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ABSTRACT 

In this work, we study the transfer of Steinitz, semi-Steinitz, and weakly semi-Steinitz 
properties in trivial extensions. We also show that semi-Steinitz and weakly semi-Steinitz 
properties are not local properties. 

*Address for correspondence: 
Department of Mathematics FST Fez-SaYss, B.P. 2202 
University of Fez 
Fez, Morocco 
e-mail: mahdou@hotmail.com 

June 2001 The Arabian JournaL/or Science and Engineering, VoLume 26, Number 1C. 119 

mailto:mahdou@hotmail.com


Najib Mahdou 

STEINITZ PROPERTIES IN TRIVIAL EXTENSIONS OF COMMUTATIVE RINGS 


1. INTRODUCTION 

All rings considered below are commutative with unit, and, by a proper ideal, we mean a nonzero ideal distinct 
from the whole ring. A ring A is a Steinitz ring if any linearly independent subset of a free A-module F can 
be extended to a basis of F by adjoining elements of a given basis. We say that an ideal I of A is T -nilpotent 

n 

("T" for transfinite) if for any sequence {Xi} of elements of I, there is an integer n such that: II Xi = O. 
i=l 

In [7, Theorem 2], Chwe and Neggers showed that Steinitz rings are precisely the local rings with T-nilpotent 
maximal ideals. Simultaneously, in [12], Lenzing obtains the same result and shows, in addition, that A is a 
Steinitz ring if and only if A satisfies the "weaker" property, that is, any linearly independent subset of a free 
A-module F can be extended to a basis of F. On the other hand, in [5, Proposition (5.4)], Cox and Pendleton 
showed that Steinitz rings are exactly the local rings A such that every flat A-module is free. 

We say that A is a semi-Steinitz ring if any linearly independent finite subset of a finitely generated free 
A-module F can be extended to a basis of F, by adjoining elements of a given basis of F. In [13, Theorem 2.1], 
Nashier and Nichols showed that A is a semi-Steinitz ring if and only if A is local and every finitely generated 
proper ideal of A has a non-zero annihilator. 

A ring A is said to be weakly semi-Steinitz if every linearly independent finite subset of a finitely generated 
free A-module F can be extended to a basis of F. We say that A is a Hermite ring if for every al,' .. , an in 

n 

A such that L aiA = A, the row [aI, ... ,an] can be completed to an invertible square matrix (cf. [11, 1.4.6]). 
i=l 

It is not difficult to see that a ring A is Hermite if and only if it is so modulo its Jacobson radical. On the other 
hand, Nashier and Nichols [13, Theorem 2.2] established that A is a weakly semi-Steinitz ring if and only if A is 
a Hermite ring and satisfies the (CH)-property (i.e., every finitely generated proper ideal of A has a non-zero 
annihilator) . 

Let A be a ring and E an A-module. Let R = AoE be the set of pairs (a, e), a E A, e E E, with pairwise 
addition and multiplication given by (a, e)(a', e') = (aa', ae' + a'e). This is a commutative ring with unity (1,0), 
called the trivial extension of A by E. An ideal J of R is of the form J = IoE', where I is an ideal of A and 
E' is a A-submodule of E such that IE ~ E'. If J is finitely generated then so is I (cf. [10, Theorem 25.1]). 
Further, Spec(R) = {PoE/P E Spec(A)} (cf. [10, Theorem 25.1]). 

In Section 2, we examine the transfer of Steinitz, Hermite, semi-Steinitz, and weakly semi-Steinitz properties 
to trivial extensions. In the third section, we show that the properties: semi-Steinitz, weakly semi-Steinitz, and 
the (CH)-property are not local properties (Example 3.1). Also, we show that for a ring A, if AM satisfies 
the (CH)-property for each maximal ideal M, then so does A (Proposition 3.2). Finally, we show that for a 
Noetherian ring A, if AM is a weakly semi-Steinitz ring for each maximal ideal M, then so is A (Theorem 3.3). 

2. STEINITZ PROPERTIES IN TRIVIAL EXTENSIONS 

We first examine the transfer of Steinitz and Hermite properties to trivial extensions. 

Theorem 2.1. Let A be a commutative ring, E an A-module, and R the trivial extension ring of A by E. Then: 

(1) R is a Steinitz ring if and only if so is A. 

(2) R is a Hermite ring if and only if so is A. 
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Proof. 

(1) Assume that R is a Steinitz ring. Hence, R is a local ring and A is also a local ring (cf. [10, Theorem 
25.1]). Let m be the maximal ideal of A, so M := maE is the maximal ideal of R. It remains to show 
that m is a T-nilpotent ideal (cf. [7, Theorem 2]). 

Let (ai)i be a sequence of elements of m. Hence ((ai, O))i is a sequence of elements of the maximal ideal 
n 

M which is T-nilpotent. Therefore, there exists a positive integer n such that 0 = IT(ai, 0) 
i=l 

n 


so IT ai = 0 and m is a T-nilpotent ideal of A. 

i=l 

Conversely, assume that A is a Steinitz ring, then A is a local ring. Let m be its T -nilpotent maximal 
ideal. Hence R is a local ring with maximal ideal M =maE. We claim that M is a T-nilpoten~ ideal. 
Indeed, let ((ai, ei))i be a sequence of elements of M. Then (ai)i is a sequence of elements of m and 

n 

therefore there exists a non-negative integer n such that IT ai 0 since m is a T-nilpotent ideal. So, 
i=l 

n n

IT (ai, ei) =(IT ai, e) = (0, e), where e E E. Thus we may assume that al = O. 
i=l i=l 

q 	 q 

Since m is T-nilpotent, there exists a positive integer q such that IT ai = O. Then IT (ai, ei) is of the 
i=2 i=2 

q 

form (0, e') for some e' E E. Hence, IT(ai, ei) = (0, el )(0, e') = (0,0) = OR and M is T-nilpotent. 
i=l 

Therefore, R is a Steinitz ring (cf. [7, Theorem 2]). 

(2) By [10, Theorem 25.1], J(R) = J(A)aE, and hence RIJ(R) (AaE)/(J(A)aE) ~ AIJ(A). Therefore, 
R is a Hermite ring if and only if A is a Hermite ring (since a ring is Hermite if and only if it is so modulo 
its Jacobson radical). 

Corollary 2.2. Let K be a field, E a K -vector space, and R the trivial extension of K by E. Then R is a 
Steinitz ring. 

Proof. It follows from Theorem 2.1.(1) since K is a Steinitz ring. 

Example 2.3. Any trivial extension ring A of K by a K -vector space E is a Steinitz ring (ef. Corollary 2.2). 
Therefore, by Theorem 2.1.{1}, the trivial extension ring R of A by any A-module EA is a Steinitz ring. 

Remark 2.4. Even if a ring is not semi-Steinitz, it could have a semi-Steinitz trivial extension. Indeed, let A 
be a local domain which is not a field, M its maximal ideal, E = AIM, and R the trivial extension ring of A 
by E. The ring R is semi-Steinitz by [2, Proposition 5} since R is a local ring. On the other hand, A does not 
satisfy the (CH) -property since A is a domain which is not a field. Therefore, A is not weakly semi-Steinitz and 
hence not semi-Steinitz. 

Theorem 2.5. Let A be a ring, E an A-module, and R the trivial extension of A by E. Then: 

(1) 	 (a) If A is weakly semi-Steinitz, then so is R. 

(b) 	If A is semi-Steinitz, then so is R. 

(2) 	 Assume that either E is a submodule of a free A-module or E = AlP, where P is a prime ideal of A with 
non-zero annihilator. Then: 

(a) R is semi-Steinitz if and only if so is A. 

(b) 	R is weakly semi-Steinitz if and only if so is A. 

The proof of this theorem relies mainly on the following Lemma. 
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Lemma 2.6. Let A, E, R be as in Theorem 2.5. Then: 

(1) 	 If A satisfies the (CH)-property, then so does R. 

(2) 	 Assume that either (a) E is a submodule of a free A-module, or (b) E = A/P, where P is a prime ideal 
of A with non-zero annihilator. Then A satisfies the (C H) -property if and only if so does R. 

Proof· 

(1) 	Let J = IaE' be a finitely generated proper ideal of R, where I is a finitely generated proper ideal of A 
and E' is an A-submodule of E such that IE£; E'. Since A satisfies the (CH)-property, there exists a 
non-zero element a of A such that aI = O. Two cases are then possible: 

Case 1: aE f:. O. Let e be an element of E, such that ae f:. 0, and b = (0, ae) E R - {OJ. Hence, 
bJ = (0, ae)(IaE') =0 since aI O. 

Case 2: aE = O. Let b = (a,O) E R - {OJ. Since aI = 0 and aE' £; aE = 0, so 
bJ 	= (a,O)(I E') aI C( aE' = O. It follows that J has a non-zero annihilator and C( 

therefore R satisfies the (CH)-property. 

(2)(a) 	 Assume that E is a submodule of a free A-module F. If A is a (CH)-ring, then so is R by (1). Conversely, 
assume that R is a (CH)-ring. We wish to show that A is a (CH)-ring. Let I be a finitely generated 
proper ideal of A. Then J := (IaO)R is a finitely generated proper ideal of R. Hence, there exists a 
non-zero element (a, e) E R such that 0 = (a, e)J = (a, e) (IaO)R, since R satisfies the (CH)-property. 
Therefore, aI = 0 and eI = O. Two cases are then possible: 

Case 1: a f:. O. Then I has a non-zero annihilator since aI O. 

Case 2: a = O. In this case, eI = 0 and e f:. 0 since (a, e) f:. O. 
n 

On the other hand, e E E £; F is a free A-module, then e is of the form: e = L aibi, where 
i=l 

B = {bl, ... , bn } is a subset of a basis of F and ai E A for each i = 1, ... , n. It follows that, 0 = eI = 
n 

L(aiI)bi and then ail = 0 for each i = 1, ... ,n. Now, let j E {I, .. . ,n} be such that aj f:. 0 (possible 
i=l 

n 


since e = L aibi f:. 0). Therefore, ajI 0 and aj f:. O. 

i=l 

(2)(b) 	 Assume that E = A/P, where P is a prime ideal of A with non-zero annihilator. If A is a (CH)-ring, 
then so is R by (1). Conversely, assume that R is a (CH)-ring. We wish to show that A is a (CH)-ring. 
Let I be a finitely generated proper ideal of A. Then, J (:= (IaO)R) is a finitely generated proper ideal 
of R and so there exists a non-zero element (a, e + P) of R such that (a, e + P) J = O. Hence, aI 0 and 
eI £; P. Two cases are possible: 

Case 1: a f:. O. Then I has a non-zero annihilator since aI = O. 

Case 2: a = O. Since (0, e + P) f:. 0, then e f/:. P and I £; P since eI £; P and P is prime. 
Therefore, since P has a non-zero annihilator, then so is I. 

Proof of Theorem 2.5. The proof follows by combining Theorem 2.1.(2), Lemma 2.6, and the fact that R is a 
local ring if and only if so is A (cf. [10, Theorem 25.1)). 

The following is an example of a semi-Steinitz ring which is not a Steinitz ring. 
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Example 2.7. Let A be a local domain which is not a field, M its maximal ideal, E = AIM, and R the trivial 
extension ring of A by E. The ring R is semi-Steinitz by [2, Prop.51 since R is a local ring. However, R is not 
a Steinitz ring by Theorem 2.1.{1} since A is not a Steinitz ring (since M is not a T-nilpotent ideal of A). 

The following is an example of a weakly semi-Steinitz ring which is not a semi-Steinitz ring. 

Example 2.8. Let K be a field, A a weakly semi-Steinitz ring, and B := K x A the direct product of K by A. 
Let M = 0 x A and R be the trivial extension ring of B by B 1M. Then: 

(1) 	 M is a maximal ideal of B (since BIM ~ K) and (1, O)M =OB. 

(2) 	 By using [13, Theorem 2.21, it is easy to see that B is weakly semi-Steinitz since K and A are weakly 
semi-Steinitz. 

(3) 	 R is weakly semi-Steinitz by Theorem 2.5.{2) since B is weakly semi-Steinitz. 

(4) 	 Since B is not local then B is not semi-Steinitz by [13, Theorem 2.1]. Therefore, by Theorem 2.5.{2}, 
R is not semi-Steinitz. 

Remark 2.9. Let A be a non-local domain, E = AlP, where P is a prime ideal of A, and let R be the trivial 
extension of A by E. Then A and R are not weakly semi-Steinitz. 

Proof. We shall show that A and R do not satisfy the (CH)-property. This is clear for A. On the other hand, 
first note that A contains a non-invertible element b such that b ¢ P. Let J R(b,O). Then J is a proper ideal 
of R. We claim that J has no non-zero annihilator. Indeed, let (a, e + P) E R such that (a, e + P)J = 0, where 
a, e E A. But (a, e + P)(b,O) = (ab, eb + P); so ab = 0 and eb E P. So, a = 0 (since A is a domain and b f:. 0) 
and e E P (since P E Spec(A) and b ¢ P). Therefore, (a, e + P) = 0 and R is not a (CH)-ring. 

Next, we give a new characterization via trivial extensions: 

Proposition 2.10. Let A be a Noetherian ring, E an A-module, and R the trivial extension ring of A by E. 
Then A is a weakly semi-Steinitz ring if and only if R is a weakly semi-Steinitz ring and ae f:. 0 for every 
non-zero-divisor a of A and every non-zero element e of E. 

Proof. Assume that A is a weakly semi-Steinitz ring. By Theorem 2.5.(I)(a), R is a weakly semi-Steinitz ring. On 
the other hand, let a be a non zero-divisor of A and e a non-zero element of E. Since A is a weakly semi-Steinitz 
ring, a is a unit, hence ae f:. O. 

. Conversely, since A is a Noetherian ring, it suffices to show that every non-zero-divisor of A is a unit (cf. [13, 
Corollary 2.5]). Let a be a non-zero-divisor of A, then, (a,O) is a non-zero-divisor of R, since (a, O)(x, e) = (0,0) 
implies ax = 0 and ae = 0, hence x = 0 and e = O. Since R is a weakly semi-Steinitz ring, then (a, 0) is a unit 
in R and therefore a is a unit in A. 

3. LOCAL-GLOBAL QUESTIONS 

We first show that semi-Steinitz and weakly semi-Steinitz properties are not local properties. 

Example 3.1. Let A be a local domain which is not a field, Mo its maximal ideal, E = AIMo, and R the trivial 
extension ring of A by E. Then: 

(1) 	 R is a semi-Steinitz ring {and hence a weakly semi-Steinitz ring}. 

(2) 	 Rp is not a weakly semi-Steinitz ring {and hence not a semi-Steinitz ring}, for every non-maximal prime 
ideal P f:. OoE. 
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Proof· 

(1) 	 R is a semi-Steinitz ring (cf. Example 2.7), so R is also a weakly semi-Steinitz ring. 

(2) 	 Let P(=I OaE) be a non-maximal prime ideal of R, that is, P = PoaE, where Po(=I 0) is a prime ideal 
of A such that Po =I Mo by [10, Theorem 25.1] and the fact that R is a local ring with a maximal 
ideal M := MoaE. Our aim is to show that Rp does not satisfy the (CH)-property and this suffices to 
show that Rp is neither a weakly semi-Steinitz ring nor a semi-Steinitz ring (cf. [13, Theorem 2.1 and 
Theorem 2.2]). 

Let I = R(a, 0) be a finitely generated proper ideal of R, where a is non-zero element of Po, and set J := Ip. 
Then J is a finitely generated ideal of Rp. We claim that J is a proper ideal of Rp. Indeed, J Ip ~ PRp(=I 
Rp). On the other hand, let (b,y) ¢ P(= PoaE). So, b =I 0 and hence ab =I 0, since A is a domain and 
a =I O. Therefore, (b, y)(a, 0) = (ab, ay) =I 0 for each (b, y) ¢ Pj so (a,O)/i =I ORp and then J =I O. It remains 
to show that J has no non-zero annihilator. Let (c, z)/I E Rp such that ((c, z)/I)J = ORp' We claim that 
(c, z)/I = ORp. Indeed, since ((c, z)/I)J = ORp, then ((c, z)/I)((a, 0)/1) = ORp' Hence, there exists (d, e) ¢ P 
such that (d, e)(c, z)(a, 0) OR. So acd = OA. On the other hand, A is a domain, a =I 0 and d =I 0 (since 
(d, e) ¢ P(= PoaE», thus c = OA. In addition, (t, 0)(0, z) = (0, tz) = OR for each t E Mo Po. Therefore, 
(c,z)/l = (O,z)/I ORp since (t,O) ¢ P. Hence, J has no non-zero annihilator and Rp does not satisfy the 
(C H)-property. 

Proposition 3.2. Let A be a ring. If AM satisfies the (CH)-property for each maximal ideal M, then so does 
A. 

n 

Proof. Let I := L AXi be a finitely generated proper ideal of A. Let M be a maximal ideal such that I ~ M. 
i=l 

Then, I AM is a finitely generated ideal of AM. Two cases are then possible: 

Case 1: I AM = O. So, for each i = 1, ... ,n, XiAM = O. So there exist Si ¢ M such that SiXi = O. 
n 

Set s = II Si (¢ M). For each i = 1, ... , n, SXi = 0, thus sI = O. Therefore, I has a non-zero 
i=l 

annihilator, since s =I 0 (s ¢ M). 

Case 2: I AM =I O. The ideal I AM is a finitely generated proper ideal of AM, so there exists a 
non-zero element a/u of AM such that (a/u)IAM =OAM' where a is a non-zero element of A and 
u ¢ M. By the same proof as in Case 1, there exists s ¢ M such that sal = OA. But, sa =I OA 
since (a/u) =I OAM' Therefore, I has a non-zero annihilator, and A satisfies the (CH)-property. 

It is well-known that a ring A is weakly semi-Steinitz if and only if it is a Hermite ring and satisfies the 
(CH)-property (cf. [13, Theorem 2.2]). Hence, by Proposition (3.2), one may consider the following question: 

Question: Let A be a commutative ring such that Ap is a weakly semi-Steinitz ring for each prime ideal P. 
Is A a weakly semi-Steinitz ring? 

If A is Noetherian ring, we give an affirmative answer to this question. 

Theorem 3.3. Let A be a Noetherian ring. If AM is a weakly semi-Steinitz ring for each maximal ideal M, 
then so is A. 

Proof. Let A be a Noetherian ring. To show that A is a weakly semi-Steinitz ring, it suffices to show that every 
non-zero-divisor of A is a unit (cf. [13, Corollary 2.5]). Let a be a non-zero-divisor of A. Assume that a is not a 
unit in A and let M be a maximal ideal of A such that a E M. Hence, (a/I) E M AM and so (a/I) is not a unit 
in AM. On the other hand, we claim that (a/I) is not a zero divisor in AM. 
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Indeed, let (b/s) E AM such that (a/l)(b/s) = OAM' where b E A and s ¢ M. Hence, there exists u ¢ M 
such that uab = OA, so ub = OA since a is not a zero-divisor in A. Therefore, (b/ s) = OAM and (a/I) is not a 
zero-divisor in AM. But AM is a weakly semi-Steinitz ring, so (a/I) is a unit in AM, a contradiction. It follows 
that a is a unit in A and hence A is a weakly semi-Steinitz ring. 
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