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ABSTRACT 

A study is made of the two-plasmon decay when the pump laser beam has a finite 
bandwidth. Using the fluid theory, analytical expressions for the growth rates and threshold 
powers for homogeneous plasma and inhomogeneous plasma with linear ramp density 
were obtained; it has been shown that the bandwidth in the laser beam can significantly 
affect the growth rates and threshold powers for the two-plasmon decay process. 

*To whom correspondence should be addressed. 
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EFFECT OF FINITE BANDWIDTH ON THE TWO-PLASMON DECAY 

1. INTRODUCTION 

The decay of an electromagnetic wave into two electron plasma waves (plasmons) has been observed both 
experimentally [1-3] and in simulations [4]. Recently this instability has been widely investigated theoretically 
[5-8]. 

The two-plasmon decay (TPD) is a member of a family of parametric instabilities that occur in an undercritical 
plasma. They all satisfy the frequency and wave number matching conditions: 

where the incident electromagnetic wave (wo, k o) decays into two plasmons (Wl' kl and (W2' k 2). Since both 
plasmons are generated at the same location, they are nearly equal in frequency [9] and Wo =Wl +W2 =2Wl,2; 
hence this process occurs at densities near quarter critical density (nc/4), where nc = mW5/47re2, and it is 
inherently a two (or three) dimensional process. 

The TPD instability is absorptive in nature and therefore it is of great significance in high intensity laser­
pellet interaction because the electron plasma waves associated with this instability may have phase velocities 
of the order of the speed of light and therefore produce very energetic electrons when they damp [3, 10, 11]. 
These electrons cause preheating of the pellet core and thus prevent efficient compression which is necessary for 
the production of useful amounts of fusion energy [12]. Thus it is natural to try to control or modify the TPD 
instability. As the power of a laser with bandwidth Llwo is dispersed, it is expected that the use of a laser with 
finite bandwidth would lower the growth rates. Any laser has a finite natural bandwidth due to the finite time 
of pulse duration, but this is usually neglected because the fractional frequency width is small compared to the 
laser frequency. An increase in the frequency bandwidth can be achieved artificially by disturbing the coherence 
of the driving laser [13,14]. 

Thomson [15] considered the effect of a finite bandwidth on the parametric instability in an inhomogeneous 
plasma. He concluded that the bandwidth affects the threshold for convective instabilities. His results showed 
that for large bandwidth, for which the interaction length is much greater than the correlation length for the 
pump wave, the intensity threshold is proportional to (LlwO)2 . 

Berger [16] solved the linearized coupled mode equations in two dimensions numerically. His results showed 
that, for plasma lengths only a few times threshold, a surprisingly small temporal bandwidth that is substantially 
less than the growth rate is effective in suppressing absolute growth. Only if the plasma length greatly exceeds 
that threshold is the necessary temporal bandwidth the larger value obtained from homogeneous plasma theory. 

Guzdar et al. [17] studied the effect of bandwidth on the convective amplification of Raman instability 
in the underdense, inhomogeneous plasma. They concluded that for the case when the homogeneous growth 
rate 1'0 < Llwo there is no effect of bandwidth on the convective amplification. Their results showed that for 
1'0 > Llwo there is a statistical enhancement in the amplification factor. 

Recently, we investigated the effect of bandwidth on Raman backscattering and an expression for convective 
amplification was derived, where the effects of collision and phase mismatch were taken into consideration [18]. 
We found that if we neglect the collision frequency, the dependence of the amplification factor on the bandwidth 
disappears. The growth rate was also investig.ated and found to decrease with bandwidth while the threshold 
increases with the bandwidth. 
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In this paper we discuss in detail the effects of pump bandwidth on the TPD instability both in a homogeneous 
plasma and in an inhomogeneous plasma. In Section 2, we obtain the slow coupling equations for the waves 
involved in the TPD. In Section 3 we consider the effect of pump bandwidth on the homogeneous growth rate 
and threshold intensity of the TPD. In Section 4 we consider the effect of pump bandwidth on the convective 
TPD in an inhomogeneous plasma with linear density profile. Finally in Section 5 we present our conclusions. 

2. THE SLOW COUPLING EQUATIONS 

Let the electron total density ne be composed of two parts such that: 

(1) 

where ne(x) is the slowly varying density due to the inhomogeneity and is given by: 

(2) 

where L is the inhomogeneity scale length and fie (x, t) is the fast harmonically varying density due to the 
electrons' fast response to the high frequency fields. Because of the ions' inertia, they will be considered immobile 
and their density is denoted by ni(x) = ne(x); the motion of the electrons is then governed by the following 
equations: 

(a) The electron equation of motion: 

av e e 3T - + (v.V)v =--E - -v x B - --Vne - vv. (3)
at m me mne 

(b) Poisson's equation: 

V.E -411'e '" ne(x, t). (4) 

(c) Faraday's law: 

(5) 

(d) Ampere's law: 

411' 1 aE
VxB --n ev+ -- (6)

e e e at' 

where v is the electron velocity, T is the electron temperature in energy units, v is the electron ion collision 
frequency, and E and B are the electric and magnetic fields of the waves involved in the three wave process. 

Taking the curl of Equation (5), and using Equations (1), (4), and (5), we obtain the following equation: 

(7) 
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This equation is the generalized inhomogeneous wave equation. From the linear theory of waves we have 
\7 x v = eB/me, then Equation (7) transforms to: 

1 a 47rne(x)e 
= 2" -a [v (\7.E)] + 2 \7(v.v). (8) 

e t e 

We represent the total electric field as a superposition of the fields associated with the three interacting waves: 

E(x, t) = yEa(x, t) exp {i(kax - watn 

(9) 

The indices 0, 1, 2 refer to the pump wave (usually laser) and the two plasmons respectively. We assume 
that the variation in the amplitudes of the interacting waves is along the plasma density gradient (in the 
x-direction), and that their variation is slow on the time scale ~., i = 0, 1, 2. This approximation is known as 

J 

the weak coupling limit 

(lOa) 

(lOb) 

Inserting Equation (9) into Equation (8) and making use of Equations (lOa, lOb) then selecting terms of 
equal exponentials on both sides, we obtain the slow coupling equations: 

[ a 1 { 2 2} a 1 { (2 2)-a + -2 3Vt h (2k1x + k1Y) - k 1y e -a + -2· k 1y e - 3Vt h (k1x - k 1y )'
t W1 X ZW1 

(11) 

2 2 
2 ( ) X • PIx E* _ . 2x P a Ew (o) ( )}] k w (o)v*-w 0 - - z--v + - 2 - -z 1, (l2) 
P L w2 L 2W1W2 

where V;h = fiT and Va =I .eEa I are the thermal and quiver velocities of the electron fluid, respectively. V-:;;; zmWa 
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3. HOMOGENEOUS PLASMA ANALYSIS 

In the limit where the inhomogeneity scale length (L) ---+ 00, the slow coupling equations reduce to that of 

homogeneous plasma: 


(13) 

ik2XW;(O)VO
---'----E2 • (14)

2WIW2 

Defining Ei. y'wp(o)ai(i = 1,2), and substituting for kIx = k2x = ~ko, k1y = k2y , WI = W2 = wp(O) 

and using the abbreviation Ck 2~i [kiy (c2 - 3V;h) (kiy )] , i =1,2, Equations (13) and (14) transform into the 

following forms: 

8 (V .)] ikovo * 
[8T + "2 ZCk al = -4-a2 (15) 

8 (V .)] * ikovo (16)[8t + "2 + ZCk = --4-a1 ,a2 

where we have made use of the fact that WI ~ W2 ~ Wp(O). 

Integrating Equation (16), we obtain 

(17) 

v
where 10 = k0 o is the maximum growth rate for TPD in a homogeneous plasma. 

4 

Substituting Equation (17) into Equation (15), we have 

(18) 

Using Equation (15) we obtain an equation for the intensity Ial 12 : 

(19) 

Assuming that the growth time for the two plasmons to be much greater than the correlation time of the 

pump wave, this assumption implies that the bandwidth ~wo ~ 10. The integrand on the right is finite only 

over the correlation time, during this time the amplitude al (t') will not change much, so it can be set to al (t) 


July 1997 The Arabian Journalfor Science and Engineering, Volume 22. Number 2A. 169 



N. M. Laham, A. M. Khateeb, and I. M. Odeh 

and taken outside the i~tegral. Now, averaging Equation (19) over a period shorter than the growth time but 
larger than the correlation time, we obtain: 

[:t + v] (I a, 12) = (I a, 12) {,,' ')'0 (th; (t') exp { - (i + ia) (t - t')} dt' 

+(1 a, 12) [YO ')'o(th;(t') exp { - (i + ia) (t - t')} dt', (20) 

where the angular brackets denote the averaging process described. The procedure followed to arrive at Equation 
(20) from Equation (19) is known as the Bourret approximation [19]. 

Choosing 

(/O(t/h/o(t)) =1/0 12 exp {-~Wo(t - t/)} I 

Equation 20 becomes 

(21) 

We can easily solve this equation to obtain the intensity as a function of time: 

2 '2 [2 110 12 ~Wo ](I al(t) I) = (I al{O) 1)exp 2 - v t. (22) 
(~Wo + v/2) + a2 

The effective growth rate (/eJJ) is readily obtained from this equation: 

21,0 12 ~WO 
leJJ = 2 - v. (23)2(~Wo + v/2) + a
 

For collision less plasma (v ~ 0), the effective growth rate becomes: 


21,0 12 ~Wo 

(24)I eJJ = (A)2 2 . 

~Wo +a 

Furthermore, if we allow the y-components of the propagation vectors of the plasmons to approach zero, then 
we have: 

21/0 12 
leJJ = (25)

~Wo 

From this result, we conclude that the bandwidth has reduced the growth rate by a factor of 2l 10 1 provided 
~Wo 

that ~wo > 10. 

The collisional threshold is simply given [20,21] by the condition I = ~, hence we obtain: 

2 2 3v [( V) 2]ko Vo = ~Wo ~Wo + '2 + a . (26) 
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If we allow the y-components of the propagation vectors of the plasmons to approach zero and assume that 
~wo > v, a condition which is readily met by hot plasmas or lasers with large bandwidth, we obtain the threshold 

2expression (kovO);h = 3v~wo, which when compared with the usual threshold condition (kOVO);h v , shows 
that the bandwidth has increased the threshold by a factor of 3~wo/v. 

4. CONVECTIVE TPD IN AN INHOMOGENEOUS PLASMA 

In an inhomogeneous plasma the presence of density gradient significantly modifies the features of the TPD 
instability and adds to the complexity of its analytical treatment. To investigate the effect of the pump wave 

bandwidth on the TPD, we set k Ix ~ k2x ~ ~O , WI ~ W2 ~ wp(o), and kly ~ k2y ~ ky, we also assume that 

ko > ky, a situation which is typical in experiments of laser wavelength below 1pm [22], hence Equations (11) 
and (12) transform to: 

[a a {v ( X) iwp(0)x }] . * - + v- + - 1 + - + --- EI = t'YOE2 (27)at ax 2 L 2 L 

v a {v (1 x) iwp ( ) x}] E* - . *E[-a + - + - + - - --
0 

2 - l'YO I (28)at ax 2 L 2 L 

where 

v = 3v(ih) ki is the group velocity of the two plasmons. 
wp 0 

Defining 1,2, and normalizing space and time using the transformation 

X t 
Xn =-, tn = 

Xo to 

where 

f2VL 
xo=V~' 

Substituting into Equation (27) and (28) we obtain: 

[ a a {v ( 2xn).}] (29)ot + oXn + '2 to + wp(o) + ZXn al n 


a {v ( 2xn).}] *
[ot
a 

n + OXn + '2 to + wp(o) + lXn a2 (30) 

Since the amplitudes are slowly varying in space and time, then Equation (30) can be integrated to yield: 

(31)a; -ito i'= I'o(t') exp [- { ~ (to + w:~O)) - iX'} (t - t')] dt'. 
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Substituting into Equation (29) we obtain 

[a a {v ( 2Xn ). }]at + ax + 2 to + wp(o) +zx al 

(32)= t~ L,,> ')'o(tho(t')a~ (t')al(t) exp [- {i (to + w:~O)) - i., } (t - t'J] dt'. 

From this equation we can obtain for the intensity I al 1
2 , the following equation: 

[%t + :., + v(to + w:~o))] 1al I' 

t~ L" dt'')'o(tho (t')a; (t')al (t') exp [- { i (to + w:~O)) - i.,} (t t'J] 

(33)+t~ L" dt'')'; (t)')'o(t')a;(t')al(t') exp [- {i (to w:~O)) + i., } (t - tl)]. 

Using Bourret approximation we obtain for the average intensity 

[%t + :., + v (to + W:~O))] (I al I') 

=t~(1 a 12)(io(t)i~(t')) [v (to + 2x/wp(o) + 2dW;)] . (34)
2[~[to + 2x/wp(o) + 2dwo)] + x

Choosing: 

t5(io(t)io(t')) = l.yo 12 e-awo(t-t'), then Equation (34) transforms to: 

[%t + {J + v (to + w:~O))] (I al I') 


l.yol2 [v (to + 2x/wp(o)) + 2~wo] (I al 12). 
 (35)
2[~(to + 2x/wp(o)) + 2dwo] + x


Now, let us use the variable y = to + 2x/wp(o) , then Equation (35) becomes: 


[%t + Wp~o) :y +vv] «I al I') 
2 

l.yo [vy + 2dwo] (I 12)
2 2 al . (36) 

[~y + 2dwo] + i- (wp(o)y - to) 

Using the abbreviations: 
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Equation (36) takes the form 

8 2 8 1
[ 8t + wp(o) 8y + vy (I al \) 

4 11012 [vy +2dwo] 2 

[V2+W;(O)] [(y+o)2+f32](la11 ). (37) 

This differential equation shows the variations of the intensity in space and time, but since we are interested 

in the convective instability we set :t = 0, and then integrating over a symmetric interaction region from y_(-y) 

to y+(+y), we obtain: 

Extending the region of interaction from -00 to +00 we obtain 

(I al(OO) 12) 
(38)

(I al(-OO) 12) 

Hence the convective amplification factor in the vicinity of x ~ 0, where the interaction is at resonance (i. e. 
no phase mismatch) is given by: 

(39) 

This equation gives the amplification factor as a function of the pump bandwidth and the electron-ion collision 
frequency. It is interesting to note that in the limit when v --+- 0, the amplification factor reduces to 271"t5 1,0 12 
i.e., independent of the bandwidth. Since the intensity of the decay mode can be written in the form I = Ioe A , 

thus A > 1 represents the growth in the mode under consideration and the threshold can be estimated [23, 24] 
by setting A = 71", so substituting for A = 71" in Equation (39) we obtain the threshold condition: 

(40) 

It is interesting to note that in the limit of collision less plasma (v --+- 0), the threshold dependence on the 
bandwidth disappears and we obtain the following condition for the threshold: 

(~)2 koL > 6. ( 41) 
Vth 

This is the same threshold condition for TPD instability that is given in the literature [20, 21]. To determine 
the growth rate, we focus on the time variation in the vicinity of y = 0. At this point Equation (37) becomes: 

(42) 

hence 

(43) 
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From this equation we obtain the effective growth rate: 

(44) 

5. CONCLUSIONS 

The effect of bandwidth on the TPD instability has been investigated when (~wo :» 10). Homogeneous plasma 

growth rate is reduced by a factor of :'0 and the threshold is increased by a factor of 3~wo . Convective TPD 
uWo 	 v 

instability in an inhomogeneous plasma of a linear ramp density was also investigated under the same condition 
(~wo :» 10) and analytical expressions for the amplification factor and threshold were obtained. We noted that 
when the electron~ion collision frequency approaches zero the dependence of the threshold and amplification 
factor on the pump bandwidth disappears, and the usual threshold expression given in the literature is recovered. 
We found that the effective growth rate does not depend on the electron~ion collision frequency but it is reduced 
when the bandwidth of the pump wave is taken into consideration. 
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