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ABSTRACT 

This paper demonstrates the use of genetic algorithms to design a single output feedback 
control law for the simultaneous eigenvalue placement of a power system running over a 
wide range of operating conditions. The task of selecting the output feedback gains is 
converted to a simple optimization problem with an eigenvalue-based objective function, 
which is solved by a genetic algorithm. An objective function is presented allowing the 
selection of the output feedback gains to place the closed-loop eigenvalues in the left­
hand side of a vertical line in the complex s-plane while shifting a specific mode of 
oscillation to a vertical strip and with bounds on the damping ratio. Simultaneous placement 
of the closed-loop eigenvalues of the power system operating at different loading conditions, 
using a single output feedback stabilizer, is demonstrated. The effectiveness of the output 
feedback stabilizer in enhancing the dynamic stability ofpower systems is verified through 
eigenvalue analysis and simulation results. 

Keywords: genetic algorithms; power system stabilizers; output feedback; simultaneous 
eigenvalue placement. 
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GENETIC ALGORITHM BASED SIMULTANEOUS EIGENVALUE PLACEMENT 
OF POWER SYSTEMS 

1. INTRODUCTION 

The application of genetic algorithms (G A) has recently attracted the attention of researchers in the control 
area [1-4]. From the literature it is clearly seen that genetic algorithms can provide powerful tools for optimiza­
tion. The present paper demonstrates the use of genetic algorithms to calculate the gains of a power system 
simultaneous output feedback stabilizer (OFS). 

The importance of increasing the dynamic stability boundaries of synchronous machines equipped with fast­
acting static exciters is very well known. Several techniques have been used for the design of supplementary 
excitation controllers for this purpose [5-15]. Considerable work has been done using optimal control methods. 
The design of a power system stabilizer can be formulated as an optimal linear regulator control problem. 
However, the implementation of this technique requires the design of state estimators (16]. This approach 
increases the complexity and the cost of the control system and reduces its reliability. To avoid these problems, 
an approach based on output feedback control, which uses only some desired measurable state variables, has 
been suggested [17-20]. 

In this paper, the gains of a power system simultaneous output feedback stabilizer are determined using a 
simple genetic algorithm and an eigenvalue-based objective function. The system to be studied is that of a single 
machine connected to an infinite bus through a transmission line. This system, while relatively simple, is complex 
enough to permit the illustration of some stability concepts and results. It is assumed that the measurable states 
are limited to the machine torque angle and the machine speed. The procedure is extendible to the multimachine 
case. 

The problem of the simultaneous placement of the closed-loop eigenvalues of a power system operating at a 
wide range of loading conditions, via a single output feedback stabilizer, is considered. In this case, the power 
system, operating at various loading conditions is treated as a finite set of plants. 

The problem of simultaneous stabilization occurs frequently in power systems. In the daily operation of a 
power system, the operating condition changes as a result of load changes. Also, power systems are known to 
be nonlinear. Linearization around several operating conditions naturally leads to a simultaneous stabilization 
problem. The simultaneous eigenvalue placement approach considered in this work is useful to shape the transient 
behavior of the power system. 

An objective function that will result in shifting the closed-loop eigenvalues to the left-hand side of a vertical 
line in the complex s-plane while shifting a specific mode of oscillation to a vertical strip and with bounds on the 
damping ratio is defined. The objective function is used in conjunction with a genetic algorithm to determine the 
gain of the simultaneous output feedback stabilizer. The advantage of the eigenvalue-based objective function 
is that the specification of weighting matrices is not required. Moreover, certain system specifications such as 
rise time, maximum overshoot, damping ratio, and steady state error can also be incorporated in the objective 
function. 

The above problem, treated in this paper, is concerned with designing optimal simultaneous output feedback 
stabilizers with constraints in the controller. Analytical solutions to such problems are not available. Even for the 
static output feedback case, only necessary conditions are given and iterative algorithms are used to search for 
the local minima. Artificial Intelligence techniques, such as GA, are the alternative in the absence of analytical 
solutions. The GA can easily incorporate most types of constraints and structures on the controller and often 
leads to the global optimum [1]. 

June 2000 The Arabian Journal/or Science and Engineering. Volume 25, Number lC. 65 



Youssef L. Abdel-Magid, Maamar Bettayeb, and Shokri Z Selim 

Simulation results and eigenvalue analysis are used throughout the paper to assess the effectiveness of the 
power system simultaneous output feedback stabilizers designed in this work. 

2. GENETIC ALGORITHMS 

Genetic algorithms are global search techniques, based on the operations observed in natural selection and 
genetics [1]. They operate on a population of current approximations - the individuals - initially drawn at 
random, from which improvement is sought. Individuals are encoded as strings (chromosomes) constructed over 
some particular alphabet, e.g., the binary alphabet {O,l}, so that chromosomes values are uniquely mapped 
onto the decision variable domain. Once the decision variable domain representation of the current population 
is calculated, individual performance is assumed according to the objective function which char¥terizes the 
problem to be solved. It is also possible to use the variable parameters directly to represent the chromosomes in 
the GA solution. 

At the reproduction stage, a fitness value is derived from the raw individual performance measure given by the 
objective function, and used to bias the selection process. Highly fit individuals will have increasing opportunities 
to pass on genetically important material to successive generations. In this way, the genetic algorithms search 
from many points in the search space at once and yet continually narrow the focus of the search to the areas of 
the observed best performance. 

The selected individuals are then modified through the application of genetic operators, in order to obtain the 
next generation. Genetic operators manipulate the characters (genes) that constitute the chromosomes directly, 
following the assumption that certain genes code, on average, for fitter individuals than other genes. Genetic 
operators can be divided into three main categories [2], selection, crossover, and mutation. 

1. 	Selection: Selects the fittest individuals in the current population to be used in generating the next 
population. 

2. 	Crossover: Causes pairs, or larger groups of individuals to exchange genetic information 

with one another. 


3. Mutation: 	 Causes individual genetic representations to be changed according to some probabilistic rule. 

Genetic algorithms are more likely to converge to global optima than conventional optimization techniques, 
since they search from a population of points, and are based on probabilistic transition rules. Conventionalop­
timization techniques are ordinarily based on deterministic hill-climbing methods, which, may find local optima. 
Genetic algorithms can also tolerate discontinuities and noisy function evaluations. 

3. SYSTEM DYNAMIC MODEL 

The system considered in this paper is a synchronous machine connected to an infinite bus through a trans­
mission line as shown in Figure 1. The linearized incremental model of this system, with the voltage regulator 
and the exciter included, is shown in Figure 2. The interaction between the speed and voltage control equations 
of the machine is expressed in terms of six constants Kl ... K 6 • These constants, with the exception of Kg, which 
is only a function of the ratio of the impedance, are dependent upon the actual real and reactive power loading 
as well as the excitation levels in the machine [6]. The equations describing the block diagram of Figure 2 are as 
follows: 

(1) 


(2) 
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,K3 K3 K 4 (3)6.Eq = 1 T' K 6.EJd - 1 T' K 6.6+ S dO 3 + S dO 3 

(4) 

1 
(5)6.EJd = K T 6.Va 

E+S E 

(6) 

(7) 


E 
Vt 

infinite bus 

Figure 1. Single machine connected to an infinite bus. 

+ 


Figure 2. System Block Diagram. 
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The constants Kl to K6 are given in the Appendix. The system data are as follows [9J: 

Machine (p.u.) 

Xd = 1.7; x~ = 0.254; Xq = 1.64; 

Wo = 1207l' rad/s; T~o = 5.9 sec; D = 0.0; M = 4.74 sec. 

Transmission line (p.u.) 

Te = 0.02; Xe = 0.4. 

Exciter 

KA = 400; TA = 0.05; KF = 0.025; TF = 1.0; 

KE = -0.17; TE = 0.95. 

Loading (p.u.) 

Po = 1.0; Qo = 0.62; Vio = 1.172; 

KI = 1.4479; K2 = 1.3174; K3 = 0.3072; K4 = 1.8050; K5 = 0.0294; K6 = 0.5257. 

The state and output equations of the system under a particular loading condition can be written as: 

X(t) = AX(t) + B U(t) + r W(t) (8) 

Y(t) = C X(t) (9) 

where the state vector X and output vector Yare chosen to be: 

(10) 


Y = [Llt5 Llw). (11) 

The power system OFS is selected to be of the constant gain form: 

U(t) = F Y(t) = [Ko Kw). u (12)~wt5l[ 

where Ko and Kw are the stabilizer gains. The disturbance vector W(t) is defined as: 

W(t) = LlPm 1 (13) 
[ LlVreJ 
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The constant system matrices A, B, I', and C are given by: 

-1 1 -K4 
0 0 0 

K3T~o T~o T~o 

-KE 1 
0 0 0 0 

TE TE 

-K6K A -1 -KA -K5K A
0 0 (14)A= TA TA TA TA 

-KFKE KF -1 
0 0 0 

TFTE TFTE TF 

0 0 0 0 0 377 

-K2 -K1 -D
0 0 0

M M M 

0 0 0 0
KA

B = [0 0 0 0 of f= (15)
TA KA[: 0 0 0 ~rTA 

0 0 0 1 
(16)c= [~ 0 0 ~] .0 0 

4. PROBLEM FORMULATION AND RESULTS 

In this section, the objective function used to optimize the gains of the OFS is formulated and the optimization 
problem solved with a genetic algorithm. The solutions and simulation results are also given. 

Consider the problem of determining the gains of an output feedback stabilizer that relatively stabilize a 
family of N plants: 

X(t) = Ak X(t) + Bk U(t); k = 1,2, ... , N (17) 

where X (t) E Rn is the state vector and U(t) E Rm is the control vector. 

The GA technique can be used to obtain the gains of the output feedback stabilizer such that the closed-loop 
eigenvalues of the set of plants lie in the left-hand side of a vertical line in the complex s-plane while shifting a 
specific mode of oscillation to a vertical strip and with bounds on the damping ratio, as shown in Figure 3. Such 
a situation occurs in power systems, where it is desired to relocate the machine electromechanical oscillation 
mode. In order to do this, the following objective function is suggested: 

J =max {O, [max Re(Ak,i) - J3I]} + max {o, [132 - min Re(Ak,i)] } 

IRe(Ak,i)I)]} {[ . (IRe(Ak)l) ]}+ max { 0,.[(1 - max ( I(Ak,i)1 + max 0, mm I(Ak,i)1 - (2 

+ max {O, [max Re(Ak,i) - J3]} (18) 

k = 1,2, ... ,N; i = 1,2, ... ,n, 
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where Ak,i is the ith closed-loop eigenvalue of the kth plant and Ak,i is the ith closed-loop eigenvalue of the kth 

plant to be shifted. The first two terms ensure that the shifted modes Ak,i are in the pre-specified vertical strip, 
while the third and fourth terms restrict the damping ratio of the shifted modes to (1 < ( < (2. The last term of 
the objective function J is to guarantee the relative stability of the closed-loop system; more precisely the rest 
of the modes are required to be to the left of the vertical line s = {3. If a solution is found such that J = 0, then 
the resulting gains simultaneously place the closed-loop eigenvalues of the collection of plants in the pre-specified 
vertical strip in the complex s-plane and the damping ratio of the shifted mode is within specifications. The 
existence of a solution is verified numerically by obtaining J = O. To verify the above procedure, two cases are 
presented. 

4.1. (A) The Single Plant Case (N = 1) 

The closed-loop system matrix can be written as: 

-1 1 -K4
0 0 0 

K3T~o T~o T~o 

-KE 1 
0 0 0 0 

TE TE 


-K6K A -1 -KA (Ko - Ks)KA (Kw KA)

0 

TA TA TA TA TA (19)Acl = 
-KFKE KF -1 

0 0 0 
TFTE TFTE TF 

0 0 0 0 0 377 

-K2 -Kl -D 
0 0 0 

M M M 

To calculate the objective function as given by Equation 18, the eigenvalues of the closed-loop system matrix 
Acl are computed for each of the individuals of the current population. The values of the objective function thus 
obtained are fed to the GA in order to produce the next generation of individuals. The procedure is repeated 
until the population has converged to a zero value of the objective function producing the gains of the output 
feedback stabilizer Kw and Ko. The GA used here utilizes direct manipulation of the parameters. The following 
GA parameters were used in the present study: 

Figure 3. Vertical strip in the complex s-plane with bounds on the damping ratio. 
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Population size = 80 

Maximum number of generations (Max. Gen.) = 150 

Crossover probability: performed randomly between chromosomes 

Mutation probability = 0.1. 


Two examples are presented: 

Example 1 

/31 = -1; /32 = -2; (1 = 0.1395; (2 =0.141; /3 = -1. 

The open-loop system eigenvalues are: 

-0.2349 ± j10. 792; -1.5517; -3.0840; -8.1336 ± j8.9844. 

The first two eigenvalues are called the electromechanical mode. The damping ratio of this mode is 0.0218. It 
is desired to have the damping ratio around 0.14. In addition, all the other closed-loop system eigenvalues must 
lie to the left of the line s = -1. The gains of the OFS as obtained from the GA are: 

K(j = -0.2279 and Kw = -11.2147. 

The closed-loop eigenvalues were found to be: 

-1.6143 ± j11.4069; -1.3818 ± j1.0877j -7.6904 ± j7.5747. 

The damping ratio of the electromechanical mode has improved to 0.1401. 

Figure 4 shows the dynamic response of the speed deviation Llw for a 0.05 p.u. step change in the mechanical 
power. The gains obtained using the GA technique are in full agreement with those obtained in [20]. 

Example 2 

/31 = -2; /32 = -3; (1 =0.13; (2 = 0.25; /3 = -2. 

The output feedback gains are: 

K(j = -0.1945 and Kw = -21.2664. 

The closed-loop eigenvalues were found to be: 

-2.9735 ± j11.8561; -2.3415 ± jO.9346; -5.3714 ± j5.1724. 

The damping ratio of the electromechanical mode has improved to 0.2433. Figure 5 shows the dynamic response 
of the speed deviation Llw for a 0.05 p.u. step change in the mechanical power. 

4.2. (B) The Multiple Plants case (N > 1) 

The problem of simultaneous eigenvalue placement of a finite number of plants via a single output feedback 
stabilizer can be easily addressed using the eigenvalue-based objective function J in conjunction with a GA. This 
procedure is next demonstrated. 

Example 3 

Consider the problem of a single machine infinite bus system operating under different loading conditions [8]. 
Here we consider four operating points (N = 4). The operating points were selected randomly as follows: 

(Po, Qo) = (1.0,0.62); (1.0,0.2); (1.0, -0.1); (0.8,0.5); lito = 1.172. 
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-3 
1 X 10 

I:!!OJ 
(p.u.) 

0.5 

\ / 

1\ 

o 
v 

-0.5 

-1 

time, sec-1.5 L..-__""'--______-'--__--'-__--...I 

o 1 234 5 

Figure./,. Dynamic responses of!:l.w (Example 1). 

(- - No stabilizer, -{31 = -1; {32 = -2; (1 = 0.1395; (2 = 0.141; {3 = -1}. 
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Figure 5. Dynamic responses of!:l.w (Example 2). 
(- - No stabilizer, -{31 = -2.0; {32 = -3.0; (1 = 0.13; (2 = 0.25; {3 = -2}. 
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The eigenvalues of the system at the four operating points considered, without OFS, are: 

[-0.2350 ± j10.7853j -1.5520; -3.0830j -8.1340 ± j8.9851] 

[-0.2956 ± j11.5532j -1.7131 ± jO.8164j -8.6778 ± j9.1726] 

[-0.2983 ± j12.1958j -1.3149 ± j1.0433; -9.0732 ± j9.4920] 

[-0.2818 ± j10.5746; -3.0260; -1.5411; -8.1210 ± j8.8397]. 

The damping ratios of the electromechanical modes are respectively: 

[0.0218; 0.0256; 0.0244; 0.0266]. 

We used the objective function J with the GA and N = 4 to place the electromechanical mode of each of the 
four systems in the vertical strip defined by the lines s = -1; s = -2 and damping ratio between 0.13 and 0.25. 

In addition, all the closed-loop eigenvalues are to be located to the left of the line s = -1. 


This means (31 = -1; (32 = -2; (1 = 0.13; (2 =0.25; (3 = -1. 


llw 
(p.u.) 

0.5 

o 

-0.5 

-1 

(a) 
twJ 

(p.u.) 

·3 
1 x10 ----,-___--.-__-..-_-----.~_--. 

(b) 

0.5 

o 

.a.5 

time, sec 
-1~--------~--~----~~~ o 2 345 

M) 
(c)(p.u.) 

0.5 

o 

.a.5 

time. sec time. sec 
-11.....----'---"-----~--'-------' 
o 2 345 2 3 4 5 

Figure 6. Dynamic responses of ~w (Example 3) (N = 4): 


(a) (Po, Qo) = (1.0,0.62); (b) (Po, Qo) = (1.0, 0.2),­

(c) (Po, Qo) = (1.0, -0.1); (d) (Po, Qo) = (0.8, 0.5). 


(- - No stabilizer, -{31 = -1.0; {32 = -2.0; (1 =0.13; (2 =0.25; {3 = -I}. 


twJ 
(p.u.) 

0.5 

o 

-1 

(d) 

\. 
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The gc;tins of the OFS in this case were found to be: 

Ko = -0.0793 and Kw = -12.2704. 

The eigenvalues of the four stabilized systems are: 

[-1.9376 ± j10.6583; -6.0773 ± j7.7525; -3.6687; -1.6743] 

[-1.8830 ± jl1.7383; -7.1298 ± j7.6226; -1.6735 ± j1.1159] 

[-1.7934 ± j12.4942; -7.7847 ± j7.9454; -1.1083 ± j1.2636] 

[-1.8778 ± j10.4176; -6.2113 ± j7.7048; -3.5318 ± j1.6627]. 

The damping ratios of the electromechanical modes are: eigenvalues 

[0.1789; 0.1584; 0.1421; 0.1774], 

indicating that the OFS will simultaneously improve the response of the four systems. The dynamic response of 
the speed deviation Aw, for the four systems following a 0.05 p.u. step-change in the mechanical power is shown 
in Figure 6. 

The extension of this approach to the multimachine system is evident. In this case, the formulation of the 
problem is parallel to the simultaneous stabilization case. In general, for a system consisting of m machines, 
each represented by 6 state variables and equipped with an OFS of the type considered in the paper, the system 
order will be 6m, and the number of parameters to be tuned using the GA will be 2m. If j operating points are 
selected for simultaneous stabilization, the GA will tune the 2m parameters such that the 6mj eigenvalues are 
located in the required region as stipulated by the particular objective function used. The multimachine case 
differs from the single machine infinite bus case in the amount of computation time. 

5. CONCLUSION 

The use of genetic algorithms to design a simultaneous output feedback controller to place the eigenvalues of a 
power system is investigated in this paper. The problem of selecting the output feedback gains is converted to a 
simple optimization problem with an eigenvalue-based objective function, which is solved by a genetic algorithm. 
The design method does not need the specification of weighting matrices. An objective function is presented 
allowing the selection of the output feedback gains to place the closed-loop eigenvalues in the left-hand side of a 
vertical line in the complex s-plane while shifting a specific mode of oscillation to a vertical strip and with bounds 
on the damping ratio. Objective functions allowing the selection of the output feedback gains to optimally place 
the closed-loop eigenvalues in the left-hand side of a vertical line in the complex s-plane, within an open sector 
in the complex s-plane, or within a vertical strip in the complex s-plane, are special cases of the work presented 
in this paper. 

The simultaneous placement of the closed-loop eigenvalues of a power system operating at different loading 
conditions via a single output feedback stabilizer was successfully demonstrated using the eigenvalue-based 
objective function. 

The effectiveness of the output feedback stabilizer in enhancing the dynamic performance stability is verified 
through eigenvalue analysis and simulation results. 

Several extensions of this work are possible: Dynamic output feedback power system stabilizers can be designed 
with the same techniques described in the paper. A combination of partial pole placement with linear quadratic 
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minimization to improve some error performance such as disturbance rejection is also easily incorporated in our 
formulation. 
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7. NOMENCLATURE 

Transmission line impedance 

KA,KE 	 Voltage regulator gain 

TA , TE Voltage regulator time constant 


KF,TF Stabilizing transformer gain, time constant 


Kl to K6 Constants of the linearized model of synchronous machine 


d-Axis open circuit field time constant 


M,H Inertia coefficient, constant (M = 2H) 


D Damping coefficient 


Armature current direct and quadrature axis components 


Vd, viq Armature voltage direct and quadrature axis components 


x~, Xd, Xq 	 Direct axis transient, direct axis and quadrature axis reactances 

Mechanical power input to machine 


P,Q Electric and reactive power output from machine 


8 Torque angle 


w 	 Angular velocity 

V, 	 Stabilizer transformer voltage 


Field voltage 
E'd 

E'q q-Axis voltage behind transient reactance 


E Infinite bus voltage 


Vrel Reference input voltage 


Va Regulator voltage 


Vt Terminal voltage 


A,B,r,C System, control, disturbance, and output matrices 


Acl Closed-loop system matrix 


X,Y,U,W State, output, control, and disturbance vectors 


F Feedback gain matrix 


J Objective function 


Elements of feedback gain matrix 
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APPENDIX 

All variables with subscript 0 are values of the variables evaluated at their pre-disturbance steady-state oper­
ating point from known values of Vto, Po, and Qo as given by Equations (20)-(26). All variables preceded by 6 
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are deviations of these variables from their respective values at the steady-state operating point. The constants 
KI to K6 are given in Equations (27)-(32). 

. Po lito (20)~qo = -J(P )2 TT2 Q )2oXq + Vto + oXq 

(21) 

(22) 

. Qo + Xqi~o 
~do = -----"-­ (23) 

Vqo 

Eqo = Vqo + idoXq (24) 

. ')2 ( . ')2Eo = (Vdo + Xe~qo - Te~do + Vqo - Xe~do - Te~qo (25) 

(26) 

EoEqo [ . ~ ( I ) ~] iqoEo [( I ) ( ) . ~ ( I ) ]KI = -z- Te Sllluo + Xe + Xd COSuo + ---z- Xq - Xd Xe + Xq Sllluo - Te Xq - Xd cosfJo (27) 

K - [TeEqo . (1 (xe + xq)(xq - Xd))]
2 - z + ~qo + Z (28) 

K3 = [1 + (x, + Xq~Xd - Xd)]-1 (29) 

(30) 

(31) 

(32) 
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