E Rn- 1 if k1' = 1. Then 
U2 = uu1

1 E Rn-k2 \ Rn-k2+1 so that Uipki is an atom for i = 1,2 and lex) = 2. Case 
U(Rn-kl) =U(Rn-kl +d cannot happen. 

* If kl = 8, we obtain that t = 8 k2 = kl and k = 28. Conversely, if k = 28, set kl = 
k2 = 8. There exist Ul, U2 E U(Rn- B) \ U(Rn- B+1) such that U = UIU2 if and only if 
IU(Rn-B)/U(Rn-B+dl > 2 and then lex) =2. This condition is satisfied if and only if Pi- 2. 

* If kl > 8, we obtain that t = k2 = kl and k > 28 is even. Conversely, if k > 28 is even, set 
kl = k2 = k/2 > 1. There exist Ul,U2 E U(Rn-k1) \ U(Rn-k1+d such that U =UIU2 if and 
only if IU(Rn-kl)/U(Rn-k1+l)! > 1, and in this case lex) = 2. This condition always holds. 

- Let 8 = 1 < k2' so that Rn- 1 C Rn-k2+1. As U2 = uu1
1 E Rn- k1 \ Rn- k2+1, it follows that 

k2 - 1 < kl and kl k2 = k/2 so that k is even. The converse is as in the case kl > 8 > 1. 

(3) 	 Consider the remaining cases for which we have lex) > 2. 

• 	 k = 28 i- 2 and p = 2. Now x =p(upk-l) is such that k -1 < 28 so that l(upk-l) = 2 and lex) = 3. 

• 	 k > 28 and k is odd. Then k' =k - 1 2:: 28 is even. But 2n > k > k' 2:: 28 gives 8 < n. We get 
l(upk-l) = 2 in every case except when k' = 28 i- 2 and p = 2. In this case, we hav~ x = uyB+l = 
(UpB)(pB+l) with UpB an atom. If 8 is odd, let 8 = 28'+1 and u' E U(Rn-B'-d\U(Rn-B~) which exists 
since n > 8' + 1. Then U'pB'+l and U'-lpB'+l are atoms such that x = (upB)(ulpB'+1)(U'-1pB'+1) 

which gives lex) = 3. Finally, let 8 be even. Assume first 8 2:: 4. Since 8 - 1 < 8 < nand n > 2, 
there exist Ul E U(Rn- B+1) \ U(Rn- B+2) and U2 E U(Rn-2) \ U(Rn-l) such that UlpB-l and U2p2 
are atoms. Set U3 = uu11u;-1, then x = (U3PB)(UIPB-l )(U2p2). Inequalities.2 < 8 - 1 < 8 give 
U3 E U(Rn-B)' But UIU2 E U(Rn-B+d leads to U3 rt U(Rn-B+d so that U3pB is an atom and 
lex) =3. 

(4) 	 Let 8 = 2, k = 5 and p = 2, so that u E U(Rn-2) \U(Rn-d. If lex) 3, there exist Ui E U(~), i 1,2,3 
such that Up5 = (Ulpkl) (U2pk2) (U3PkS) with Uipk i atoms. But kl + k2 + k3 5 gives kl = k2 = 1 and 
k3 = 3 or kl = 1 and k2 = k3 = 2. Since U E U(Rn-2) \ U(Rn-d and IU(Rn-2)/U(Rn-dl = 2, there is 
no solution in both cases. But we have x =p3(up2) which gives lex) =4. 0 
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Theorem 3.6. Let Rn = Z'(pnw] be a local order, n E N*, p inert and x = upk ERn, U E U(Ro). Set 

S = inf{i E N* Iu E U(Rn- i )}. Then 

1 + [kin] if n does not divide k and k > 2n 

l(x) = kin if n divides k and k ~ 2n 

1,2,3 or 4 under the assumptions of Lemma 3.5 

L(x)=k-s+1 

Moreover, l(x) = kin and L(x) = k. 

Proof. Under the assumptions of Lemma 3.5, we get l(x) = 1,2,3, or 4. 

Now, let k ~ 2n. The least length is obtained by a factorization by the largest atoms, that is to say, by some 
vpn, v E U(Ro) \ U(Rd. Let k = qn + r, 0 ::; r < n be the Euclidean division of k by n. Then q ~ 2. 

If r = 0, there exist V1,"" Vq E U(Ro) \ U(R1) such that u V1 ... Vq since IU(Ro)IU(Rdl = p + 1 ~ 3 
(consider the equation Xl + ... + Xq = a, a E Z/(p+ l)Z, Xl, ••• ,Xq E Z/(p+ l)Z \ {O}). Then l(x) = q = kin. 

If r 1= 0, we get l(x) > q. Moreover, there exists v E U(Rn-r) such that vpr is an atom. Then we use the 
1pqprevious method to get a factorization of uv- n and l(x) = q + 1 = lit- [kin]. 

The greatest length is obtained by a factorization by the smallest atoms, that is to say, by u'p, u' E U(Rn- 1). 

If s = 1, then up is an atom and L(x) = k. Let s > 1 so that u (j. U(Rn-d and consider a factorization 
X = n!=l Uipki where the Uipk, are atoms such that k1 ::; ... ::; kt . This provides the decreasing sequence 

U(Rn-kl) C ... C U(Rn-kt ). But u = U1 ... Ut gives u E U(Rn-kt ) so that s - 1 < kt or s ::; kt . For kt = s, 

we get the factorization upk = (ups)pk-s into k - s + 1 atoms. If kt > s, the exponent of pin x(Utpkt )-1 is less 

than k - s, which gives a factorization of X with smaller length. So L(x) k - s + 1 in any case. 

Consider now the asymptotic behavior. Let m E N* so that xm = umpmk. For large values of m, we get 

mk ~ 2n so l(xm) = [kmln] + a, where a = 0 or 1 and l(x) = lim l(xm)/m kin. In the same way, we get
m-+oo 

L(xm) = km - Sm + 1 where Sm = inf{i E N* Ium E U(Rn-i)}. But 1 ::; Sm ::; n so that L(x) = k. 0 

Theorem 3.7. Let Rn = Z'(pnw] be a local order, n E N*, p ramified and p '" p'2 in Ro, and set m = 2n + 1. 

Let x = up,k ERn, U E U(Ro). If k is odd, then k ~ 2n + 1; if k is even, set x = u'pk' where k' = k/2, 

u' E U(Ro), s = inf{i E N* Iu' E U(Rn- i )}. If m divides k, set a 0; otherwise set a = 1. Then 

[kl(2n + 1)] + a, if k > 2n 

l(x) = 


1,2,3 or 4 under the assumptions of Lemma 3.51 
k/2 - s + 1 if k is even 


L(x) = 

(k + 1)/2 n if k is odd 1 

Moreover, l(x) kl(2n + 1) and L(x) = k/2. 

Proof. By Proposition 3.3, the atoms of Rn are of the form upk as in Proposition 3.2 and the up'2n+1 for any 
u E U(Ro). Let x = up,k ERn, U E U(Ro). If k ::; 2n, we get that k is even and assumptions of Lemma 3.5 
hold, so l(x) = 1,2,3 or 4. 

182 The Arabian Joumalfor Science and Engineering, Volume 26, Number 1C. June 2001 



Martine Picavet-L I Hermitte 

,2nAssume k 2:: 2n + 1 = m. Set k qm + r, 0:5 r < m. The largest atoms are the vp +1 for any v EU(Ro). 
If r = 0, we can write x = up,qm so that l(x) = q. If r 1= 0, we get m + 1 :5 m + r < 2m and q 2:: 1. There exist 
U",U},U2 E U(Ro), kl,k2 E N* such that Uip,k, are atoms with up,k = u"pl(q-l)m(UlP,kt)(U2P,k2) (we have to 

consider two cases according to the evenness of m + r). So l (x) q + 1. 

The smallest atoms are of the form vp, v E U(Rn- 1 ). If k is even, set k = 2k' so that x = u'pk' with 
U' E U(Ro) and s inf{i E N* I u' E U(Rn-i)}. Proof of Theorem 3.6 is again valid and shows that 
L(x) = k' - s + 1 = k/2 - s + 1. If k is odd, p'2n+l appears at last one time in the factorization of x. 

But, we can write x = (u llp'2n+l)p k-<;n+l) , u" E U(Ro), which gives L(x) = 1+ (k - (2n + 1))/2 = (k +1)/2 - n. 

Consider now the asymptotic behavior. Let m E N* so that xm = ump,mk. For large values of m, we get 

mk > 4n so l(xm) = [km/(2n + 1)] + a, where a = 0 or 1 and l(x) = k/(2n + 1). In the same way, we get 
L(xm) = km/2 + b where b = 1 - s or 1/2 - n so that L(x) = k/2. 0 

Theorem 3.S. Let Rn = Z '[pnw] be a local order, n E N*, p decomposed and p = PIP2 where Pi are two atoms 

of Ro for i = 1,2. Let x = UPlklP2k2 ERn, U E U(Ro). Then kl,k2 1= 0 and kl k2 ifinf(kl,k2) < n. Set 

s inf{i E N* Iu E U(Rn- i )}. Then 

1,2,3 or 4 under assumptions of Lemma 3.5 

3 if inf(kl' k2) 2n, kl = k2' P = 2, n > 4 or n = 3, s 1= 1 or n = 4, s 1= 3 or p = 3, n = s > 1 
l(x) = 

or Ikl - k21 = 1, p = 2 


4 if kl = k2 = 2n, p = 2, n = 2 or n = 3, s = 1 or n 4, s = 3 


2 in the other cases 


Moreover, L(x) = inf(kl' k2) and l(x) O. 

Proof. By Proposition 3.4, the atoms of Rn are the vpk as in Proposition 3.2 and the VPl np2n+m, VPl n+mp2n for 

any v E U(Ro), m E N*. Let x = UPI klP2k2 ERn, U E U(Ro). Then kl' k2 1= 0 and kl = k2 if inf(kl' k2) < n. 
In this case, x = Upk with k < n and results are those of Lemma 3.5 for l(x) and Proposition 3.6 for L(x). 

• Assume n :5 inf (k1 , k2) < 2n. If kl = k2, only atoms of the form Vpk' factorize x and we use again Lemma 
3.5. Let kl 1= k2 and assume kl < k2. As the largest atoms are of the form VPl nP2 n+m, VPl n+mP2 n for 
any v E U(Ro) and m E N*, we can write x = (u"pkl-n)(uul 

-
1pfp;2+n-kl), where u"pkl-n is an atom, 

if kl > n, so that l(x) 2 and l(x) = 1 if kl n . 

• Assume 2n = inf(kl' k2 ) = k1 . 

* If kl k2, we get x = up2n. Proof of Theorem 3.6 works if IU(Ro)/U(Rdl = p - 1 2:: 3, that is if 
p 1= 2,3 or if n 1. In this case, l(x) = 2. 
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- Let p = 2, so that U(Ro) U(Rd. The largest atoms of Rn are of the form vpn-I, v E U(Ro), so 
that l(x) > 2. In fact, we can write up2n = II~=l Uipk~, Ui E U(Ro), with Uipk~ an atom, so that 

l(x) = 3 in any case (write 2n = (n 1) + (n - 1) + 2 = (n - 1) + (n 2) + 3), except when n = 2 
or n = 3,8 = 1 or n = 4,8 =3, and in this case, l(x) = 4. 

- Let p = 3, so that IU(Ro)/U(Rdl = 2. The largest atoms of Rn are of the form vpn, 
v E U(Ro) \ U(Rd. 

If 8 < n, we write up2n = (uIpn)(u11Upn), UI E U(Ro) \ U(Rd which gives l(x) = 2. 

If 8 = n > 1, we cannot write up2n = (Ulpn)(U2pn) , with Ut, U2 E U(Ro) \ U(Rd but 
up2n = p(up2n-I), with 2n - 1 < 28 gives l(x) = 3 by Lemma 3.5. If 8 = n = 1, we get l(x) = 2. 

* If kl < k2' we get l(x) 2 except if k2 = ki + 1 and p = 2. In this case, l(x) 3 . 

• Let inf(kbk2) > 2n. We can write x = (up?P2k2-n)(pIkl-np~) so that l(x) 2. 

The smallest atoms of Rn are of the form u'p with u' E U(Rn-d. If kl k2' we can argue as in Theorem 

3.6 and L(x) kl - 8 + 1. Assume kl i= k2' for instance, ki < k2' so that n ~ ki < k2. We can then 
write x = (Upfp2k2+n-kl )pkl-n and L(x) = 1 + ki - n. 

Consider now the asymptotic behavior. Let m E N* so that xm = UmPI mk1 p2 mk2. It is obvious that 

l(x) =0 and L(x) =inf(kl' k2)' 0 

These results allow a concrete application of the following result of D.D. Anderson, D.F Anderson, 
S.T. Chapman, and W.W. Smith [2, Theorem 12] to the monoid of nonzero elements of a local order. 

Theorem 3.9. Let H be an atomic monoid and x E H a nonunit 8uch that {y E H I y divides xn for some 
integer n ~ I} has only a finite number of nonassociate irreducible elements. Then L H (x) and l H (x) are 
each positive rational numbers. Moreover, there are integers m, n ~ 1 such that lH(X) = lH(xkm)/km and 
LH(x) = LH(xkn)/kn for all integers k ~ 1. 

In our situation, we know exactly the values of m and n. 

Theorem 3.10. Let Rn = Z'fpnw] be a local order, n E N*, p inert or ramified and x E Rn a nonzero nonunit. 
There are m, m' E N* such that l(x) = l(xrm)/rm and L(x) L(xrm/)/rm' for all r E N*. For instance, 
m = 2n, m' =pn-I (p + 1) if p is inert and m = 2n + 1, m' pn if p is ramified. 

Proof Let p be inert and x = upk E Rn, u E U(Ro). By Proposition 3.6, we have l(x) = kin and L(x) = k. Set 
m = 2n and m' = pn-I(p+ 1) and take any r E N*. Then xrm = urmp2rkn and l(xrm)/rm = 2rkn/2rn2 = l(x). 
In the same way, xrm' = urp.. -l(p+l)prkp.. -l(p+l) ,..., prkp.. -1(P+I) in Rn since IU(Ro)/U(Rn)1 = pn-I (p + 1), so 

that 8:1)r.... ' = 1. Then L(xrm')/rm' = rkpn-I(p + l)/rpn-l(p + 1) L(x). 

Let p ,..., p,2 in Ro ramified and x = up,k ERn, U E U(Ro). By Proposition 3.7, we have f(x) = k/(2n + 1) 
and L(x) = k/2. Set m = 2n + 1, m' = 2pn and take any r E N*. Then xrm = urmp,rk(2n+l) and l(xrm)/rm = 

- I 2" 2rkp" 2rkp"rk/r(2n + 1) l(x). In the same way, xrm = U rp p' ,..., p' in Rn since IU(Ro)/U(Rn)1 = pn, so that 
8:1)r .... ' = 1. Then L(xrm')/rm' rkpn /2rpn = L(x). 0 

Remark. This theorem does not hold for p decomposed since l(x) = 0 for any nonzero nonunit x ERn. 
In fact, {y E Rn I y divides xk for some k E N*} has an infinite number of nonassociate atoms. For instance, if 
x =pn = PI np2n, we get that PI np2n+mn is an atom which divides xm+2 for each m E N* . 
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4. 	 ELASTICITY OF A WEAKLY FACTORIAL QUADRATIC ORDER 

Since the two length functions I(x) and L( x) are known for every nonzero nonunit element x of a weakly 
factorial quadratic order R, it is quite easy to calculate the elasticity of R. Indeed, p(R) = sup{p(x) I x E 

R \ U(R), x =F O} where we set p(x) = L(x)/l(x) (note that p(x) = 1 if x is an atom). It is enough to work with 
a local order R with finitely many atoms in R. The following theorem gives a relation between elasticities of an 
order and its localizations. 

Theorem 4.1. Let R = Z[nw], n E N* be a weakly factorial quadratic order. 

Then p(R) = sup{p(Rp) IP E Max(R), n E Pl. 

Proof. We apply the result of D.D. Anderson and D.F. Anderson [1, Corollary 2.15] to one-dimensional domains 
which gives p(R) = sup{p(Rp) I P E Max(R)}. Moreover, the conductor of R is nR. For P E Max(R) such that 
n ~ P, we get that Rp = (R)p, with (R)p a PID, so p(Rp) = 1. 0 

So, we have to reduce to the local case and consider the three possible decompositions of a prime p. 

Proposition 4.2. Let R =Z'[pnw] be a local order, P a decomposed prime and n E N·. Then p(R) =00. 

Proof. l(x) ~ 4 for any nonzero nonunit x E R but L(x) can take any value kEN· (Proposition 3.8). 0 

Proposition 4.3. Let Rn = Z/[pnw] be a local order, P an inert prime and n E N*. Then p(Rn) = n. 

Proof. Let x upk ERn, u E U(Ro) and use Proposition 3.6 and Lemma 3.5. Set s = inf{i E N* Iu E U(Rn-i)}. 
Assume that x is not an atom. If k ~ 2n, then l(x) ;::: 2 and L(x) ~ 2n gives p(x) ~ n. If k > 2n we get also 
p(x) ~ n and p(p3n) =n so that p(Rn) n. 0 

Proposition 4.4. Let Rn = Z/[pnw] be a local order, P a ramified prime and n E N*. Then p(Rn) = n + ~. 

Proof. Let x uplk ERn, U E U(Ro), where p I"V pl2 in Ro and use Proposition 3.7 and Lemma 3.5. Assume 
that x is not an atom. If k ~ 2n, then l(x) ;::: 2 and L(x) ::; n gives p(x) ~ n/2. Let k ;::: 2n + 1. Thus 
L(x) ~ k/2 and l(x) ;::: k/(2n + 1) gives p(x) ~ n + 1/2. Now, consider x = pI2k(2n+l) so that p(x) = n + 1/2 

and p(Rn) = n + 1/2. 0 

Gathering these different cases and globalizing, we obtain the following. 

Theorem 4.5. Let R = Z[nw] be a weakly factorial quadratic order with n = TIp:', Pi prime integers, ei ;::: 1. 

If one of the Pi is decomposed, p(R) = 00. If not, we have p(R) sup({ei + ~ IPi ramified}, {ei IPi inert}). 

We recall here the following result of F. Halter-Koch. 

Theorem 4.6. [8, Corollary 4] Let R be an order in an algebraic number field and R its integral closure. 

1. 	 If for some prime ideal P of R there is more than one prime ideal of R lying over P, then p(R) 00. 

2. 	 If for every prime ideal P of R there is exactly one prime ideal of R lying over P, then p(R) is realized 
by a factorization and p(R) is rational. 
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Remarks 

(1) 	 Let R = Z[nw] be a weakly factorial quadratic order such that a decomposed prime p divides n and let 
P be the maximal ideal of R containing p. There are two prime ideals in R lying over P so p(R) = 00. 

(2) 	 We can remark that in the local case and for any prime, p(R) = L(x)/l(x), for any nonzero nonunit 
x ER. 

In [5, Theorem 1.4] S.T. Chapman and J.C. Rosales obtained the following result. A Krull monoid M with 
C(M) a torsion group is half-factorial if and only if l(x) = L(x) = 1 for every irreducible x E M. This result can 
be extended to the case of weakly factorial quadratic orders. 

Theorem 4.7. Let R be a weakly factorial quadratic order. Then R is half-factorial if and only if l(x) = L(x) 
for every atom x E R. 

Proof. One implication is obvious. Assume that l(x) = L(x) for any atom x E R. We can limit to the local 
case by [12, Proposition 14] and Proposition 1.4 since any atom is primary. Remark 2 gives p(R) = 1 and R is 
half-factorial. We could also use [5, Proposition 1.2] of S.T. Chapman and J.C. Rosales, which omits the Krull 
assumption but requires l(x) = L(x) for any nonunit x. 0 
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