EXTENSIONS $R[a\alpha] \cap R[(a\alpha)^{-1}]$ **OF A NOETHERIAN DOMAIN** R

Kiyoshi Baba*

Department of Mathematics Faculty of Education and Welfare Science Oita University, Oita 870-1192, Japan baba@cc.oita-u.ac.jp

and

Ken-ichi Yoshida

Department of Applied Mathematics Okayama University of Science Ridai-cho 1-1, Okayama 700-0005, Japan yoshida@galaxy.xmath.ous.ac.jp

الخلاصة :

ABSTRACT

Let R be a Noetherian domain and α a super-primitive element of degree d over R. Let R' be the set of non-zero elements a of R such that $a\alpha$ is a super-primitive element over R. Set $B_a = R[a\alpha] \cap R[(a\alpha)^{-1}]$, for $a \in R'$. Assume that $d \ge 3$ and a, b are elements of R'. In this paper we prove that $B_a = B_b$ if and only if a and b are associate. This extends [2, Theorem 3] when $d \ge 3$.

Keywords: anti-integral element, super-primitive element.

^{*} To whom correspondence should be addressed.

EXTENSIONS $R[a\alpha] \cap R[(a\alpha)^{-1}]$ OF A NOETHERIAN DOMAIN R

Let R be a Noetherian domain with quotient field K, and R[X] the polynomial ring over R in an indeterminate X. Let α be an element of an algebraic field extension of K, and $\pi : R[X] \longrightarrow R[\alpha]$ the R-algebra homomorphism defined by $\pi(X) = \alpha$. Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K and deg $\varphi_{\alpha} = d$, and write:

$$\varphi_{\alpha}(X) = X^{d} + \eta_1 X^{d-1} + \dots + \eta_d, \quad \text{with} \quad \eta_1, \dots, \eta_d \in K.$$

We define $I_{[\alpha]} := \bigcap_{i=1}^{d} I_{\eta_i}$ and $J_{[\alpha]} := I_{[\alpha]}(1,\eta_1,\ldots,\eta_d)$, where $I_{\eta_i} = \{c \in R; c\eta_i \in R\}$ and $(1,\eta_1,\ldots,\eta_d)$ is the *R*-module generated by $1,\eta_1,\ldots,\eta_d$. An element α is called an anti-integral element of degree *d* over *R* if Ker $\pi = I_{[\alpha]}\varphi_{\alpha}(X)R[X]$. An element α is said to be a super-primitive element of degree *d* over *R* if $J_{[\alpha]} \not\subset p$, for every $p \in Dp_1(R)$, where $Dp_1(R) = \{p \in SpecR; depth R_p = 1\}$.

Our notation is standard; for further explanation, refer to [4].

Let α be an anti-integral element of degree d over R and set $\zeta_i = \alpha^i + \eta_1 \alpha^{i-1} + \cdots + \eta_{i-1} \alpha + \eta_i$, for $1 \le i \le d-1$.

Lemma 1. [1, Theorem 1 and Example] The following equality holds:

$$R[\alpha] \cap R[\alpha^{-1}] = R \oplus I_{[\alpha]}\zeta_1 \oplus \cdots \oplus I_{[\alpha]}\zeta_{d-1}$$

The following Lemma does not need the assumption that α is an anti-integral element over R.

Lemma 2. Let a be a non-zero element of R. Then:

$$I_{[a\alpha]} = \bigcap_{i=1}^d I_{a^i \eta_i}.$$

Proof. Since $\varphi_{a\alpha}(X) = X^d + a\eta_1 X^{d-1} + \cdots + a^d \eta_d$, we get the required result.

Let α be a super-primitive element of degree d over R and R^* the unit group of R. Let R' be the set of non-zero elements a's of R such that $a\alpha$ is a super-primitive element over R. It is easily verified that R' contains R^* . Let a be a non-zero element of R. Then set: $B_a = R[a\alpha] \cap R[(a\alpha)^{-1}]$. Note that super-primitive elements are anti-integral elements by [7, Theorem 1.12].

Lemma 3. Let a be an element of R'. Then the following equality holds:

$$B_a = R \oplus I_{[a\alpha]} a \zeta_1 \oplus \cdots \oplus I_{[a\alpha]} a^{d-1} \zeta_{d-1}.$$

Proof. Note that $\varphi_{a\alpha}(X) = X^d + a\eta_1 X^{d-1} + \cdots + a^d \eta_d$. Set $\zeta_{a\alpha,i} = (a\alpha)^i + a\eta_1 (a\alpha)^{i-1} + \cdots + a^i \eta_i$, for $i = 1, 2, \ldots, d-1$. Then

$$\zeta_{a\alpha,i} = a^i (\alpha^i + \eta_1 \alpha^{i-1} + \dots + \eta_i) = a^i \zeta_i.$$

Hence we reach the conclusion.

The following result is a direct consequence of Lemma 3:

Proposition 4. Let a and b be elements of R'. Then $B_a = B_b$ if and only if $I_{[a\alpha]}a^i = I_{[b\alpha]}b^i$, for i = 1, 2, ..., d-1.

Let α be a super-primitive element of degree d over R. Then $J_{[\alpha]p} = R_p$, for every element p of $Dp_1(R)$. Hence $I_{[\alpha]p}$ is an invertible ideal of R_p . This implies that $I_{[\alpha]p}$ is a principal ideal of R_p by [3, Theorem 59].

In the case d = 1, it is known that $B_a = R$, for $a \in R'$ by [7, Remark 1.6.] and [5, (2.5) Theorem] because $a\alpha$ is an anti-integral element over R. Hence $B_a = B_b$ always holds, for $a, b \in R'$.

In the case $d \ge 2$, we quote [2, Theorem 3]: Let α be a super-primitive element of degree $d \ge 2$ over R. Let a and b be elements of R. Assume that a and b are non-zero divisors on $R/I_{[\alpha]}$. Then the following statements are equivalent:

- (i) $B_a = B_b$;
- (ii) a = ub for some $u \in R^*$.

The condition that a is a non zero-divisor on $R/I_{[\alpha]}$ assures us of super-primitivity of $a\alpha$ by [2, Lemma 2].

When $d \ge 3$, we extend [2, Theorem 3] showing that we may omit the assumption that a and b are non zero-divisors of $R/I_{[\alpha]}$.

Association in R' is an equivalence relation of R'. The quotient set of this equivalence relation is denoted by R'/R^* . The symbol cl(a) denotes the equivalence class of $a \in R'$.

Theorem 5. Let R be a Noetherian domain and α a super-primitive element of degree d over R. Assume that $d \geq 3$ and a, b are elements of R'. Then the following assertions hold:

- (1) $B_a = B_b$ if and only if b/a is in R^* .
- (2) A mapping of $\{B_a; a \in R'\}$ into R'/R^* defined by $B_a \mapsto cl(a)$ is well-defined and a one-to-one correspondence.

Proof.

(1) Assume that $B_a = B_b$. Then we get $I_{[a\alpha]}a = I_{[b\alpha]}b$ and $I_{[a\alpha]}a^2 = I_{[b\alpha]}b^2$, by Proposition 4, since $d \ge 3$. Hence:

$$I_{[b\alpha]}b^2 = I_{[a\alpha]}a^2 = (I_{[a\alpha]}a)a = (I_{[b\alpha]}b)a = I_{[b\alpha]}ab.$$

This shows that $I_{[b\alpha]}a = I_{[b\alpha]}b$. Since $b\alpha$ is a super-primitive element over R, $I_{[b\alpha]p}$ is a principal ideal of R_p , for every $p \in Dp_1(R)$. Therefore $I_{[b\alpha]p} = cR_p$, for some $c \in R_p$. Then $caR_p = cbR_p$. This means that b/a and a/b are in R_p . Note that $R = \bigcap_{p \in Dp_1(R)} R_p$ by [6, (33.8)]. Hence b/a and a/b are in R, that is, b/a is in R^* .

Conversely, assume that b/a is in R^* . Then there exists an element u of R^* satisfying b = ua. By Lemma 2 we see that $I_{[b\alpha]} = I_{[a\alpha]}$. Hence, by Lemma 3, we get

$$B_{b} = R \oplus I_{[b\alpha]} b\zeta_{1} \oplus \cdots \oplus I_{[b\alpha]} b^{d-1} \zeta_{d-1}$$
$$= R \oplus I_{[a\alpha]} u a \zeta_{1} \oplus \cdots \oplus I_{[a\alpha]} u^{d-1} a^{d-1} \zeta_{d-1}$$
$$= R \oplus I_{[a\alpha]} a \zeta_{1} \oplus \cdots \oplus I_{[a\alpha]} a^{d-1} \zeta_{d-1}$$
$$= B_{a}.$$

(2) is clear from the assertion (1).

The next result clarifies a part of the set R':

Proposition 6. Let R be a Noetherian domain and α a super-primitive element of degree d over R. Let a be an element of R such that a is a non-zero divisor of R/I_{η_i} , for i = 1, 2, ..., d. Then a is in R'.

Proof. First we show that $I_{[\alpha]} = I_{[a\alpha]}$. It is obvious that $I_{\eta_i} \subset I_{a^i\eta_i}$. Let x be an element of $I_{a^i\eta_i}$. Then we see that $a^i x$ is in I_{η_i} . Since a^i is a non-zero divisor of R/I_{η_i} , we obtain the fact x is in I_{η_i} . Hence $I_{\eta_i} = I_{a^i\eta_i}$, for i = 1, 2, ..., d. This implies that $I_{[\alpha]} = I_{[a\alpha]}$, by Lemma 2. From the argument above, we have $J_{[a\alpha]} = I_{[a\alpha]}(1, a\eta_1, ..., a^d\eta_d) = I_{[\alpha]}(1, a\eta_1, ..., a^d\eta_d)$. Let p be an element of $Dp_1(R)$ and assume that $J_{[\alpha\alpha]} \subset p$. Then $I_{[\alpha]} \subset p$. Since α is a super-primitive element over R, $I_{[\alpha]p}$ is a principal ideal of R_p . Hence pR_p is a prime divisor of $I_{[\alpha]p}$. Then p is a prime divisor of $I_{[\alpha]}$, since the set of zero-divisors of $R_p/I_{[\alpha]p}$ is contained in the set of zero-divisors of $R/I_{[\alpha]}$. Therefore p is a prime divisor of I_{η_i} for some i. Since a is not a zero-divisor of R/I_{η_i} , we see that a is not in p. This implies that:

$$J_{[\alpha]p} = I_{[\alpha]p}(1, \eta_1, \dots, \eta_d)$$
$$= I_{[\alpha]p}(1, a\eta_1, \dots, a^d\eta_d)$$
$$= I_{[a\alpha]p}(1, a\eta_1, \dots, a^d\eta_d)$$
$$= J_{[a\alpha]p}.$$

Since $J_{[a\alpha]p} \subset pR_p$, we get $J_{[\alpha]p} \subset pR_p$. This contradicts the condition $J_{[\alpha]} \not\subset p$.

Let M be an R-module. Then $R - Ass_R(M)$ denotes the set of elements c's of R such that c is not in any p of $Ass_R(M)$. Note that:

 $\{a \in R; a \text{ is a non-zero divisor of } R/I_{\eta_i}\} = R - \operatorname{Ass}_R(R/I_{\eta_i}).$

By Proposition 6, we have the following:

Corollary 7. $R - \bigcup_{i=1}^{d} \operatorname{Ass}_{R}(R/I_{\eta_{i}}) \subset R'$.

Let \overline{R} be the integral closure of R in its quotient field K. Let $(R:\overline{R})$ be the conductor ideal of R in \overline{R} .

Lemma 8. Assume that \overline{R} is a finite R-module. Let p be an element of $Dp_1(R)$. If $p \supset (R : \overline{R})$, then p is a prime divisor of $(R : \overline{R})$.

Proof. If htp = 1, then p is a prime divisor of $(R : \overline{R})$, since $(R : \overline{R}) \neq (0)$. If htp > 1, then [9, Proposition 1.10] implies that p is also a prime divisor of $(R : \overline{R})$.

Proposition 9. Assume that \overline{R} is a finite *R*-module. Then

$$R - \operatorname{Ass}_{R}(R/(R:\overline{R})) \subset R'.$$

Proof. Let a be an element of $R - \operatorname{Ass}_R(R/(R : \overline{R}))$. Since super-primitivity is a local-global property, we have only to prove that $a\alpha$ is a super-primitive element over R_p , for every $p \in \operatorname{Dp}_1(R)$. Let p be an element of $\operatorname{Dp}_1(R)$. If $p \not\supseteq (R : \overline{R})$, then $R_p = \overline{R}_p$, and R_p is a normal domain. Therefore $a\alpha$ is a super-primitive element over R_p by [7, Theorem 1.13]. If $p \supset (R : \overline{R})$, then p is a prime divisor of $(R : \overline{R})$, by Lemma 8, and a is in $R - \operatorname{Ass}_R(R/(R : \overline{R}))$. Hence a is not in p. So a is a unit of R_p . Since α is a super-primitive element over R_p , we obtain the fact $a\alpha$ is also a super-primitive element over R_p .

Let α be an element of a finite algebraic field extension of K. It is said that α is of degree d if $[K(\alpha) : K] = d$. We say that α is an ultra-primitive element of over R if $\operatorname{grade}(I_{[\alpha]} + (R : \overline{R})) > 1$ where we define $\operatorname{grade}(R) = \infty$. For the definition of an ultra-primitive element, see also [2] and [8]. **Lemma 10.** Assume that \overline{R} is a finite R-module and α a ultra-primitive element over R. Then $a\alpha$ is a super-primitive element over R, for every $a \in R$.

Proof. Let $a \in R$. Let p be an element of $Dp_1(R)$. Then either $p \not\supseteq (R : \overline{R})$ or $p \not\supseteq I_{[\alpha]}$. If $p \not\supseteq (R : \overline{R})$, then R_p is normal. Recall [7, Theorem 1.13]: Assume that R is a Krull domain, then every element α which is algebraic over R is a super-primitive element over R. Thus $a\alpha$ is a super-primitive element over R_p . Hence $J_{[\alpha\alpha]} \not\subseteq p$. If $p \not\supseteq I_{[\alpha]}$, then $p \not\supseteq I_{[\alpha\alpha]}$ because $I_{[\alpha]} \subset I_{[\alpha\alpha]}$, by Lemma 2. Therefore $J_{[\alpha\alpha]} \not\subseteq p$. This means that $a\alpha$ is a super-primitive element over R.

Theorem 11. Let R be a Noetherian domain and \overline{R} the integral closure of R in its quotient field. Let α be a ultra-primitive element of degree d over R. Assume that \overline{R} is a finite R-module and $d \geq 3$. Then there exists a one-to-one correspondence between $\{B_a; a \in R - \{0\}\}$ and $R - \{0\}/R^*$.

Proof. Since α is a ultra-primitive element over R, we get $R' = R - \{0\}$. Then the assertion is clear from Theorem 5 (2).

Remark 12. Let R''_{α} be the set of non-zero elements a of R such that α/a is a super-primitive element over R. Since the following statements hold, the same results as B_a and R' hold for $B_{a^{-1}} = R[\alpha/a] \cap R[a/\alpha]$ and R''_{α} :

(1) $\varphi_{\alpha^{-1}}(X) = X^d + \eta'_1 X^{d-1} + \dots + \eta'_d$, where $\eta'_k = \eta_d^{-1} \eta_{d-k}$, for $1, \dots, d$, where $\eta_0 = 1$.

(2)
$$J_{[\alpha]} = J_{[\alpha^{-1}]}$$
.

- (3) α is super-primitive if and only if α^{-1} is super-primitive.
- (4) $R''_{\alpha} = R'_{\alpha^{-1}}$, where $R'_{\alpha} = R'$.

ACKNOWLEDGMENT

We express our gratitude to the referees for improving our paper.

REFERENCES

- [1] M. Kanemitsu and K. Yoshida, "Some Properties of Extensions $R[\alpha] \cap R[\alpha^{-1}]$ over Noetherian Domains R", Comm. Algebra, 23(12) (1995), pp. 4501-4507.
- [2] M. Kanemitsu, J. Sato, and K. Yoshida, "Some Theorems Concerning Anti-Integral, Super-Primitive and Ultra-Primitive Elements", Math. J. Ibaraki Univ., 31 (1991), pp. 33-36.
- [3] I. Kaplansky, Commutative Rings. Chicago and London: The University of Chicago Press, 1974.
- [4] H. Matsumura, Commutative Algebra, 2nd edn. New York: Benjamin, 1980.
- [5] A. Mirbagheri and L.J. Ratliff, Jr., "On the Intersection of Two Overrings", Houston J. Mathematics, 8 (1982), pp. 525-535.
- [6] M. Nagata, Local Rings. New York: Interscience Publishers, 1962.
- [7] S. Oda, J. Sato, and K. Yoshida, "High Degree Anti-Integral Extensions of Noetherian Domains", Osaka J. Math., 30 (1) (1993), pp. 119-135.
- [8] S. Oda and K. Yoshida, "A Linear Generator of an Ultra-Primitive Extension $R[\alpha]$ ", Far East J. Mathematical Sciences, 6 (1998), pp. 65-74.
- K. Yoshida, "On Birational-Integral Extension of Rings and Prime Ideals of Depth One", Japanese J. Math., 8(1) (1982), pp. 49-70.

Paper Received 29 May 2000; Revised 22 October 2000; Accepted 29 November 2000.