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ABSTRACT 

In this paper, we investigate factorization properties in domains of type V + XB[X], 
where B is the integral closure of V in a finite algebraic extension of the quotient field of 
V. We place particular emphasis on the case where V is a discrete valuation ring in which 
the unique up to associate irreducible element p of V ramifies in B. More precisely, we 
compute in this case the sets of lengths of the elements of V + XB [X] and, in some cases, 
the generalized sets of lengths. 
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SETS OF LENGTHS IN V + XB[X] DOMAINS 

1. INTRODUCTION AND NOTATIONS 

Factorization properties of integral domains and monoids have been a frequent topic of the recent mathematical 
literature. One area of interest has been the factorization properties of polynomial rings ([3], [7], [9], [11], [15], 
[31]). Of particular interest have been polynomial rings of the form A + XB[X] where A ~ B is an integral 
extension of integral domains (see for example [10],[13],[23],[29],[30]). In [30], the second author of the present 
paper proved if Z c B is an integral extension, then the elasticity of Z+ X B[X] is infinite. Also in [30], elasticity 
was investigated in the case where A is a (rank-one) discrete valuation domain of quotient field K, and B is 
the integral closure of A in a finite extension of K. In this paper, we continue the investigation begun in [30] 
of this latter case and consider the sets of lengths and generalized sets of lengths in these domains. While our 
work is computational in nature, we feel that it warrants further consideration due to the current state of the 
mathematical literature with respect to the theory of sets of lengths and generalized sets of lengths. Indeed, 
the development of these investigations centered about the study of Krull domains and monoids (see [16]). In 
such a structure, all problems involving factorizations of elements can be reduced to combinatorial problems on 
a block monoid (see [27]) which essentially consists of the zero-sequences from a given finite abelian group (see 
Section 3). In our current work, we show in a domain R which is not Krull that factorization problems may still 
be dependent on minimal zero-sequences. 

We recall some basic definitions and results of factorization theory. We say that a domain R is atomic (see 
[22]) if each nonzero nonunit of R is a finite product of irreducible elements (ot atoms) of R. Let I(R) represent 
the set of irreducible elements of R. In an atomic domain R, a nonzero nonunit may have several factorizations 
into irreducible elements,· and two factorizations may have different lengths. Thus, we define R to be a half­
factorial domain (or HFD, see [36] and [37]) if R is atomic and any two factorizations of a nonzero nonunit of R 
as products of irreducible elements have the same length. In order to measure how far an atomic domain R is 
from being an HFD, we define the elasticity of R (see [35]) as: 

p(R) = sup {: I Xl ... Xrn = YI ... Yn where each Xi, Yj E I(R) } . 

Clearly 1 ::; p(R) ::; 00 and all these intermediate values may occur (see [1, Theorem 3.2]). Also, p(R) = 1 if and 
only if R is a HFD. When p(R) is a rational number min, we say that it is realized (by a factorization) if there 
exist some irreducible elements Xl, ... , X r , YI,' .. , Ys of R such that Xl ... Xr = YI ... Ys and min = r I s (see [2], 
[8], [31]). An excellent source of information on elasticity is the survey article [5] by D.F. Anderson. 

If R is an atomic domain and a a nonzero nonunit of R, then set: 

and 

£(R) = {L(a)la is a nonzero nonunit of R}. 

L(a) is called the set of lengths of a and £(R) is called the set of lengths of R (see [25] and [26]). For each 
positive integer n, set: 

VR(n) = {mI3xI,". ,Xn,YI,··· ,Yrn E I(R) such that Xl·· ,Xn = YI·· ·Yrn} , 

and denote by <I>R(n) the cardinality of the set VR(n). In [21], the sets VR(n) are called generalized sets of 
lengths. The function <I>R(n) and sets VR(n) have been studied extensively in the papers [6], [7], [8], [17], [18], 
[19], [20], [21]. Note the following link between <I> Rand p(R): if <I> R(n) is infinite for some n, then p(R) is infinite, 
but the converse does not hold in general [8]. 

Throughout the remainder of our work, let V be a discrete valuation ring with quotient field K. We denote 
by p the unique (up to units) irreducible element of V. Let L be a finite extension of K and B be the ring of 
integers of L over V. It is well-known that B is a principal ideal domain with only a finite number of irreducible 
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elements (up to units) denoted by 1rb" . ,1rr (r ~ 1). In B, the element p = 1r~1 ••• 1r~r can decompose in exactly 
one of three different ways. 

(1) 	 If r > 1, we say that p is decomposed. 

(2) 	 If r = 1 and ell, we say that p is totally inert (in this case, pB is a prime ideal of B). 

(3) If r 	= 1 and el > 1, we say that p is ramified (in this case, p = 1r~1 where 1r1 is the unique irreducible 
element - up to units - of B and el is the ramification index). 

We will also suppose throughout that B is a finitely generated V-module (then B[X] is a finitely generated 
module on V + X B[X]). This condition is satisfied, for instance, when the extension L/K is separable or when 
K is of characteristic O. 

We consider in detail the case described above where the prime p ramifies in B and is neither inert nor 
decomposed. In Section 2, we compile some basic ring theoretic properties of the domain V + XB[X] and show, 
in particular, that it is a weakly Krull domain of finite type. In Section 3, we consider the problem of computing 
the set of lengths of an element in V +X B[X] and give a complete formula for their computation. Since elements 
which are units of B but not units of V can be used to construct easy examples of non-unique factorizations 
into irreducible elements in V + XB[X] (if u is such a unit then X . X = (uX) . (u- l X)), we find it somewhat 
surprising in our main result (Proposition 3.7) that the unit groups of V and B play no role. Moreover, our 
Proposition 3.7 is in line with the known structure of sets of lengths in weakly Krull domains and mono ids (see 
Section 6 of [32] for details). In Section 4, we consider the problem of computing the generalized sets of lengths 
for V + X B[X] and give a complete description of these sets in the case where e 2 and 3. In Section 5, we 
discuss several open problems which the material in Sections 2 through 4 suggest. 

If R is an integral domain, then U(R) will denote its group of units and R* its set of nonzero elements. As 
usual, IE will denote the ring of integers, N the set of nonnegative integers and No the set of positive integers. 
For all integer n > 1, we set lEn lE/nlE and if m E IE, then set m = m + nlE. We also shall make use of the 
following notation, for every a, b E R: 

[a, b] {k E N I a ::; k ::; b} . 

If f(X) = anxn + an_1Xn- 1 + ... alX + ao is an element of V + XB[X], then we denoted by the order of 
f(X) the smallest nonnegative integer i for which ai "I O. For any further undefined terminology or notation, 
the interested reader is directed to [28]. 

2. BASIC RING-THEORETIC PROPERTIES OF V + X B[X] 

We begin with some general results which hold no matter how p decomposes in B. Both parts of the next 
lemma are particular cases of Theorem 4.1.2 and Proposition 4.3.2 in [34]. 

Lemma 2.1. Set R = V + X B[X], then: 

(a) 	 B[X] is the integral closure of R in its quotient field L(X). 

(b) 	 R is Noetherian. 

Proof· 

(a) 	 Since B[X] is integrally closed in L(X), it suffices to show that each element of B[X] is integral over R. 
Let f E B[X] and let a be the constant term of f. Since B is the integral closure of V in L, there exists 
a monic polynomial g = bo + blX + ... + br_1xr-l + X r in V[X] such that g(a) = O. Let us consider 

r-l 	 r-l 

~ = bo + L bi (a i 
- f(X)i) + (ar - f(Xr) + L biTi + Tr. 

i=l 	 i=l 

We have that ~ E R[T] is a monic polynomial with ~(f) = O. Thus, f is integral over R in L(X). 
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(b) 	 If I = XB[X], then R ~ B[X) share the ideal I. Moreover, B[X) is Noetherian (since B is a principal 
ideal domain) and B ~ B[X)/I is a finitely generated V-module. As V ~ R/I, we obtain from 
(or [24]), that R is Noetherian. 0 

Proposition 2.2. If R =V + XB[X), then: 

(a) 	 the Krull dimension of R is 2; and 

(b) 	 the prime ideal X B[X] of R is of height one in R. 

Proof. From Lemma 2.1, the extension R ~ B[X] is integral thus dim(R) = dim(B[X]). That is, dim(R) = 2. 
Since XB[X] C pV + XB[X], the prime ideal XB[X] is not maximal in R, and hence XB[X] is of height one. 
o 

For an integral domain R, let X(R) be the set of all prime ideals of height one. Following [4], we call R a weakly 
Krull domain if 

R= n Rp 
PEX(R) 

and, for all a E R*, we have a E U(Rp) for all but finitely many p E X(R). 

A weakly Krull domain R is said of finite type if its integral closure R is a Krull domain and a finitely generated 
R-module ([32]). 

Proposition 2.3. V + XB[X] is a weakly Krull domain of finite type. 

Proof. Set R = V + X B[X] and let us consider the R-module M = B[X]/R. Then each prime ideal in AssR(M) 
contains XB[X]. Since R ~ B[X] share the prime ideal XB[X], the ideals of R containing XB[X] correspond 
with the prime ideals of R/XB[X] ~ V. Thus XB[X] E ASSR(M) and ASSR(M) ~ {XB[X],p+XB[X]}. By 
way of contradiction, let us suppose that p+ XB[X] E ASSR(M). From Lemma 2.1, R is Noetherian, so we can 
write p+XB[X] = annR(f + R) with f = a + Xg and a E B \ V. Then p. a E V, whence a E Bn K V. This 
yields a contradiction. Thus ASSR(M) contains only XB[X] which is of height one. From [33, Remark p. 352], 
R is weakly Krull. Moreover, from Lemma 2.1, the integral closure of R is B[X] which is a Krull domain (since 
B is a PID) and it is a finitely generated R-module. 0 

3. FACTORIZATION OF ELEMENTS AND SETS OF LENGTHS 

eUnless otherwise specified, we assume throughout this section that p 7r ramifies with respect to B with 
index of ramification e ~ 2. Recall that if G is an additive abelian group and gl,"" gk E G, then we say that 
(see [21]): 

(a) 	 {gI,'" ,gk} is a zero-sequence if gl + ... + gk = OJ 

(b) 	 {gl,"" gk} is a zero-free sequence if there does not exist a non empty subset I ~ {I, ... , k} such that 
L:iEI gi = OJ and 

(c) 	 {gl,"" gk} is a minimal zero-sequence if gI + ... + gk = 0 and there does not exist a nonempty subset 
I C {I, ... , k} such that L:iEI gi = O. 

Recall that if f is irreducible in V + X B[X], then f is of order 0 or 1. Thus, the next theorem, which follows 
directly from [30, Lemmas 2.3 and 2.4], gives a complete classification of the irreducible elements in V + X B[X]. 

Theorem 3.1. Let p = 7re be ramified over B and suppose that f is a nonconstant irreducible element of 
R=V+XB[X]. 

1. If f has order 0 and is irreducible in B[X], then f is prime in R. 
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2. 	 If f has order 0 and is not irreducible in B[X], then it factors in B[X] as: 

eif = u . II
k 

(X<Pi + 7r ) , 


i=l 


where {el,"" ek} is a minimal zero-sequence of Ze, u is a unit of V, the <Pi'S are in B[X] and each 
(X<pi + 7r ei 

) is irreducible in B[X]. 

3. 	 If f has order 1, then: 

eif = (u· X) II
k 

(X<pi + 7r ) , 


i=l 


where {el,"" ek} is a zero-free sequence of Ze, u is a unit of B, the <Pi'S are in B[X] and each 
(X<pi + 7r ei 

) is irreducible in B[X]. Moreover, f is irreducible in B[X] if and only if f = u· X. 

The behavior exhibited in Theorem 3.1 is quite different than what occurs in the case where p remains inert in 
B. 	In that case, the irreducible elements of V + X B[X] remain irreducible in B[X] (see the proof of Theorem 
2.1 part (ii) in [30]). A similar, but more complex, version of Theorem 3.1 holds for the case where p splits in 
B. 	We illustrate that situation when f has order 0 with an example. 

Example 3.2. Suppose that p = 7r~1 ... 7r;r splits in B (i.e. r > 1) with each ei > 1. As in Theorem 3.1, if f 
is in V + X B[X] and irreducible in B[X] of order 0, then f is prime in V + X B[X]. If f has order 0 and is not 
irreducible in B[X], then it factors in B[X] as: 

k 

f = u· II (X<pi + 7r~i.l .. '7r~i.r), 
i=l 

where u is a unit of V, the <Pi'S are in B[X], each (X<pi + 7r~i.1 ... 7r~i.r) is irreducible in B[X], and: 

{(el,l,"" el,r), ... , (ek,l, ... , ek,r)} 

is a zero-sequence of Zel EB ... EB Ze r with the following properties: 

1. 	 there exists alE N such that L::=l ei,l = leI, L::=l ei,2 = le2, ... , L::=l ei,r = ler; and 

2. 	 if I is a proper subset of {I, ... , k} such that {(ej,l, ... , ej,r )}jEI is a zero-sequence in Zel EB ... EB Zer , 

then L:jEI ej,l = hel implies that L:jEI ej,d f; hed for some 2 ~ d ~ r. 

In [30, Theorem 2.1]' the elasticity of R = V + X B[X] is computed for the cases where p is decomposed or 
totally inert in B (in the first case p(R) = 00 and in the second p(R) = 1). We offer a slight improvement to 
this theorem by computing the elasticity when p ramifies. 

Theorem 3.3. If R = V + XB[X] where p = 7re ramifies in B, then p(R) = ~ and the elasticity is realized. 

Proof. From [30, Theorem 2.1]' 

e + 1 < p(R) < e + 1 . 
e - - 2 

Hence, it suffices to show that we can write an equality between a product of two irreducible factors and a 
product of e + 1 factors. Set 

f = X(X + 7r)e-l, 9 = X (X + 7re- 1 r-l 
, and h = (X + 7r) (X + 7re- l ) . 

By Theorem 3.1, f,g,h, and X are irreducible in V + XB[X] and we have 19 = X 2 he -I, completing the 
argument. 0 

In the next example, we give an explicit formula for the set of lengths of an element of V + X B[X] when e = 2. 
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Example 3.4. We consider the case where p is ramified and the index of ramification is e = 2. Set 
R =V + X B[X], then (from Theorem 3.3) p(R) = ~. 

In Z/2Z, there is only one minimal zero sequence (which is {I, I}) and there is only one zero-free sequence 
(which is {I}), thus (from Theorem 3.1) the irreducible elements of R are of 3 types: 

(a) the elements of R which are irreducible in B[X]; moreover they are all prime in R, except X; 

(b) polynomials of the form (X /.PI + 1re1 )(X/.P2 + 1r
e2 

), with /.PI, /.P2 in B[X] and el, e2 == 1 (mod 2); and 

(c) polynomials of the form X(X/'p + 1re1 ), with /.P in B[X] and el == 1 (mod 2). 

Let us consider fER and its factorization in B[X] (which is unique up to units, since B is a UFD), 

f = xrlI·· ·fagl" ·gt 

where r ~ 0, fl' ... ,fs are in R and of order 0, and gl, ... ,gt are not in R and are also of order O. 

The polynomials II, ... , fa are prime in R and thus appear in each factorization of f in R. Write such a 
factorization as: 

f = II .. ·faXPhl ... hukI ... kv, 

e2where 0 ~ p ~ r, hI .. ' hu are all of the form (X /.PI + 1re1 )(X/.P2 + 1r ), and kI , ... , kv are all of the form 
X(X/'p + 1re1). Thus, we have r = p + v. 

Since the polynomials X 1/J + 1re1 are irreducible in B[X] and since B[X] is a pFD, we obtain that the gi's are 
all of the form X 1/J + 1re1 • Thus, by a counting argument, we obtain 2u + v = t that is 2u = t r + p. It follows 
that: 

t-r+p
L(f) ~ {8 + r + 2 10 ~ p ~ rand p == r - t (mod 2)}. 

Factoring f uniquely as a product of irreducibles in B[X], we obtain: 

e1 etf = xrII ... fa(X /.PI + 1r ) ••• (X /.Pt + 1r ), (1) 

where el, ... ,et are odd integers. Choose an integer p such that 0 ~ p ~ rand p == r t (mod 2), then set: 

pkr- p = X (X /.Pr-p + 1r
e 

..- ) 


~l = (X /'pr-p+l + 1r
e .. - p+l )(X/'pr-p+2 + 1r

e,,- p +2
) 


where a = t-(~-p) (which is possible since p == r - t (mod 2)). Then, the gi'S and the hi's are irreducible 
elements of R. Thus, we obtain a factorization of f in R of length 8 + r + and therefore we have the 
equality. That is, 

L(f) {8 + t +;+ I 0 ~ p ~ r and p == r - t (mod 2)}. (2) 

Thus L(f) = [8 + ~,8 + t-t;2r]. 

We note that if f is of order 0, then we obtain that L(f) = {8 + ~} (since in this case r = 0). Thus, the 
elasticity of the element f in R is equal to 1. Thus, the elasticity of the domain R (which is equal to ~) only 
depends on the elements of order 1. Moreover, a nice application of the set (2) can be made with respect to the 
asymptotic theory of factorizations (see [12]). For an f in R, set: 

... 

l(f) = min L(f) and £(f) = max L(f)· 
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The main theorem of [12J implies that both of the limits 

£(f) = lim l(fn) and £(f) = lim £(fn) 
n~oo n~oon n 

exist (although £(f) may be infinite). Writing f as in (1), we obtain for n E No that: 

l(fn) rsn + nt ; nr 1and £(fn) = lsn + nt ~n2r J. 

Hence, 
q

71(f) _ I' l(f2 ) _ t + r{. - 1m -s+ , 
q~oo 2q 2 

and 
- . £(f2q) t 
£(f) = hm -2- = s + r + -2 . 

q~oo q 

Before considering the general case, let us look more closely at the minimal zero-sequences and zero-free 
sequences of Ze. Given a finite sequence 0' = {g.,.,. ,gal in Ze, set' 0' s. If 0' = {gl, ... ,gs} and 
T = {hI,.'" hi} are two finite sequences in Ze, then call 0' and T equivalent if , 0' 1=1 T I and there exists 
a permutation f of {I" .. , s} such that gi = h,(i)' 

Definition 3.5. To each minimal zero-sequence 0' ={gl,' .. ,gs} of Ze, associate the function J.L : {I, ... , e-l} -t 

{O, ... , e} such that for each 1 :::; j :::; e 1, J.L(j) is the number of i, with 1 :::; i :::; s, such that J= gi. 

Similarly, to each zero-free sequence T = {hI, ... , hi} we associate the function II : {I, ... , e - I} -t {O, ... , e} 
such that for each 1 :::; j :::; e - 1, lI(j) is the number of i, with 1 :::; i :::; l, such that J = hi. 

For example, in Z/4Z the minimal zero-sequence 0'1 {I, I, 2} corresponds to the function J.L1 : {I, 2, 3} -t 

{0,1,2,3,4} such that J.L1(1) = 2, J.Ll(2) = 1, and J.L.(3) = 0, and the zero-free sequence T1 = {2,3} corresponds 
to the function 111 : {1,2,3} -t {O, 1,2,3,4} such that 11.(1) = 0,111(2) = 1, and 111(3) 1. 

Suppose that 0'1,0'2, ... ,O'm(e) is the complete set of nonequivalent minimal zero-sequences of Ze and 
T., T2," " Tn(e) the complete set of nonequivalent zero-free sequences of Ze. Hence for each 1 :::; i :::; m(e), 

e-l

L J.Li(i)j ° (mod e) 

j=l 

and for all °:::; kj < J.Li(i) with 1 :::; j :::; e - 1, we have: 

e-1 
Ljkj t: ° (mod e). 
j=1 

Also, for each 1 :::; i :::; n(e) and every °:::; kj :::; lIi(i) with 1 :::; j :::; e - 1, we have: 

e-1 
Ljkj t: ° (mod e). 
j=l 

Among the minimal zero-sequences 0'1, 0'2, ... ,0'm(e), we can consider the sequences 0'i such that J.Li (i) = °for all 
1 :::; j :::; e 1 but one, say jo, and then J.Li(iO) is the order of jo in the additive group Ze. We assume without loss 
of generality that these sequences are O'I, ••• , O'e-l where the index is the element of {I, ... , e I} for which the 
function does not vanish. For instance, in Z/4Z, they are the sequences {I, I, I, I}, {2,2}, and {3, 3, 3, 3}. 
These sequences have the associated functions J.L1,J.L2,J.L3 : {1,2,3} -t {0,1,2,3,4} such that J.Ll(l) = 4, 
J.Ll(2) = 0, J.Ll(3) = 0, J.L2(1) = 0, J.L2(2) = 2, J.L2(3) = 0, and J.L3(1) 0, J.L3(2) = 0, J.L3(3) = 4, The follow­
ing result-is clearly obtained from Theorem 3.1. 
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Lemma 3.6. Set R = V + X B[X] and suppose the index of ramification of p is e. The irreducible elements of 
R are of 1 + m(e) + nee) types: 

(a) the elements of R of order 0 which are irreducible in B[X] (moreover, they are prime in RJ; 

(b) 	 for aliI :$ i :$ m, polynomials of the form: 


U· II II (Xt.p(j,kj) + 7r 
S (j,k;») , 


jEE; l~k;~p;(j) 

where Ei = {jlJ.'i(j) =/:- O}, t.p(o:,r;) E B[X], s(j, kj) == j (mod e), and U is a unit of V; 

(c) for aliI :$ i :$ n, polynomials of the form: 

SU· X II II (X1P(j,lj) + 7r (j,'j») , 


jEF; 1'$1;~v;(j) 


where Fi 	 {ilvi(j) =/:- O}, 1P(o:,r;) E B[X], s(j,lj) == j (mod e), and U is a unit of B. 

Now, we are able to generalize Example 3.4. 

Proposition 3.7. Set R V + X B[X] and suppose that the index of ramification of p is e > 1. For each i 
with 1 :$ j :$ e - 1, we denote by OJ the order of J in the additive group Ze (thus J.'j(j) = OJ}. If fER factors 
irreducibly in B[X] as, 

f = xrII ... fs II II (X t.p(j,i) + 7r S (i,j») , 

l~j~e-l 199; 

where r ~ 0, II, ... , fs are in R and of order 0, the t.p(j,i) 's are in B[X], and s(i,j) == j (mod e), then: 

e-l ",m(e) ( .) ",n(e) ( .) m(e) }
L(f) r + s + ~ tj - L..a=e UaJ.'a :. L..b=1 VbVb J + ~ Uj , 

{ 
3=1 3 3=e 


with the following conditions: 


• ",n(e) Vb 	 < r'L..b=l -, 

• for aliI :$ j :$ e - 1, L~~:) uaJ.'a(j) + L;~e2 VbVb(j) :$ tj; and 

• for aliI :$ j :$ e - 1, L~:) UaJ.'a(j) == tj - L;~e2 VbVb(j) (mod OJ). 

Proof. The polynomials II, ... ,Is are prime in R thus appear in each factorization of 1 in R. Write such a 
factorization: 

where for all 1 :$ a :$ m(e), the ga,i's are of type: 


II II (X t.p(j,k;) + 7r 
S (j,k j ») , 


jEEa l~kj'$Pa(j) 

and, for all 1 :$ b:$ nee), the hb,i'S are of type: 


XII II (X1P(j,lj) + 7r 
S(j,';») . 


jEFb l~lj '$Vb(j) 
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We have the following relations: 

• 0 :5 p :5 r; 

• r = p + 2: Vb; and 
1SbS n(e) 

m(e) n(e) 
• for all 1 :5 j :5 e - 1, tj = 2: UaILa(j) + 2: VbVb(j), that is: 

a=1 b=1 

m(e) n(e) 
tj = UjILj(j) + L UaILa(j) + L VbVb(j). 

a=e b=1 

where: 

• ~n(e) Vb < r'L...Jb=l -, 

• for all 1 :5 j :5 e - 1, 2:~:) uaILa(j) + 2:~!:e2 VbVb(j) :5 tj; and 

• for alII :5 j :5 e - 1, 2:~:) UaILa(j) == tj 2:~!:e2 VbVb(j) (mod OJ). 

It is easy to obtain the other inclusion as in Example 3.4. 0 

Example 3.8. We apply the formula of Proposition 3.7 to the case where e = 3. Here the minimal zero-sequences 
of Z3 are 0'1 = {I, I, I}, 0'2 = {2, 2, 2}, and 0'3 {I,2}, and the zero-free sequences are TI {I}, T2 = {2}, 
T3 ={I, I}, and T4 ={2,2}. By computing the appropriate values of ILa(j) and Vb(j) we obtain: 

tl - U3 - VI - 2V3 t2 - U3 - V2 - 2V4}
L(I) = { r + 8 + U3 + 3 + 3 ' 

where: 

• VI + V2 + V3 + V4 :5 r, 

• U3 + VI + 2V3 :5 t I, 

• U3 + V2 + 2V4 :5 t2, 

• U3 == tl - VI - 2V3 (mod 3), and 

• U3 == t2 - V2 - 2V4 (mod 3). 

If 1 is of order 0, we obtain: 

L(f) { 8 + t,+ t~ + U3 } , 

where Ug == tl (mod 3),U3 == t2 (mod 3) and 0:5 U3 :5 min {tl,t2}' 

4. GENERALIZED SETS OF LENGTHS 

In this section, we consider the computation of the generalized sets of length VR(n) in R = V + X B[X] when 
p is ramified. We begin with two examples. 
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Example 4.1. Consider the case where the index of ramification is e = 2. From Theorem 3.3 we have that 
p(R) = ~. We prove in the following that VR(n) = [23n, 3;] and thus, for each n ;::: 1, VR(n) is an interval. 

First, let us note that if m E VR(n) then nlm ~ 3/2, min ~ 3/2, and 2; ~ m ~ 3;. By considering the 
two factorizations [X(X + 1I")][X(X + 11")] = X2[(X + 11")2] and [X(X + 1I")][X(X + 1I")][X(X + 11")] = X2[(X + 
1I")2][X(X + 11")], we obtain that VR(2) = [2,3] and VR(3) = [2,4]. 

We prove by induction on n that VR(n) = [23n , 3;]. The result holds for n = 2,3. Suppose that it holds for 
all positive integers less thaI?- or equal to n and consider VR(n + 1). We distinguish two cases. 

(1) 	 If n + 1 = 2k, we first prove that {n + 1, ... ,3k = 3(ni1
) } ~ VR(n + 1). Indeed, consider I = X(X + 11") 

and the factorization 

In+1 = X 2(k-p) [(X + 1I")2]k-p12p 

where 0 ~ p ~ k. We obtain a factorization with 3k - p factors on the right where 2k ~ 3k - p ~ 3k. 

Let us prove that if 2(ni1
) ~ a < n + 1, then a E VR(n + 1). In this case, 23a < n + 1 ~ 32a. Thus 

n + 1 E [23a, 32a] = VR(a) (by hypothesis). Consequently, a E VR(n + 1). 

(2) 	 If n + 1 = 2k + 1, we first prove that {n + 1, ... , 3(ni1
) } ~ VR(n + 1). Indeed, consider I = X(X + 11") 

and the factorization 

I n+1 = X 2(k-p) [(X + 1I")2]k-p12p+1 

where 0 ~ p ~ k. We obtain a factorization with 3k-p+ 1 factors on the right where 2k+ 1 ~ 3k-p+ 1 ~ 
3k+ 1. 

Let us prove that if 2(ni1
) ~ a < n + 1, then a E VR(n + 1). In this case, 23a < n + 1 ~ 32a. Thus 

n + 1 E [23a, 32a] =VR(a) (by hypothesis). Consequently, a E VR(n + 1). 

Hence, we have proved for each integer n ;::: 2 that 

2n 	3n]
VR(n) = [3'2 . 

Example 4.2. We consider the case where the index of ramification is e = 3. From Theorem 3.3 we have that 
p(R) =2. We prove in the following that: 

[¥,2n] if n=:O (mod 4) 

[¥,2n 1] if n::1 (mod 4) 
VR(n) 

[¥ + 1, 2n] if n::2 (mod 4) 

[¥, 2n - 1] if n:: 3 (mod 4), 

and thus, for each n ;::: 1, VR(n) is an interval. 


Since p(R) =2, we can note that, for each n ;::: 2, 


VR(n) ~ [~; 2n] . 

It is easy to verify, by considering appropriate factorizations, that VR(2) = [2,4], VR(3) = [2,5], VR(4) = [2,8], 
and VR(5) = [3,9]. The only non-trivial verifications in these computations consist of showing that 6 f/: VR(3) 
and 10. f/: VR(5). Let us show 6 f/: VR(3) (the other verification is similar). Suppose that 6 E VR(3). Then we 
can write fthfa = g1g2g3g4g5g6 with the Ii, gj irreducible in R. From Theorem 3.1, each irreducible Ii or gj is 
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k 
eiof the form n (X<Pi + 7r ) where {el,'" ,ek} is a minimal zero-sequence of Z3 and the <Pi'S are in B[X), or of 

i=l 
k 

the form X n (X<Pi + 7rei 
) where {el,"" ek} is a zero-free sequence of Z3 and the <Pi'S are in B[X]. Moreover, 

i=1 
in each case the factors are irreducible in the UFD B[X). 

Note that the number k of factors which appear in the factorization of f (or 9) in B[X) satisfies 1 ~ k ~ 3 
(and k = 1 if and only if f = X). Thus, the number 8 of factors of fthh satisfies 3 ~ 8 ~ 9 and the number 
t of factors of 919293949596 satisfies 6 ~ t ~ 18. This equality implies that 3 elements among the 9j'S are equal 
to X and the others are of order O. Thus, the h's are of the form X (X<PI + 7re1 )(X<P2 + 7re2 ) (with el, e2 == 1 
(mod 3)) or of the form X(X + <P17re;)(X + <p27re~) (with el,e~ == 2 (mod 3)), and the product of the 9j'S is 
equal to a polynomial of the form X3[(X<pl + 7r€1 )]3 [(X<p2 + 7r€2)))3 (with Cl,C2 == 1 (mod 3)) or of the form 
X 3 [(X<pl + 7r€~ ))3 [(X<p2 + 7r€~)]3 (with cl'€~ 2 (mod 3)). We obtain a contradiction and 6 rt VR(3). 

We have shown that the result holds for n 2, 3, 4 and 5. Assume that it holds for all positive integers less 
than or equal to n and consider VR(n + 1). We have four cases to consider. 

(1) 	 If n + 1 == 0 (mod 4) (that is n == 3 (mod 4)), then VR(n) = [~, 2n - 1] and thus VR(n + 1) ;2 

[~ + 1, 2n]. Moreover ntI- == 0 (mod 2) and thus, by hypothesis, 2 ntI- E V R (ntI- ). That is, n + 1 E 

VR (~). It follows that ~ E VR( n +1) and therefore VR( n +1) ;2 [ntI-, 2n]. Finally, write n + 1 =4t 

and consider the following factorizations for k 0 or 1: 

Then, we obtain that 8t, 8t -1 E VR(4t). That is, 2n + 1, 2n + 2 E VR(n + 1). Since p(R) = 2, we obtain 

that V R (n + 1) = [ntI-, 2n + 1] . 

(2) If n + 1 == 1 (mod 4) (that is n == 0 (mod 4)), then VR(n) = [~, 2n], and thus VR(n + 1) contains 

[~ + 1, 2n + 1] = [ntI-, 2n + 1]. As previously mentioned, one can prove that 2n + 2 is not in VR(n +1). 

Thus VR(n + 1) = [~, 2n + 1] . 

(3) If n + 1 == 2 (mod 4) (that is n == 1 (mod 4)), then VR(n) = [~, 2n - 1] and thus VR(n + 1) ;2 

[~ + 1, 2n]. That is, VR(n + 1) ;2 [ntI- + 1, 2n]. Write n + 1 = 4t + 2 and, for k = 0 or 1, note that: 

[X(X + 7r)2]2t+l [X(X + 7(2)2]2t+l = [(X + 7r)(X + 7(2)tt+2-k X4t [X(X + 7r)k] [X(X + 7(2)k] . 

We obtain that 8t + 4, 8t + 3 E VR(4t + 2). That is, 2n + 1 and 2n + 2 are in VR(n + 1). Since p(R) 2, 

we obtain that VR(n + 1) = [ntI- + 1, 2n + 2] . 

(4) If n + 1 == 3 (mod 4) (that is n == 2 (mod 4)), then VR(n) = [~ + 1, 2n] and thus VR(n + 1) contains 

[~+ 2,2n + 1]. Moreover ~ + 1 == 1 (mod 2). Thus, by hypothesis, 2 (~+ 1) 1 E VR (~+ 1). That 

is, n + 1 E VR (~ + 1). It follows that ~ + 1 E VR(n + 1) and therefore VR(n + 1) ;2 [~+ 1, 2n + 1] = 
[ntI-, 2n + 1]. As previously mentioned, one can prove that 2n+2 is not in VR(n+ 1). Thus VR(n+ 1) = 
[ntI-, 2n + 1] and the argument is complete. 

We have computed all the sets VR(n) in the cases e = 2 or 3, but for larger values of e, this computation becomes 
more difficult. Note that a general computation of the generalized sets of length is not known even for Dedekind 
(or Krull) domains. The complete computation of the VR(n)'s is known for several specific class groups, but not 
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in general (see [21]). Nevertheless, in the case of R = V + X B[X] we are able for n = 2 to compute VR(n) for 
each e ~ 2. 

Lemma 4.3. If p is ramified with index of ramification e ~ 2, then 

VR(2) = {2, 3, .... , e + I}. 

Proof. For all 0 ~ k ~ e 1, we have: 

[X (X + 1I")e-l] [X (X + 1I"e-l )e-l] 

k 
= [(X + 11") (X + 1I"e-l )r-1

- [X(X + 1I")k] [X (X + 1I"e-l )k] , 

that is, a product of 2 irreducible factors on the left and a product of e + 1 - k irreducible factors on the right, 
for all 0 ~ k ~ e - 1, thus: 

V(2) 2 {2,3, .... ,e+ I}. 

Since p(R) = ~, we have an equality. 0 

We can apply Lemma 4.3 to show the following. 

Corollary 4.4. If R = V + X B[X] and p ramifies with index of ramification e ~ 2, then: 

lim cJl(n) p(D)2 1 = (e + I? - 4 

n4+OO n p(D) 2(e + 1) 


Proof. From Lemma 4.3, we have VR(2) = {2,3, .... ,e + 1}. The proof now follows directly from [7, Theorem 
3.2]. 0 

5. QUESTIONS AND PROBLEMS 

Set R = V + X B[X] and consider the case where p has index of ramification e ~ 2 (i.e., p = 1I"e). Let X(R) 
be the set of all height-one prime ideals in R. Then, denote by P ~ X(R) the set of the height-one prime ideals 
q3 of R such that Rq3 is a DVR, and set E = X(R) \ P. From Proposition 2.3, R is a weakly Krull domain 

of finite type, and the set E is finite by [32, Lemma 6.3]. On the other hand, since R ~ B[X] share the ideal 
XB[X], the prime ideals of R verify the following two conditions (see [14]): 

1. the prime ideals which contain X B[X] correspond with the prime ideals of V ~ R/X B[X], and 

2. for each prime q3 not containing XB[XJ, Rq3 = (R \ q3)-1 B[X]. 

Since V is a DVR, the only prime ideals of V are (0) and pV. Thus, there are only two prime ideals of R which 
contain XB[X], namely XB[X] and pV+XB[X]. Since the height of pV +XB[X] is 2, we only consider the case 
of the localization at X B[X] (which is of height 1 from Proposition 2.2). Let us consider the element 1 = ~iti; 
of L(X). Then, it is easy to verify that neither 1 nor 1-1 is in RXB[xj, thus RXB[xj is not a valuation domain. 
Therefore, XB[X] E E. 

Moreover, from [32, p. 55] and as the integral closure of R is B[X], for each prime ideal q3 of R not containing 
X B[X], we have q3 E P (that is ~ is a DVR). Thus q3 ~ E and we have proved that lEI 1. We then deduce 

from [32, Remark p.57J and [32, Corollary 7.3J that, 

• for all F ~ X(R), every class of the t-class group Clt(R) of R contains t-invertible t-ideals a such that 
a ct p, for all p E F; and 

• Clt(R) is generated by the t-classes containing primes. 

These remarks allow us to raise the following question: 
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Question 1. Compute the t-class group of V + XB[X]. 

Using [7, Theorem 3.2], Lemma 4.3 can be expanded to say: 

VR (2k(e + 1)) = {4k, 4k + 1, ... , k(e + 1)2} , 

for any positive integer k. For each n ~ 1, let us note ..\(n) =min VR(n) and J.L(n) =max VR(n). Using essentially 
the same argument presented in [21, Corollary 2.6], one can show VR(2k) contains ["\(2k - 2) + 2,J.L(2k)] for any 
positive integer k (this argument also needs the easily verified fact that J.L(2k) = k(e + 1)). 

Question 2. Show that VR(n) is an interval for all even values of n. 

If one could show that "\(2k) equals either "\(2k 2) + 2 or "\(2k - 2) + 1, then Question 2 would follow. If 
"\(2k) "\(2k - 2), then one needs to show that "\(2k 2) + 1 is also in VR(2k). 

The problem lies in the computation of VR(3). We can see in [21] that this is a difficult problem for even 
Dedekind domains and Krull monoids. In our situation consider e = 4. Is J.L( 3) = 6 or 7 ? 

Question 3. Compute J.L(3) for an arbitrary e. 
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