EXPLICIT EXPRESSIONS OF THE RELATION BETWEEN THE SPECIFIC GENERATORS OF $R[\alpha] \cap R\left[\alpha^{-1}\right]$ AND
 THOSE OF $R[\alpha-a] \cap R\left[(\alpha-a)^{-1}\right]$ FOR $a \in R$

Susumu Oda*

Department of Mathematics, Faculty of Education, Kochi University
2-5-1 Akebono-cho, Kochi 780-8520, Japan

Kiyonori Yamamoto

Department of Mathematics, Toyama University
Toyama 930-8555, Japan
and
Ken-ichi Yoshida
Department of Applied Mathematics, Okayana University of Science
Ridai-cho, Okayama 700-0005, Japan

$$
\begin{aligned}
& \text { الملاصسة : } \\
& \text { هذا البحث يكمل عمل [5] بتسليط الضوء، عبر دليل تقني، حل العلاقة بين مُوَلْدات } \\
& \text { ومُوَّلَّدات } R \text { R } R \text { ، } R \text { ، حيث } a \text { عنصر في }
\end{aligned}
$$

Abstract

This paper completes a former work [5] by making explicit, with a technical proof, the relation between the generators of $R[\alpha] \cap R\left[\alpha^{-1}\right]$ and those of $R[\alpha-a] \cap R\left[(\alpha-a)^{-1}\right]$, for $a \in R$.

[^0]
EXPLICIT EXPRESSIONS OF THE RELATION BETWEEN THE SPECIFIC GENERATORS OF $R[\alpha] \cap R\left[\alpha^{-1}\right]$ AND THOSE OF $R[\alpha-a] \cap R\left[(\alpha-a)^{-1}\right]$ FOR $a \in R$

Let R be an integral domain with quotient field K and let $R[X]$ denote a polynomial ring over R. Let α be an element of an algebraic field extension of K, a an element of R, and $\varphi_{\alpha-a}(X)$ the monic minimal polynomial of $\alpha-a$ over K. Then the degree of $\varphi_{\alpha-a}(X)$ is unchanged for any $a \in R$. So let d be this constant value and write

$$
\varphi_{\alpha-a}(X):=X^{d}+\eta_{1}^{(a)} X^{d-1}+\cdots+\eta_{d}^{(a)}
$$

where $\eta_{1}^{(a)}, \ldots, \eta_{d}^{(a)} \in K$.
Let $\zeta_{i}^{(a)}:=(\alpha-a)^{i}+\eta_{1}^{(a)}(\alpha-a)^{i-1}+\eta_{2}^{(a)}(\alpha-a)^{i-2}+\cdots+\eta_{i}^{(a)}, \eta_{i}=\eta_{i}^{(0)}$, and $\zeta_{i}=\zeta_{i}^{(0)}$, for $i=1, \ldots, d-1$.
Let $\pi: R[X] \rightarrow R[\alpha]$ be the R-algebra homomorphism defined by $\pi(X)=\alpha$. Define

$$
I_{[\alpha]}:=\bigcap_{i=1}^{d}\left(R:_{R} \eta_{i}\right)
$$

where $\left(R:_{R} \eta_{i}\right):=\left\{c \in R \mid c \eta_{i} \in R\right\}$. Then $I_{[\alpha]}$ is an ideal of R. An element α is called an anti-integral element of degree d over R if $\operatorname{Ker}(\pi)=I_{[\alpha]} \varphi_{\alpha}(X) R[X]$ (cf.[4]).

Let $f: \mathbf{Z} \rightarrow R$ be a ring homomorphism sending $n \in \mathbf{Z}$ to $n \cdot 1 \in R$, where \mathbf{Z} denotes the ring of integers and $F:=\mathbf{Z} / \operatorname{Ker}(f)$, which is a subdomain of R.

To justify our title, recall the result in [1]: if α is an anti-integral element of degree d over R then $R[\alpha] \cap R\left[\alpha^{-1}\right]=R \oplus I_{[\alpha]} \zeta_{1} \oplus \cdots \oplus I_{[\alpha]} \zeta_{d-1}$.

By use of this result, it is proved that $R[\alpha] \cap R\left[\alpha^{-1}\right]=R[\alpha-a] \cap R\left[(\alpha-a)^{-1}\right]$, for any $a \in R$, if α is an anti-integral element over R in [5]. In the proof of this equality, we have shown by induction that $\zeta_{k}^{(a)}-\zeta_{k} \in F[a] \zeta_{k-1}+\cdots+F[a] \zeta_{1}+F[a]+F[a] \eta_{1}+\cdots+F[a] \eta_{d-1}$.

But by an explicit calculation, we prove that we may simplify this assertion showing that the part $F[a] \eta_{1}+\cdots+F[a] \eta_{d-1}$ is not needed (Theorem 4).

Throughout this paper, we use the notation mentioned above unless otherwise specified.
Our notation is standard and unexplained terminology is referred to [2].
The following lemmas are seen in [5].
Lemma 1. (1) $\varphi_{\alpha-a}(X)=\varphi_{\alpha}(X+a)$.
(2) $K\left(\zeta_{1}, \ldots, \zeta_{d-1}\right)=K\left(\zeta_{1}^{(a)}, \ldots, \zeta_{d-1}^{(a)}\right)=K(\alpha)$.

Proof.
(1) For some $\lambda_{1}, \ldots, \lambda_{d} \in K$, we can write:

$$
\varphi_{\alpha}(X)=(X-a)^{d}+\lambda_{1}(X-a)^{d-1}+\cdots+\lambda_{d}
$$

since $K[X]=K[X-a]$. Then $\varphi_{\alpha-a}(X)=X^{d}+\lambda_{1} X^{d-1}+\cdots+\lambda_{d}=\varphi_{\alpha}(X+a)$.
(2) It is clear that $K\left(\zeta_{1}^{(a)}\right)=K(\alpha)$.

Lemma 2.

$$
\eta_{k}^{(a)}=\binom{d}{k} a^{k}+\eta_{1}\binom{d-1}{k-1} a^{k-1}+\eta_{2}\binom{d-2}{k-2} a^{k-2}+\cdots+\eta_{k-1}\binom{d-k+1}{1} a+\eta_{k}
$$

for $k=1, \ldots, d$.
Proof. Compare the coefficients of $\varphi_{\alpha}(X+a)=\varphi_{\alpha-a}(X)(c f$. Lemma 1(1)).

Lemma 3. For $k=1, \ldots, d-1$,

$$
\begin{aligned}
& \zeta_{k+1}=\alpha \zeta_{k}+\eta_{k+1}, \quad \zeta_{1}=\alpha+\eta_{1} \\
& \zeta_{k+1}^{(a)}=(\alpha-a) \zeta_{k}^{(a)}+\eta_{k+1}^{(a)}, \quad \text { and } \quad \zeta_{1}^{(a)}=(\alpha-a)+\eta_{1}^{(a)} .
\end{aligned}
$$

Proof. Trivial.
It is well-known that

$$
\binom{n+i}{i+1}=\binom{n+i-1}{i+1}+\binom{n+i-1}{i},
$$

for $i \geq 0$.
The aim of this paper is to give the following explicit equality.

Theorem 4.

$$
\begin{aligned}
\zeta_{k}^{(a)}= & \zeta_{k}+\binom{d-k}{1} a \zeta_{k-1}+\binom{d-k+1}{2} a^{2} \zeta_{k-2}+\binom{d-k+2}{3} a^{3} \zeta_{k-3}+\cdots \\
& \cdots+\binom{d-3}{k-2} a^{k-2} \zeta_{2}+\binom{d-2}{k-1} a^{k-1} \zeta_{1}+\binom{d-1}{k} a^{k},
\end{aligned}
$$

i.e.,

$$
\zeta_{k}^{(a)}=\sum_{i=0}^{k-1}\binom{d-k+i-1}{i} a^{i} \zeta_{k-i}+\binom{d-1}{k} a^{k},
$$

for $k=1, \ldots, d-1$.
Proof. Let A_{k} denote the righthand side of the above equality, i.e., $A_{k}:=\zeta_{k}+\binom{d-k}{1} a \zeta_{k-1}+\binom{d-k+1}{2} a^{2} \zeta_{k-2}+$ $\binom{d-k+2}{3} a^{3} \zeta_{k-3}+\cdots+\binom{d-3}{k-2} a^{k-2} \zeta_{2}+\binom{d-2}{k-1} a^{k-1} \zeta_{1}+\binom{d-1}{k} a^{k}$. We shall prove $\zeta_{k}^{(a)}=A_{k}$, by induction on k. For $k=1, A_{1}=\zeta_{1}+\binom{d-1}{1} a=\zeta_{1}+(d-1) a$ and $\zeta_{1}^{(a)}=(\alpha-a)+\eta_{1}^{(a)}=(\alpha-a)+\left\{\binom{d}{1} a+\eta_{1}\right\}=\alpha-a+d a+\eta_{1}=$ $\alpha-a+d a+\left(\zeta_{1}-\alpha\right)=\zeta_{1}+(d-1) a$, by Lemma 3. Hence $\zeta_{1}^{(a)}=A_{1}$. Assume that $\zeta_{k}^{(a)}=A_{k}$. We shall show that $\zeta_{k+1}^{(a)}=A_{k+1}$. By use of Lemmas 2 and 3 , and by induction hypothesis, we have the following equality:

$$
\begin{aligned}
& \zeta_{k+1}^{(a)}=(\alpha-a) \zeta_{k}^{(a)}+\eta_{k+1}^{(a)} \\
&=(\alpha-a)\left\{\begin{array}{c}
\left.\zeta_{k}+\binom{d-k}{1} a \zeta_{k-1}+\binom{d-k+1}{2} a^{2} \zeta_{k-2}+\cdots+\binom{d-2}{k-1} a^{k-1} \zeta_{1}+\binom{d-1}{k} a^{k}\right\}+\eta_{k+1}^{(a)} \\
=
\end{array}\right. \\
& \alpha \zeta_{k}+\binom{d-k}{1} a \alpha \zeta_{k-1}+\binom{d-k+1}{2} a^{2} \alpha \zeta_{k-2}+\cdots+\binom{d-2}{k-1} a^{k-1} \alpha \zeta_{1}+\binom{d-1}{k} a^{k} \alpha \\
&-a \zeta_{k}-\binom{d-k}{1} a^{2} \zeta_{k-1}-\binom{d-k+1}{2} a^{3} \zeta_{k-2}-\cdots-\binom{d-2}{k-1} a^{k} \zeta_{1}-\binom{d-1}{k} a^{k+1}+\eta_{k+1}^{(a)}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\zeta_{k+1}-\eta_{k+1}\right)+\binom{d-k}{1} a\left(\zeta_{k}-\eta_{k}\right)+\binom{d-k+1}{2} a^{2}\left(\zeta_{k-1}-\eta_{k-1}\right)+\cdots \\
& \cdots+\binom{d-2}{k-1} a^{k-1}\left(\zeta_{2}-\eta_{2}\right)+\binom{d-1}{k} a^{k}\left(\zeta_{1}-\eta_{1}\right)-a \zeta_{k}-\binom{d-k}{1} a^{2} \zeta_{k-1} \\
& -\binom{d-k+1}{2} a^{3} \zeta_{k-2}-\cdots \cdots-\binom{d-2}{k-1} a^{k} \zeta_{1}-\binom{d-1}{k} a^{k+1}+\eta_{k+1}^{(a)} \\
& =\zeta_{k+1}+\binom{d-k}{1} a \zeta_{k}+\binom{d-k+1}{2} a^{2} \zeta_{k-1}+\cdots \cdots+\binom{d-2}{k-1} a^{k-1} \zeta_{2}+\binom{d-1}{k} a^{k} \zeta_{1} \\
& -a \zeta_{k}-\binom{d-k}{1} a^{2} \zeta_{k-1}-\cdots \cdots-\binom{d-3}{k-2} a^{k-1} \zeta_{2}-\binom{d-2}{k-1} a^{k} \zeta_{1}-\binom{d-1}{k} a^{k+1} \\
& -\binom{d-1}{k} a^{k} \eta_{1}-\binom{d-2}{k-1} a^{k-1} \eta_{2}-\cdots \cdots-\binom{d-k}{1} a \eta_{k}-\eta_{k+1} \\
& +\left\{\binom{d}{k+1} a^{k+1}+\binom{d-1}{k} a^{k} \eta_{1}+\cdots+\binom{d-k+1}{2} a^{2} \eta_{k-1}+\binom{d-k}{1} a \eta_{k}+\eta_{k+1}\right\} \\
& =\zeta_{k+1}+\left\{\binom{d-k}{1}-1\right\} a \zeta_{k}+\left\{\binom{d-k+1}{2}-\binom{d-k}{1}\right\} a^{2} \zeta_{k-1}+\cdots \\
& \cdots+\left\{\binom{d-1}{k}-\binom{d-2}{k-1}\right\} a^{k} \zeta_{1}+\left\{\binom{d}{k+1}-\binom{d-1}{k}\right\} a^{k+1} \\
& =\zeta_{k+1}+\binom{d-k-1}{1} a \zeta_{k}+\binom{d-k}{2} a^{2} \zeta_{k-1}+\cdots \cdots+\binom{d-2}{k} a^{k} \zeta_{1}+\binom{d-1}{k+1} a^{k+1} \\
& =A_{k+1},
\end{aligned}
$$

as desired.
Remark 5. Theorem 4 shows that for $k=1, \ldots, d-1$,

$$
\zeta_{k}^{(a)}-\zeta_{k} \in F[a] \zeta_{k-1}+\cdots+F[a] \zeta_{1}+F[a]
$$

Corollary 6. As R-submodules of $K[\alpha], R+R \zeta_{1}+\cdots+R \zeta_{d-1}=R+R \zeta_{1}^{(a)}+\cdots+R \zeta_{d-1}^{(a)}$, for any $a \in R$.
Let H be an ideal of R and let $a \in R$. Put:

$$
C_{H}^{(a)}:=R+H \zeta_{1}^{(a)}+\cdots+H \zeta_{d-1}^{(a)}
$$

and:

$$
C_{H}:=R+H \zeta_{1}+\cdots+H \zeta_{d-1}
$$

which are R-submodules of $K[\alpha]$.

Corollary 7. $C_{H}=C_{H}^{(a)}$, for any $a \in R$.
Proof. By Corollary 6, we have $R+R \zeta_{1}+\cdots+R \zeta_{d-1}=R+R \zeta_{1}^{(a)}+\cdots+R \zeta_{d-1}^{(a)}$, and hence $H+H \zeta_{1}+\cdots+H \zeta_{d-1}=$ $H+H \zeta_{1}^{(a)}+\cdots+H \zeta_{d-1}^{(a)}$. Thus $C_{H}=R+H \zeta_{1}+\cdots+H \zeta_{d-1}=R+H \zeta_{1}^{(a)}+\cdots+H \zeta_{d-1}^{(a)}=C_{H}^{(a)}$.

Remark 8. In [3], the following results are shown.
(1) Assume that α is an anti-integral element of degree $d \geq 2$ over a Noetherian domain R. If $H \subseteq I_{[\alpha]}$, then C_{H} is a subring of $R[\alpha]$.
(2) Assume that α is an anti-integral element of degree d over R. Then $R[\alpha] \cap R\left[\alpha^{-1}\right]=C_{I_{[\alpha]}}$ and $R[\alpha-a] \cap R\left[(\alpha-a)^{-1}\right]=C_{I_{[\alpha-a]}}\left(c f\right.$. [5], [1]). For this purpose, we showed that $I_{[\alpha]}=I_{[\alpha-a]}$ for any $a \in R$ and that $\alpha-a$ is an anti-integral element of degree d over R for any $a \in R$. So the main result in [5] mentioned in the beginning of this paper is obtained as a consequence of the more concrete argument above. But Theorem 4 seems to be interesting in itself.

REFERENCES

[1] M. Kanemitsu and K. Yoshida, "Some Properties of Extensions $R[\alpha] \cap R\left[\alpha^{-1}\right]$ Over Noetherian Domains $R^{\text {", Comm. }}$ in Algebra, 23 (1995), pp. 4501-4507.
[2] H. Matsumura, Commutative Ring Theory. Cambridge: Cambridge Univ. Press, 1986.
[3] S. Oda, M. Knemitsu, and K. Yoshida, "On Rings of Certain Type Associated with Simple Ring-Extensions", Math, J. Okayama Univ., 39 (1997), pp. 85-92.
[4] S. Oda, J. Sato, and K. Yoshida, "High Degree Anti-Integral Extensions of Noetherian Domains", Osaka J. Math., 30 (1993), pp. 119-135.
[5] J. Sato, S. Oda, and K. Yoshida, "Extensions $R[\alpha-a] \cap R\left[(\alpha-a)^{-1}\right]$ with an Anti-Integral Element α are Unchanged for any $a \in R$ ", J. Algebra (to appear).

Paper Received 30 May 2000; Revised 17 September 2000; Accepted 18 October 2000.

[^0]: *To whom correspondence should be addressed.
 e-mail: ssmoda@cc.kochi-u.ac.jp

