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ABSTRACT 

Using the notion of v-ordering in discrete valuation domains, Bhargava introduced 
factorial ideals associated with subsets of Dedekind domains, which generalize the classical 
factorials. We show how v-orderings may be extended to subsets of rank-one valuation 
domains, and also, how factorial ideals may be generalized to subsets of Krull domains 
with almost the same properties. In addition, we obtain results concerning the asymptotic 
behavior of the sequence of these factorial ideals. 
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Jean-Luc Chabert 

GENERALIZED FACTORIAL IDEALS 

INTRODUCTION 

Recall first some properties of the classical factorials n! [1]: 

Property 1 - For each k, lEN, 

(k + l)! ~T 

kIll E J.~. 


Property 2 - For any sequence ao, al,"" an of n + 1 integers, the product: 

II (aj - ai) is divisible by 1! ... nL 

0:5i<j:5 n 


Moreover, the product is equal to 1 for the sequence 0,1, ... , n. 

Property 3 - For every monic polynomial f E Z[X] of degree n, 

d(f) = gcd{f(k) IkE Z} divides n! [16]. 

Moreover, for f = (X + 1) ... (X + n), d(f) nL 

Property 4 - For every integer-valued polynomial 9 of degree n, that is, every 9 E Q[X] of degree n such that 
g(Z) ~ Z, 

n!g(X) E Z[X]. 

Moreover, ;h is the leading coefficient of the binomial polynomial: 

X) = X (X - 1) ... (X - n + 1) . 

(
 n n! 

In these assertions, Z is considered either as a domain (divisibility in Z), or as a set (sequences of elements in Z). 
Following Bhargava [2], we will extend these properties by replacing Z both by a domain D and by a subset E 
of D. In the first section, generalizing Property 4, we define the factorial ideals with respect to any subset E of 
an integral domain D. In Section 2, we extend to any valuation domain the notion of v-ordering introduced by 
Bhargava for discrete valuation domains [2], and recall the links with integer-valued polynomials and factorial 
ideals. Then, in Section 3, we show that, even If there is no v-ordering, the main results concerning factorial 
ideals still remain valid in the case of rank-one valuation domains (Prop. 3.2, Thms 3.12 and 3.13). In Section 4, 
we study the asymptotic behavior of some arithmetic functions associated with the sequence of factorials ideals 
(Prop. 4.1 and Thm 4.2). Then, in Section 5, we globalize the previous results in the case where D is a Krull 
domain (Prop. 5.8 and 5.9) extending Bhargava's results for Dedekind domains [3]. Finally, in the last section, 
we consider some examples. 

1. FACTORIALS IDEALS 

Notation. Let D be an integral domain with quotient field K and let E be any subset of D. (In the three next 
sections, D will be a valuation domain denoted by V.) 

Recall that the ring of integer-valued polynomials on E (with respect to D) is: 

Int(E, D) = {f E K[X] I f(E) ~ D}. 
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Definition 1.1. [6, §II.1] For each n E N, the characteristic ideal of index n of the ring Int(E, D) is the set 

'In(E, D) formed by the leading coefficients of the polynomials in: 


Intn(E, D) = {f E Int(E, D) Ideg(f) :5 n}. 

Clearly, {'In(E, D) }neN is an increasing sequence of D-modules such that 

D ~ 'In(E, D) ~ K, and 'Jo(E, D) = D. 

One knows that (see [12] and [6, Proposition 1.3.1]): 

• if n ~ card(E), then 'In(E, D) =K, 

• if n < card(E), then 'In(E, D) is a fractional ideal of D. 

In particular, if card(E) is infinite, all the 'In(E, D) are fractional ideals. 

Recall also that, for each fractional ideal 'J of D, the set 

3-1 = {x E K I x3 ~ D} 

is a fractional ideal of D called the inverse of 'J (although, the inclusion 'J . 'J- 1 ~ D may be strict and (3-1)-1 

may strictly contain 'J). Such an inverse is a divisorial ideal, that is, an intersection of principal fractional ideals 
of D (and, in this case, is equal to the inverse of its inverse). By convention, we will write K-l = (0) and 
(0)-1 = K. 

The following definition extends those given by Zantema [20] in the case where D is the ring of integers of a 

number field and E = D, and by Bhargava [3] in the case where E is a subset of a Dedekind domain D. 


Definition 1.2. The factorial ideal of index n with respect to the subset E of D is the inverse of the fractional 
ideal 'In(E, D) and is denoted by (n!)~ or (n!)E if the context allows us to omit D: 

For instance, 

(n!)~ = (n!)~ =n! Z. 

Here are some easy properties of these factorial ideals. 

Proposition 1.3. For each subset E of the integral domain D: 

(1) (O!)E = D, 

(2) {(n!)E}neN is a decreasing sequence of entire divisorial ideals of D, 

(3) (n!)E = (0) if and only if n ~ card(E), 

(4) if E ~ F ~ D, then (n!)E ~ (n!)F, and hence, (n!)E x (n!)pl ~ D. 

2. GENERALIZED v-ORDERINGS 

The notion of v-ordering defined by Bhargava [2] for any subset of discrete valuation domains is a very fruitful 
notion in the study of integer-valued polynomials and generalized factorials. We are going to see that such a 
notion may also be useful for some subsets of non-discrete valuation domains. 
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Hypothesis. Let V be a valuation domain and let E be a subset of V. We denote by K the quotient field of 
V, by v the corresponding valuation of K, by m the maximal ideal of V, and by r the value group of v. 

Definition 2.1. A v-ordering of E is a (finite or infinite) sequence {an}~=o of distinct elements of E such that, 
for 1 ~ n ~ N, one has: 

Remarks 2.2. 

(a) 	 In the case where the valuation v is discrete, there always exist v-orderings of E with N < card(E) 
without any assumption on E. Such sequences may be constructed inductively on n choosing any 
element in E for ao. 

(b) 	 If vis not discrete, we have to assume, at each step n, the existence of a minimum for v(n~:~ (x - ak)). 
For instance, if E = m and m is not principal, then Int(m, V) = V[X], and hence, (n!)~ V for each n. 
On the other hand, v(a - ao) > 0 for all ao, a E m, while infxEm v(x - ao) = O. Consequently, there does 
not exist any v-ordering (cf. [7, § 4]). 

(c) 	 The existence of a minimum is obviously satisfied if the subset E is finite, or more generally, if E is 
compact with respect to the topology induced by v, or even, if the completion E of E is compact [7, § 4]. 
In fact, weaker conditions are enough. In the particular context of topologies defined by valuations, E 
is compact if and only if, for each nonzero ideal J of V, E meets only finitely many cosets of V modulo 
J. We extend such a property by considering the following one. 

Proposition 2.3. Let E be an infinite subset of the valuation domain V such that, for each, E r of the form 
, = v(x y) where x, y E E and x ::f:. y, E meets only finitely many cosets of V modulo J')' = {z E V Iv(z) ~ ,}. 
Then there exist infinite v-orderings of E. 

Proof. 

First step: for each Xo E E, the map 

x E E I-t v(x - xo) E ru {+oo} 

reaches a minimum on E. 

Let, v(Yo xo) where Yo E E, Yo ::f:. Xo and let J')' = {z E V I v(z) ~ ,}. Then, there are finitely 
many Xl, ... ,Xr E E such that: 

If r 0, then infxEEv(x - xo) = ,. 

If r 	~ 1 then, for k ~ 1 and x E Xk + J,)" v(x - xo) =V(Xk - xo); consequently, 

r 

inf v(x - xo) = inf V(Xk - xo).
xEE k=l 

Second step: for each aI, a2,"" an E E, the map: 

x E E I-t V((x - ad (x - a2) ... (x - an)) E r U { +00} , 

reaches a minimum on E. 
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First note that, from every infinite sequence of elements of r, we may extract either an infinite increasing 
sequence, or an infinite strictly decreasing sequence. Assume that x""'" g(x) =v«x-ad ... (x-an)) does 
not reach a minimum. Then, there exists an infinite sequence {Yk} of elements of E such that {g(Yk)} 
is strictly decreasing. Since the subset {Yk IkE N} of E has the same property of finiteness, it follows 
from the first step that, for every i E {I, ... ,n}, we cannot extract from the sequence {V(Yk - ai)} a 
strictly decreasing sequence. Consequently, we may extract from the sequence {Yk} an infinite sequence 
{Zl} such that, for every i, the sequence {V(ZI - ai)} is increasing. This is a contradiction with the fact 
that {g(ZI)} is strictly decreasing. D 

Example 2.4. Let k be a field, let Q+ be the set of positive rational numbers, and let K = k( {Tr IrE Q+}). 
Let v be the rank-one valuation on K such that vCL:~=o akTrS.) = inf{rk Iak i= O} and let V be the corresponding 
valuation domain. For every strictly increasing sequence {rn}nEN of positive rational numbers and every finite 
subset F of k containing 0, we consider the following subset of V: 

This subset E has the property assumed in Proposition 2.3, and hence, there are infinite v-orderings of E. Note 
that the completion Eof E cannot be compact if the sequence {rn} is bounded (and F i= {O}). We may obtain a 
v-ordering {an} nEN in the following way. Let ao = 0, aI, ... ,aq-l be the elements of F. Writing, for each n E N, 

we let 

Indeed, denoting by vq(n) the greatest integer k such that qk divides n, for each nand mEN we have: 

We then may check that 

Consequently, for m ~ n, 

By induction on n, it follows from the previous equalities that the sequence {an} is a v-ordering of E since, for 
every m ~ n, 
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Now we recall the link between v-orderings and integer-valued polynomials. 

Proposition 2.5. Let {an};{=o be a sequence of distinct elements of E. Then, {an};{=o is a v-ordering of E if 
and only if the polynomials 

form a basis of the V -module 

IntN(E, V) = {f E K[X] I f(E) S; V, deg(f) ~ N}. 

Proof. The sequence is a v-ordering of E if and only if, for each n ~ N, v(fn(a» ~ v(fn(an»for each a E V, 
that is, fn(E) S; V. Moreover, the fn's form a basis of the K-vector space KN[X] = {g E K[X] Ideg(g) ~ N}. 
Consequently, if the fn's are in Int(E, V), then they form a basis of the V-module IntN(E, V) since fn(an) 1 
for each n ~ N. 0 

Note that there may be infinitely many v-orderings of E. Nevertheless, we have the following straightforward 
consequence: 

Corollary 2.6. [2, Prop. 2.1] If {an};{=o is a v-ordering of E, then for each n ~ N, one has: 

n-l 

(n!)~ = In(E, V)-l = II (an - ak)V, 

k=O 


and the sum 

n-l 

wE(n) = L v(an - ak) 

k=O 


does not depend on the choice of the v-ordering of E. 

Remark 2.7. Note that if there exists a v-ordering {an};{=o of E then, for 0 ~ n < N, (n!)~ is a principal ideal. 
It follows from Remark 2.2 (b) that (n!)E may be principal even though there does not exist any v-ordering. 

Corollary 2.8. Assume that there exists a v-ordering {ak}k=O of E and let f E Int(E, V) of degree ~ n. Denote 
by c(f) and f(E) the fractional ideals of V generated respectively by the coefficients of f and by the values of f 
on E, and write: 

n k-l X"'" II - a,f(x) = 	~bk --. 

k=O 1=0 ak - at 


(1) c(f)(n!)E is an entire ideal. 

(2) f(E) = (f(ao), f(al), . .. ,f(an»= (bo, . .. , bn). 

(3) c(f)(n!)E S; f(E) S; c(f)· 

Moreover, for f = n~:~(X - ak), we have c(f) = V and f(E) = (n!)E. 
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Proof· 

(1) 	 results from the equality: 

(2) 	 Obviously, 

f(E) ~ (bo, ... ,bn ) ~ (f(ao), ... , f(an )) ~ f(E). 

(3) 	 Clearly, f(E) ~ c(f). The equality in the proof of assertion (1) shows that c(f)(n!)E is contained in 
(bo, bI, ... ,bn ) which by (2) is equal to f(E). D 

3. RANK-ONE VALUATION DOMAINS 

Hypothesis. In this section, V denotes a rank-one valuation domain (r is a subgroup of JR). 

For every ideal J, denote by v(J) the valuation of J, that is, 

v(J) = inf{v(x) Ix E J}. 

Definition 3.1. If v is a rank-one valuation, the characteristic function of Int(E, V) is the arithmetic function 
WE defined by: 

n E N ~ wE(n) v ((n!)k) = -v (In(E, V)) E N U {+oo}. 

Such a sequence wE(n) was already considered in the special case where the valuation is discrete (as in [4] and 
[5]) or, more generally, where there exists a v-ordering (Corollary 2.6). 

The characteristic function is an increasing function. More precisely, we have the following inequality which 
extends Property 1 of the classical factorials (cf. Introduction). 

Proposition 3.2. For each k, lEN, one has: 

This inequality results from the obvious inclusion: 

We can find some computations of this function WE in [4] and [5]. Let us return to Example 2.4 and consider the 

case where k = F = IB'q and Tk = k, that is, V = IB'q[T](T) and E = IB'q[T]. We then have wE(n) = L:k>O [~]. 
This is a particular case of the following result. 

Proposition 3.3 (P6lya [17]). If v is discrete and if q denotes the cardinality (finite or infinite) of the residue 
field of v, then 

wv(n) = wq(n) = L [~l·
k>O q 

Again we generalize the notion of v-ordering. 
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Definition 3.4. Let E ~ O. A v-ordering of E modulo E is a sequence {bn}~=o of distinct elements of E such 
that, for each n :::; N, one has: 

v (IT (bn - bk)) :::; v (IT (x - bk)) + E for every x E E. 

k=O k=O 


For E 0, we have the classical notion of v-ordering. Although v-orderings do not necessarily exist, there always 
exist v-orderings modulo E for every E > O. Such sequences may be constructed inductively on n choosing any 
element in E for boo Then, the link between v-orderings and integer-valued polynomials becomes: 

Lemma 3.5. Let N < card(E), let E > 0, and let {bn}~=o be a v-ordering of E modulo E. Every polynomial 
f E K[X] of degree:::; N may be written: 

N n-l X - b
k 

f(X) = 	LCn II b -bk withcn E K. 
nn=O k=O 

Ifv(cn) ~ E for each n :::; N, then f belongs to Int(E, V). Conversely, if f belongs to Int(E, V), then v(cn) ~ -nE 
for each n :::; N. 

Proof. For each n :::; N, let: 

Then, 

N 

f(X) =	L cnhn(X). 

n=O 


By definition of the sequence {bn}, for each n :::; N and for each x E E, one has v(hn(x)) ~ -E. Obviously, if 
v(cn) ~ E, then v{cnhn(x)) ~ 0 for each x E E, and hence, f belongs to Int{E, V). 

Conversely, assuming that f belongs to Int(E, V), let us prove by induction on n, that v(cn ) ~ -nE. First, 
f(bo) = eo E V, and hence v(eo) ~ O. Let n E {I, ... , N} and suppose that V(Ck) ~ -kE for 0 :::; k :::; n 1. 
Then, 

We have hn{bn) =1, V(Ck) ~ -kE, and v(hk{bn)) ~ -E for 1 :::; k :::; n - 1. Consequently, 

v(cn) ~ 	( inf V(Ck)) - E ~ -nE. o
O<k<n 

As an immediate consequence we have: 

Lemma 3.6. If bo,bl , ... , bN is a v-ordering modulo E, then for n :::; N: 
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For every subset F of E and for every n E N, we have wE(n) :::; wF(n) and, if there is a v-ordering {ak}k=O of 

E, then wE(n) = wF(n) where F = {ak 10:::; k :::; n}. More generally: 


Proposition 3.7. For each n 2: 0, 

WE(n) = inf{wF(n) I F ~ E, card(F) = n + I}. 

Proof. Fix an n < card(E) and an c > O. Let bo, b1 , • •• , bn be a v-ordering of E modulo c and let F = {bo, . .. , bn}. 
Then, bo, ... ,bn is also a v-ordering of F modulo c, thus 

Hence, for every c > 0, there is a subset F of E such that card(F) = n + 1 and wF(n) :::; wE(n) + (n + l)c. D 

Recall that, for every polynomial g E K[X], g(E) denotes the fractional ideal generated by the values of g on E 
and that v(J) denotes the valuation of the ideal J. In particular, 

v(g(E)) = inf v(g(x)).
xEE 

Lemma 3.8. For each monic polynomial g E K[X] of degree n, v(g(E)) :::; wE(n). 

Proof. Let y E K be such that v(y) 2: -v(g(E)). Then yg belongs to Int(E, V); and hence, y E In(E, V). 
Consequently, v(y) 2: -v(g(E)) implies v(y) 2: -wE(n); and hence, v(g(E)) :::; wE(n). D 

Proposition 3.9. For each n E N, we have: 

WE(n) = sup{v(g(E)) Ig E I([X], deg(g) = n, gmonic}, 

wE(n) = sup{v(g(E)) I g E V[X], deg(g) = n, gmonic}, 

n-l 


wE(n) = sup{v(g(E)) Ig = II (X - Xk), with Xo,···, Xn-l E E}. 

k=O 


Proof. If E is finite, we may assume that n < card( E). Let c > 0 and let {bk}k=O be a v-ordering of E modulo 
c. Consider the polynomial g = n~==~(X - bk ). It follows from Lemma 3.6 that: 

WE(n) :5 v 01 (bn - b.)) + nco 

Consequently, by definition of a v-ordering modulo c, 

WE(n) :::; inf v (IT (x - bk)) + (n + l)c,
xEE 

k=O 

that is, 

WE(n) :::; v(g(E)) + (n + l)c. 

Thus, wE(n) :::; v(g(E)). The other inequality follows from Lemma 3.8. D 

From now on, we will omit in the proofs the condition n < card(E) because, if n > card(E) , then all the 
equalities correspond to +00 = +00 or 0 = O. 
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Corollary 2.6 says that, if there is a v-ordering {ak}k'=o, then: 

More generally, the previous proposition shows that: 

Corollary 3.10. For each n ~ 0, we have: 

n-l )
wE(n) = sup inf v II (x - Xk) . 

(xo, ... ,x,,_lEE xEE k=O 

With Proposition 3.7, the previous corollary leads to the following result: 

Corollary 3.11. For each n ~ 0, we have: 

inf sup v ( II (Xi - Xk») . 
xo.···, x" EE O~i~n O~k~n, k#=i 

Since (n!)E is a divisorial ideal, Proposition 3.9 leads to an assertion very similar to Property 3 of the classical 
factorials (cf. Introduction). 

Theorem 3.12. For each f E V[X], let d(f, E) be the fixed divisor of f over E, that is, the divisorial ideal of 
V generated by the values of f on E. Then, 

(n!)E =n{d(f,E) If E V[X], deg(f) =n, fmonic}. 

Finally, analogously to Property 2 of the classical factorials, we have: 

Theorem 3.13. For each n E N, 

If {ak}k'=o is a v-ordering, then: 

v( II (aj - ail) =t wE(k). 
09.j~n k=l 

Proof. Let XO, ••• ,Xn E E. We first prove that: 

v( II (Xj - Xi)) ~ tWE(k). 
O~i<j~n k=l 

The proof is the same as that given by Bhargava for discrete valuations. Let F = {xo, Xl, ... ,xn }. Assume that 
these n + 1 elements are reordered so that the sequence Xo, Xl ••. ,Xn is a v-ordering of F. Then, 
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since F ~ E (see Proposition 1.3.4). In particular, if Xo, •• . , Xn is a v-ordering of E, then we have an equality. 

Conversely, let e > 0 and let {bk}k=O be a v-ordering of E modulo e. It follows from Lemma 3.6 that: 

Consequently, 

Xi)) ~ t WE(j) + no, 
j=l 

that is, 

o 

4. ASYMPTOTIC BEHAVIOR AND VALUATIVE CAPACITY 

Hypothesis. As in the previous section, K is a field with a rank-one valuation v, V denotes the corresponding 
domain, q the cardinality of the residue field, and E is any subset of V. 

Here we study the asymptotic behavior of the arithmetic function WE. More precisely, we show that wEjn) has 
a limit and that this limit is also the limit of the sequence c5E(n) where, for n ~ 1: 

This limit will be denoted by c5E and, by analogy with the Archimedean case (see for instance [lID, c5E is called 
the valuative capacity of E (with respect to v). 

Proposition 4.1. The sequence {c5E(n)}nEN. is an increasing sequence, and hence tends to a (finite or infinite) 
limit c5E E ll4 U {+oo}. 

Proof. Let Xo, ... , Xn be elements of E. It follows from the obvious formula: 

n-l n ( )II (Xj - Xi) = II II (Xj - Xi) ,( ) 
O$i<j$n k=O O$i<j$n, i,j::j::k 

and from the inequality: 

(n - I)n 
v ( II (Xj - Xi)) ~ 2 x c5E(n - 1) , 


O$i<j$n, i,j::j::k 


that: 
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Consequently, 

n(n + 1) (n - l)n
(n - 1) x 2 DE(n) ~ (n + 1) x 2 x DE(n - 1). o 

The limit DE is linked to the function WE because of the formula given by Theorem 3.13: 

Theorem 4.2. 

I
, WEen) WEen)
1m -­ sup-­

n-+oo n n~1 n 


Proof· 

First step: wEJn) tends to WE == sUPn~1 WEJn). 

If WE is finite (resp., infinite), let m be such that wE~m) is close to WE (resp., is large). For n ~ m, write 
n == km + r with 0 ~ r < m. It follows from Proposition 3.2 that: 

WEen) wE(km + r) wE(km) k WE(m)
WE>--== > >-----. 

- n km + r - (k + l)m - k + 1 m 

Thus, for n large, k is large, k!1 wE~m) is close to wE~m), and hence, wEJn) is close to WE (resp., is large). 

Second step: WE == DE. 

From the equalities: 

it follows that: 

that is, 

nDE(n - 1) 

By addition, 

DE(1) + DE(2) + DE(n - 1) + (n + l)DE(n) == 2 t WE:k) , 
k=1 

or, 

By Cesaro's theorem, the first term in the left side tends to DE, of course the second term also tends to 
DE, while the sum in the right side tends to 2WE, both by the first step and by Cesaro's theorem. 0 

Of course, in some sense, the larger E is, the smaller DE becomes. 
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Examples 4.3. 

(1) 	 If V is a discrete valuation domain, it follows from P6lya's formu~a [Proposition 3.3] that: 


1 

dV= --.

q-l 


Then, for a E V and b E V*, we have: 


1 

d(a + bV) = -1 + v(b) . 

q-

More generally, it follows from [4, Proposition 4.4] that if E is a finite union of classes modulo a nonzero 
ideal bV, that is, 

and if, moreover, V(Ci - Cj) =h < v(b) for every (i,j) with i -j:. j, then 

6E 	= ~ (q ~ 1 + v(b) + h(r - 1)) . 

In particular, let p be a prime number and let V Z(p) (and hence, v = vp ). It follows from 
[5, Proposition 5.4] that to the containments: 

correspond the following inequalities for the valuative capacities: 

P p(P2 - P + 1) 1 

(P - 1)2 > (p - 1)2(p2 + 1) > Pl' 


(2) On the other hand, dE may be infinite. Let V be a rank-one valuation domain and let t be an element 
of its maximal ideal. Then, {tn I n E N} is a v-ordering of E {tn I n EN}, wEen) = n(~-1)v(t) and 
dE = +00. 

(3) The valuative capacity dE in Example 2.4 may be finite or infinite, since: 

and {rk} is any strictly increasing sequence of positive rational numbers. 

5. 	DEDEKIND AND KRULL DOMAINS 

By globalization, results on discrete valuation domains may be extended to Dedekind domains. We are going 
to show that some of the results obtained by Bhargava [3} for Dedekind domains may also be proved for Krull 

domains. We first begin with some results with respect to localization. 


Notation. We now denote by D an integral domain with quotient field K and by E a subset of D. 


Proposition 5.1. [8, Proposition 1.2} If D is a Mori domain then, for each multiplicative subset S of D, one 

has: 

S-1 Int(E, D) = Int(E, S-1 D). 
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Recall that a Mori domain is a domain which satisfies the ascending chain condition on divisorial ideals. In 
particular, Noetherian domains and Krull domains are Mori domains. 

Corollary 5.2. If D is a Mon domain then, for each multiplicative subset S of D and each n E N, one has: 

( I)D - n ( I)Dmn. E - memax(D) n. E • 

Proof. We just have to explain the second equality, that is, why the localization of the inverse of an ideal :1 is 
equal to the inverse of the localization of:1. This is an easy consequence of the fact that in a Mori domain, for each 
fractional ideal :1, there exists a finitely generated fractional ideal 3 such that :1-1 =3-1 [18, Theoreme 1]. 0 

In a Krull domain, the divisorial ideals are characterized by their localization with respect to the height-one 
prime ideals: 

Corollary 5.3. If D is a Krull domain then, for each n E N, one has: 

( ,)D _ n ( I)Dpn. E - peSpec(D), ht(p)=1 n. E • 

For each height-one prime ideal p of the Krull domain D, Dp is a discrete valuation domain. Let us denote 
by WE,p the function WE corresponding to this valuation defined in Section 3. The previous corollary may be 
formulated in the following way: 

If D is a Krull domain then, for each n E N, 

(n l) - n pWE,p(n)D . E - peSpec(D), ht(p)=1 p. 

For Dedekind domains, we obtain the well known result [3, § 2]. 


Corollary 5.4. If D is a Dedekind domain then, for each n E N, one has: 


(n!)~ = II (n!)~m = II mWE,m(n). 

memax(D) memax(D) 

Examples 5.5. Let D be a Dedekind domain. 

1. Let E be a subset, a be an ideal, and b be an element of D. Let 

F =b + aE = {b + ax Ia E a, x E E}. 


Then, 


In particular, for every ideal a of D: 

(n!)a = (n!)D x an. 

2. For every maximal ideal m of D, let N(m) = card(D/m). Recall that wq(n) = L:k>O [~]. Then, 

(n!)D = II m"'N(m)(n) = IT ( II m",.(n)). 

memax(D) q=2 N(m)=q 
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For any two divisorial ideals a and b of a Krull domain D, the containment a ~ b is equivalent to vp(a) 2:: vp(b) 
for each height-one prime ideal p of D. By globalization, it then follows from inequalities of Proposition 3.2: 

Proposition 5.6. If D is a Krull domain then, for each k, lEN, 

((k + l)!)E ~ (k!)E . (l!)E' 

In particular, ((k + l)!)E . 'Jk(E, D) . 'J,(E, D) is an entire ideal of D. 

Corollary 5.7. [3] If D is a Dedekind domain then, for each k, lEN, the ideal (k!)E . (I!)E divides the ideal 
((k + 1)!)E' 

Analogously, the equality in Theorem 3.13 leads to: 

Proposition 5.8. If ao, aI, ... ,an are n + 1 elements of a subset E of a Krull domain D, then 

II (aj - ai) E (1!)E . (2!)E'" (n!)E. 
O~i<j~n 

In particular, TIO<i<j<n (aj -ai) is a common denominator of the fractional ideal 'JJ(E, D) ·'J2 (E, D) ... 'In(E, D). 

Finally, by globalization, Corollary 2.8 leads to the following extension of [2, Theorem 2]. 

Proposition 5.9. For each g E K[X], let d(g, E) be the divisorial fractional ideal generated by the values of g 
on E. If D is a Krull domain then, for each n E N, one has: 

(n!)E = n{d(g,E) Ig E D[XJ, deg(g) n, gmonic}. 

Proof. Let a = n{d(g, E) I g E D[XJ, deg(g) n, gmonic}. If g E D[X] is a monic polynomial of degree n, 
then (n!)E ~ d(g, E) since this inclusion holds locally with respect to each height-one prime ideal of D. Thus, 
(n!)E ~ a. Moreover, for each prime ideal p of D, there is a monic polynomial gn,p E D[X] of degree n such that 
d(gn,p, E)Dp = (n!)~p. Consequently, ap ~ d(gn,p, E)Dp = (n!)~p. Since a is divisorial, a ~ (n!)E, and then we 
have an equality. 0 

Remark 5.10. Denote by In(E, D) the fractional ideal of D generated by all the coefficients of the polynomials 
in Int(E, D) of degree n. Obviously, we have: 'In(E, D) ~ In(E, D). We do not know if these two fractional 
ideals are equal, but if D is a Krull domain it follows from assertion 3 of Corollary 2.8 that: 

since 

In(E, D) = U{c(f) I f E Int(E, D), deg(f) =n}. 

In particular, if D is a Dedekind domain, then In(E, D) = 'In(E, D). 

6. EXAMPLES AND D-ORDERINGS 

To end this paper, let us come back to the introduction. We recalled that, if ao, al, ... , an are any n + 1 
integers, then the product: 

II (aj - ai) is divisible by I! ... n!. 
O~i<j~n 
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This fine result is not so easy to obtain; Bhargava [2] gave an enlightening proof with the notion of v-ordering. 
In fact, this result is a very particular case of Proposition 5.8, which concerns Krull domains and is itself a 
globalization of Theorem 3.13. One find another interesting proof in [19]. Applying L'Hopital's rule to the 

factors of the function P(t) = nO~i<j~n we obtain: 

(a. - a·)taj-a;-l 

lim P (t) = II lim ( . ~)" 1 

= II aj. - ~i 

t-+l t-+l J - 1, tJ-t­

09<j~n O~i<j~n J - 1, 

It follows from the next proposition that this rational number is in fact an integer. 

Proposition 6.1 (Sury [19]). For any integers ao < al < ... < an, 

Taj-a. -1 

P(T) = -.-:--_- E Z[T].
II 

09<j~n 

Sury's proof of this last assertion needs some computation. Following Bhargava, we wish to give a more en­
lightening proof using the notion of v-ordering in the localizations of the Krull domain (more precisely, unique 
factorization domain) Z[T]. 

Lemma 6.2. Let D = Z[T] and E = {Tn I n EN}. The sequence {Tn}nEN is a v7r -ordering of E for every 
irreducible element 7r of Z [X]. 

Proof. Either 7r is a prime number p, or 7r is an irreducible polynomial Q(T) of Q[T] that we may suppose to 
be monic. Obviously, if v7r (Tn - Tm) f:. 0 for some n f:. m, then 7r = T or ~d(T) where ~d denotes the d-th 
cyclotomic polynomial and d divides n - m. Consequently, we just have to check that {Tn} is a v7r-ordering for 
7r =T or ~d. For 7r = T, this is Example 4.3.2. Let d> 0 and let us prove by induction on n that {Tk}k=O is a 
v4>d-ordering. For every m > n, we have: 

while 

These quantities are respectively equal to: 

card{ k Idl k, m - n + 1 ~ k ~ m} 

and 

card{k I dlk, 1 ~ k ~ n}, 

that is, 

[~1- [m ~ n land [~l. 
Clearly, this latter quantity is less or equal to the first one. o 
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Proof of the proposition. Let ao < al < ... < an be integers. We may assume that ao ~ O. Theorem 3.13 
together with Lemma 6.2 says that, for each irreducible element 1r of Z[X], 

Consequently, 

Finally, P(T) E Z[T] since ao + al + ... + an ~ 0 + 1 + ... + n. o 

The sequence {Tn} in Z [T] is a particular case of the following: 

Definition 6.3. Let D be an integral domain and let E be a subset of D. A D-ordering of E is a sequence 
{an} :;r=o of distinct elements of E such that, for each n ::; N, n~;:~ (an - ak) divides n~;:~ (x ak) for every 
xEE. 

This notion of D-ordering is in fact the same than the notion of special sequence introduced by 
Mulay [14, § 1.6] although both definitions are distinct. It is worth noticing that Mulay's Theorem 4 (ii) 
already showed the existence of such sequences for every subset of discrete valuation domains. The following 
assertion is straightforward. 

Proposition 6.4. Let ao, at, . .. , aN be distinct elements of E. The sequence {an}:;r=o is a D-ordering of E if 
and only if the polynomials: 

form a basis of: 

Intn(E, D) = {f E Int(E, D) I deg(f) ::; n}. 

In that case, (n!)E = n~;:ci (an ak)D for every n ::; N. 

If D is a Krull domain, then {an}:;r=o is a D-ordering of E if and only if, for each height-one prime ideal p of 
D, n~;:~ axn__a;k E Dp for each x E E and n ::; N, that is, {an}:;r=o is a vp-ordering of E in Dp. The following 
assertion is a particular case of Proposition 5.S. 

Proposition 6.5. If D is a Krull domain and {an}:;r=o is a D-ordering of E, then for every n ::; N·,and every 
choice of elements Xo, Xl, ... ,Xn E E, 

Examples 6.6. 

(1) The sequence {n}nEN is a Z-ordering of N. 

(2) The sequence {n2 }nEN is a Z-ordering of {n2 In EN}. 

(3) The sequence {Tn }nEN is a Z[T] ordering of {Tn I n EN}. 

(4) The sequence {qn} nEN is a Z-ordering of {qn I n E N}. 
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(5) 	 The sequence {I, 2, 3, 5} is a Z-ordering of the polynomial closure IP U {±1 } of the set IP of prime numbers. 
On the other hand, there does not exist any Z-ordering with 5 elements, although, for each N E N, 
there are prime numbers Po, PI , ... ,pN such that the polynomials 1rI,. n~==~ (X - Pk) form a basis of the 
Z-module IntN(IP, Z) where 1f'n denotes a generator of (n!)p (cf [10]). 
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