EXTENSIONS $R[a \alpha] \cap R\left[(a \alpha)^{-1}\right]$
 OF A NOETHERIAN DOMAIN R

Kiyoshi Baba*
Department of Mathematics
Faculty of Education and Welfare Science
Oita University, Oita 870-1192, Japan
baba@cc.oita-u.ac.jp
and
Ken-ichi Yoshida
Department of Applied Mathematics
Okayama University of Science
Ridai-cho 1-1, Okayama 700-0005, Japan
yoshida@galaxy.xmath.ous.ac.jp

الملاصـة :

لتكن R حلقة » نـوتيرية " و α عنصراً فوق-بدائياً بدرجة d على R . لتكن 'R مجموعة عناصر a (غير

 أكبر من أو تساوي 「.

ABSTRACT

Let R be a Noetherian domain and α a super-primitive element of degree d over R. Let R^{\prime} be the set of non-zero elements a of R such that $a \alpha$ is a super-primitive element over R. Set $B_{a}=R[a \alpha] \cap R\left[(a \alpha)^{-1}\right]$, for $a \in R^{\prime}$. Assume that $d \geq 3$ and a, b are elements of R^{\prime}. In this paper we prove that $B_{a}=B_{b}$ if and only if a and b are associate. This extends [2, Theorem 3] when $d \geq 3$.

Keywords: anti-integral element, super-primitive element.

[^0]
EXTENSIONS $R[a \alpha] \cap R\left[(a \alpha)^{-1}\right]$
 OF A NOETHERIAN DOMAIN R

Let R be a Noetherian domain with quotient field K, and $R[X]$ the polynomial ring over R in an indeterminate X. Let α be an element of an algebraic field extension of K, and $\pi: R[X] \longrightarrow R[\alpha]$ the R-algebra homomorphism defined by $\pi(X)=\alpha$. Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K and $\operatorname{deg} \varphi_{\alpha}=d$, and write:

$$
\varphi_{\alpha}(X)=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d}, \quad \text { with } \quad \eta_{1}, \ldots, \eta_{d} \in K .
$$

We define $I_{[\alpha]}:=\bigcap_{i=1}^{d} I_{\eta_{i}}$ and $J_{[\alpha]}:=I_{[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{d}\right)$, where $I_{\eta_{i}}=\left\{c \in R ; c \eta_{i} \in R\right\}$ and $\left(1, \eta_{1}, \ldots, \eta_{d}\right)$ is the R-module generated by $1, \eta_{1}, \ldots, \eta_{d}$. An element α is called an anti-integral element of degree d over R if $\operatorname{Ker} \pi=I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. An element α is said to be a super-primitive element of degree d over R if $J_{[\alpha]} \not \subset p$, for every $p \in \mathrm{Dp}_{1}(R)$, where $\mathrm{Dp}_{1}(R)=\left\{p \in \operatorname{Spec} R\right.$; depth $\left.R_{p}=1\right\}$.

Our notation is standard; for further explanation, refer to [4].
Let α be an anti-integral element of degree d over R and set $\zeta_{i}=\alpha^{i}+\eta_{1} \alpha^{i-1}+\cdots+\eta_{i-1} \alpha+\eta_{i}$, for $1 \leq i \leq d-1$.
Lemma 1. [1, Theorem 1 and Example] The following equality holds:

$$
R[\alpha] \cap R\left[\alpha^{-1}\right]=R \oplus I_{[\alpha]} \zeta_{1} \oplus \cdots \oplus I_{[\alpha]} \zeta_{d-1} .
$$

The following Lemma does not need the assumption that α is an anti-integral element over R.
Lemma 2. Let a be a non-zero element of R. Then:

$$
I_{[a \alpha]}=\cap_{i=1}^{d} I_{a^{i} \eta_{i}} .
$$

Proof. Since $\varphi_{a \alpha}(X)=X^{d}+a \eta_{1} X^{d-1}+\cdots+a^{d} \eta_{d}$, we get the required result.
Let α be a super-primitive element of degree d over R and R^{*} the unit group of R. Let R^{\prime} be the set of non-zero elements a 's of R such that $a \alpha$ is a super-primitive element over R. It is easily verified that R^{\prime} contains R^{*}. Let a be a non-zero element of R. Then set: $B_{a}=R[a \alpha] \cap R\left[(a \alpha)^{-1}\right]$. Note that super-primitive elements are anti-integral elements by [7, Theorem 1.12].

Lemma 3. Let a be an element of R^{\prime}. Then the following equality holds:

$$
B_{a}=R \oplus I_{[a \alpha]} a \zeta_{1} \oplus \cdots \oplus I_{[a \alpha]} a^{d-1} \zeta_{d-1} .
$$

Proof. Note that $\varphi_{a \alpha}(X)=X^{d}+a \eta_{1} X^{d-1}+\cdots+a^{d} \eta_{d}$. Set $\zeta_{a \alpha, i}=(a \alpha)^{i}+a \eta_{1}(a \alpha)^{i-1}+\cdots+a^{i} \eta_{i}$, for $i=1,2, \ldots, d-1$. Then

$$
\zeta_{a \alpha, i}=a^{i}\left(\alpha^{i}+\eta_{1} \alpha^{i-1}+\cdots+\eta_{i}\right)=a^{i} \zeta_{i} .
$$

Hence we reach the conclusion.
The following result is a direct consequence of Lemma 3:
Proposition 4. Let a and b be elements of R^{\prime}. Then $B_{a}=B_{b}$ if and only if $I_{[a \alpha]} a^{i}=I_{[b \alpha]} b^{i}$, for $i=1,2, \ldots, d-1$.

Let α be a super-primitive element of degree d over R. Then $J_{[\alpha] p}=R_{p}$, for every element p of $\mathrm{Dp}_{1}(R)$. Hence $I_{[\alpha] p}$ is an invertible ideal of R_{p}. This implies that $I_{[\alpha] p}$ is a principal ideal of R_{p} by [3, Theorem 59].

In the case $d=1$, it is known that $B_{a}=R$, for $a \in R^{\prime}$ by [7, Remark 1.6.] and [5, (2.5) Theorem] because $a \alpha$ is an anti-integral element over R. Hence $B_{a}=B_{b}$ always holds, for $a, b \in R^{\prime}$.

In the case $d \geq 2$, we quote [2, Theorem 3]: Let α be a super-primitive element of degree $d \geq 2$ over R. Let a and b be elements of R. Assume that a and b are non-zero divisors on $R / I_{[\alpha]}$. Then the following statements are equivalent:
(i) $B_{a}=B_{b}$;
(ii) $a=u b$ for some $u \in R^{*}$.

The condition that a is a non zero-divisor on $R / I_{[\alpha]}$ assures us of super-primitivity of $a \alpha$ by [2, Lemma 2].
When $d \geq 3$, we extend [2, Theorem 3] showing that we may omit the assumption that a and b are non zero-divisors of $R / I_{[\alpha]}$.

Association in R^{\prime} is an equivalence relation of R^{\prime}. The quotient set of this equivalence relation is denoted by R^{\prime} / R^{*}. The symbol $\operatorname{cl}(a)$ denotes the equivalence class of $a \in R^{\prime}$.

Theorem 5. Let R be a Noetherian domain and α a super-primitive element of degree d over R. Assume that $d \geq 3$ and a, b are elements of R^{\prime}. Then the following assertions hold:
(1) $B_{a}=B_{b}$ if and only if b / a is in R^{*}.
(2) A mapping of $\left\{B_{a} ; a \in R^{\prime}\right\}$ into R^{\prime} / R^{*} defined by $B_{a} \mapsto c l(a)$ is well-defined and a one-to-one correspondence.

Proof.

(1) Assume that $B_{a}=B_{b}$. Then we get $I_{[a \alpha]} a=I_{[b \alpha]} b$ and $I_{[a \alpha]} a^{2}=I_{[b \alpha]} b^{2}$, by Proposition 4, since $d \geq 3$. Hence:

$$
I_{[b \alpha]} b^{2}=I_{[a \alpha]} a^{2}=\left(I_{[a \alpha]} a\right) a=\left(I_{[b \alpha]} b\right) a=I_{[b \alpha]} a b
$$

This shows that $I_{[b \alpha]} a=I_{[b \alpha]} b$. Since $b \alpha$ is a super-primitive element over $R, I_{[b \alpha] p}$ is a principal ideal of R_{p}, for every $p \in \operatorname{Dp_{1}}(R)$. Therefore $I_{[b \alpha] p}=c R_{p}$, for some $c \in R_{p}$. Then $c a R_{p}=c b R_{p}$. This means that b / a and a / b are in R_{p}. Note that $R=\cap_{p \in \operatorname{Dp}_{1}(R)} R_{p}$ by $[6,(33.8)]$. Hence b / a and a / b are in R, that is, b / a is in R^{*}.

Conversely, assume that b / a is in R^{*}. Then there exists an element u of R^{*} satisfying $b=u a$. By Lemma 2 we see that $I_{[b \alpha]}=I_{[a \alpha]}$. Hence, by Lemma 3, we get

$$
\begin{aligned}
B_{b} & =R \oplus I_{[b \alpha]} b \zeta_{1} \oplus \cdots \oplus I_{[b \alpha]} b^{d-1} \zeta_{d-1} \\
& =R \oplus I_{[a \alpha]} u a \zeta_{1} \oplus \cdots \oplus I_{[a \alpha]} u^{d-1} a^{d-1} \zeta_{d-1} \\
& =R \oplus I_{[a \alpha]} a \zeta_{1} \oplus \cdots \oplus I_{[a \alpha]} a^{d-1} \zeta_{d-1} \\
& =B_{a} .
\end{aligned}
$$

(2) is clear from the assertion (1).

The next result clarifies a part of the set R^{\prime} :

Proposition 6. Let R be a Noetherian domain and α a super-primitive element of degree d over R. Let a be an element of R such that a is a non-zero divisor of $R / I_{\eta_{i}}$, for $i=1,2, \ldots, d$. Then a is in R^{\prime}.

Proof. First we show that $I_{[\alpha]}=I_{[a \alpha]}$. It is obvious that $I_{\eta_{i}} \subset I_{a^{i} \eta_{i}}$. Let x be an element of $I_{a^{i} \eta_{i}}$. Then we see that $a^{i} x$ is in $I_{\eta_{i}}$. Since a^{i} is a non-zero divisor of $R / I_{\eta_{i}}$, we obtain the fact x is in $I_{\eta_{i}}$. Hence $I_{\eta_{i}}=I_{a^{i} \eta_{i}}$, for $i=1,2, \ldots, d$. This implies that $I_{[\alpha]}=I_{[a \alpha]}$, by Lemma 2. From the argument above, we have $J_{[a \alpha]}=I_{[a \alpha]}\left(1, a \eta_{1}, \ldots, a^{d} \eta_{d}\right)=I_{[\alpha]}\left(1, a \eta_{1}, \ldots, a^{d} \eta_{d}\right)$. Let p be an element of $\operatorname{Dp}_{1}(R)$ and assume that $J_{[a \alpha]} \subset p$. Then $I_{[\alpha]} \subset p$. Since α is a super-primitive element over $R, I_{[\alpha] p}$ is a principal ideal of R_{p}. Hence $p R_{p}$ is a prime divisor of $I_{[\alpha] p}$. Then p is a prime divisor of $I_{[\alpha]}$, since the set of zero-divisors of $R_{p} / I_{[\alpha] p}$ is contained in the set of zero-divisors of $R / I_{[\alpha]}$. Therefore p is a prime divisor of $I_{\eta_{i}}$ for some i. Since a is not a zero-divisor of $R / I_{\eta_{i}}$, we see that a is not in p. This implies that:

$$
\begin{aligned}
J_{[\alpha] p} & =I_{[\alpha] p}\left(1, \eta_{1}, \ldots, \eta_{d}\right) \\
& =I_{[\alpha] p}\left(1, a \eta_{1}, \ldots, a^{d} \eta_{d}\right) \\
& =I_{[a \alpha] p}\left(1, a \eta_{1}, \ldots, a^{d} \eta_{d}\right) \\
& =J_{[a \alpha] p} .
\end{aligned}
$$

Since $J_{[a \alpha] p} \subset p R_{p}$, we get $J_{[\alpha] p} \subset p R_{p}$. This contradicts the condition $J_{[\alpha]} \not \subset p$.
Let M be an R-module. Then $R-\operatorname{Ass}_{R}(M)$ denotes the set of elements c 's of R such that c is not in any p of $\operatorname{Ass}_{R}(M)$. Note that:

$$
\left\{a \in R ; a \text { is a non-zero divisor of } R / I_{\eta_{i}}\right\}=R-\operatorname{Ass}_{R}\left(R / I_{\eta_{i}}\right) .
$$

By Proposition 6, we have the following:
Corollary 7. $R-\cup_{i=1}^{d} \operatorname{Ass}_{R}\left(R / I_{\eta_{\mathrm{i}}}\right) \subset R^{\prime}$.
Let \bar{R} be the integral closure of R in its quotient field K. Let $(R: \bar{R})$ be the conductor ideal of R in \bar{R}.
Lemma 8. Assume that \bar{R} is a finite R-module. Let p be an element of $\operatorname{Dp}_{1}(R)$. If $p \supset(R: \bar{R})$, then p is a prime divisor of $(R: \bar{R})$.

Proof. If ht $p=1$, then p is a prime divisor of $(R: \bar{R})$, since $(R: \bar{R}) \neq(0)$. If ht $p>1$, then $[9$, Proposition 1.10] implies that p is also a prime divisor of ($R: \bar{R}$).

Proposition 9. Assume that \bar{R} is a finite R-module. Then

$$
R-\operatorname{Ass}_{R}(R /(R: \bar{R})) \subset R^{\prime} .
$$

Proof. Let a be an element of $R-\operatorname{Ass}_{R}(R /(R: \bar{R}))$. Since super-primitivity is a local-global property, we have only to prove that $a \alpha$ is a super-primitive element over R_{p}, for every $p \in \operatorname{Dp}_{1}(R)$. Let p be an element of $\mathrm{Dp}_{1}(R)$. If $p \not \supset(R: \bar{R})$, then $R_{p}=\bar{R}_{p}$, and R_{p} is a normal domain. Therefore $a \alpha$ is a super-primitive element over R_{p} by [7, Theorem 1.13]. If $p \supset(R: \bar{R})$, then p is a prime divisor of ($R: \bar{R}$), by Lemma 8 , and a is in $R-\operatorname{Ass}_{R}\left(R /(R: \bar{R})\right.$. Hence a is not in p. So a is a unit of R_{p}. Since α is a super-primitive element over R_{p}, we obtain the fact $a \alpha$ is also a super-primitive element over R_{p}.

Let α be an element of a finite algebraic field extension of K. It is said that α is of degree d if $[K(\alpha): K]=d$. We say that α is an ultra-primitive element of over R if $\operatorname{grade}\left(I_{[\alpha]}+(R: \bar{R})\right)>1$ where we define $\operatorname{grade}(R)=\infty$. For the definition of an ultra-primitive element, see also [2] and [8].

Lemma 10. Assume that \bar{R} is a finite R-module and α a ultra-primitive element over R. Then a α is a super-primitive element over R, for every $a \in R$.

Proof. Let $a \in R$. Let p be an element of $\mathrm{Dp}_{1}(R)$. Then either $p \not \supset(R: \bar{R})$ or $p \not \supset I_{[\alpha]}$. If $p \not \supset(R: \bar{R})$, then R_{p} is normal. Recall [7, Theorem 1.13]: Assume that R is a Krull domain, then every element α which is algebraic over R is a super-primitive element over R. Thus $a \alpha$ is a super-primitive element over R_{p}. Hence $J_{[a \alpha]} \not \subset p$. If $p \not \supset I_{[\alpha]}$, then $p \not \supset I_{[a \alpha]}$ because $I_{[\alpha]} \subset I_{[a \alpha]}$, by Lemma 2. Therefore $J_{[a \alpha]} \not \subset p$. This means that $a \alpha$ is a super-primitive element over R.

Theorem 11. Let R be a Noetherian domain and \bar{R} the integral closure of R in its quotient field. Let α be a ultra-primitive element of degree d over R. Assume that \bar{R} is a finite R-module and $d \geq 3$. Then there exists a one-to-one correspondence between $\left\{B_{a} ; a \in R-\{0\}\right\}$ and $R-\{0\} / R^{*}$.

Proof. Since α is a ultra-primitive element over R, we get $R^{\prime}=R-\{0\}$. Then the assertion is clear from Theorem 5 (2).

Remark 12. Let $R_{\alpha}^{\prime \prime}$ be the set of non-zero elements a of R such that α / a is a super-primitive element over R. Since the following statements hold, the same results as B_{a} and R^{\prime} hold for $B_{a^{-1}}=R[\alpha / a] \cap R[a / \alpha]$ and $R_{\alpha}^{\prime \prime}$:
(1) $\varphi_{\alpha^{-1}}(X)=X^{d}+\eta_{1}^{\prime} X^{d-1}+\cdots+\eta_{d}^{\prime}$, where $\eta^{\prime}{ }_{k}=\eta_{d}^{-1} \eta_{d-k}$, for $1, \ldots, d$, where $\eta_{0}=1$.
(2) $J_{[\alpha]}=J_{\left[\alpha^{-1}\right]}$.
(3) α is super-primitive if and only if α^{-1} is super-primitive.
(4) $R_{\alpha}^{\prime \prime}=R_{\alpha^{-1}}^{\prime}$, where $R_{\alpha}^{\prime}=R^{\prime}$.

ACKNOWLEDGMENT

We express our gratitude to the referees for improving our paper.

REFERENCES

[1] M. Kanemitsu and K. Yoshida, "Some Properties of Extensions $R[\alpha] \cap R\left[\alpha^{-1}\right]$ over Noetherian Domains R ", Comm. Algebra, 23(12) (1995), pp. 4501-4507.
[2] M. Kanemitsu, J. Sato, and K. Yoshida, "Some Theorems Concerning Anti-Integral, Super-Primitive and UltraPrimitive Elements", Math. J. Ibaraki Univ., 31 (1991), pp. 33-36.
[3] I. Kaplansky, Commutative Rings. Chicago and London: The University of Chicago Press, 1974.
[4] H. Matsumura, Commutative Algebra, 2nd edn. New York: Benjamin, 1980.
[5] A. Mirbagheri and L.J. Ratliff, Jr., "On the Intersection of Two Overrings", Houston J. Mathematics, 8 (1982), pp. 525-535.
[6] M. Nagata, Local Rings. New York: Interscience Publishers, 1962.
[7] S. Oda, J. Sato, and K. Yoshida, "High Degree Anti-Integral Extensions of Noetherian Domains", Osaka J. Math., 30 (1) (1993), pp. 119-135.
[8] S. Oda and K. Yoshida, "A Linear Generator of an Ultra-Primitive Extension $R[\alpha]$ ", Far East J. Mathematical Sciences, 6 (1998), pp. 65-74.
[9] K. Yoshida, "On Birational-Integral Extension of Rings and Prime Ideals of Depth One", Japanese J. Math., 8(1) (1982), pp. 49-70.

Paper Received 29 May 2000; Revised 22 October 2000; Accepted 29 November 2000.

[^0]: * To whom correspondence should be addressed.

