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INFEASIBILITY ANALYSIS FOR LINEAR SYSTEMS, A SURVEY 

1 INFEASIBILITY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS 

Mathematical models for real world problems often involve systems of linear equations of the form "Ax = b". 
Some of these models may contain more equations than variables. 

Consider such a model in which the coefficient matrix A is of order m x n. Then the vector of right hand 
side constants in the model (RHS constants vector) bERm. 

In such models, the coefficients in the A matrix come from things like properties of materials which are 
combined, etc., which are very hard to change. The RHS constants vector usually comes from requirements that 
are to be met, or targets to be achieved, etc., which are easier to modify if a need arises. 

Suppose it turns out that the model is inconsistent, i.e., it has no solution. Mathematically there is nothing 
more that can be done on the current modeL But the real world problem does not go away, it has to be solved 
somehow. In this situation, we are forced to investigate what practically feasible changes can be carried out on 
the model, to modify it into a consistent or feasible system. Infeasibility analysis is a study of such changes (see 
[1-6]). 

Since it is very hard to change the coefficient vectors of the variables, changes in them are rarely considered 
in applications. In most cases, it is the RHS constants which are changed, this is what we consider in this paper. 

Historically, before the advent of linear programming [7], if the system "Ax = b" is infeasible, people used to 
find an approximate solution for it using the method of least squares, which is reported to have been developed 
by the 19th century mathematician Carl Friedrich Gauss while studying linear equations for approximating the 
orbit of the asteroid Ceres. In this method, the approximate solution is taken as an optimum solution of the 
unconstrained minimization problem in the variables x: 

Minimize IIAx - b11 2 
• 

Let x be an optimum solution of this problem. x is known as a least squares solution of the inconsistent 
system "Ax = b". Accepting x as an approximate solution of the system, is equivalent to changing the RHS 
constants vector b to b= Ax, to make the system feasible. This b is unique, it is the point in the linear hull of 
the columns of A that is nearest by Euclidean distance to b. 

The disadvantage of this method of least squares is that the user has no control on which RHS constants bi 

are changed to make the system feasible. Normally, there are costs associated with changing the values of bi , 

and these are different for different i. The least squares method does not take this information into account, to 
find a least costly modification of the b-vector to make the system feasible. 

1.1 How is Infeasibility Detected? 

Our original system is: 
Ax =b, (1) 

where A is an m x n matrix, bERm, and x = (Xl, ... , xn)T is the column vector of decision variables. The 
alternate system for (1) based on the same data as in (1) is: 

7rA = 0, trb = 1 (2) 

where 7r = (7rl,' •• , 7rm) is the vector of variables in the alternate system. The classical theorem of alternatives 
states that (1) has no solution x iff (2) has a solution 7r. 
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Both these systems can be processed simultaneously by the Gauss-Jordan (GJ) method applied on system 
(1) (see [8]). For this, it is convenient to record (1) in the form of a detached coefficient tableau. The GJ method 
tries to carry out a GJ pivot step in each row of this tableau, with the aim of creating a unit submatrix of order 
m on its left hand side. In this process, at each stage, each row in the current tableau will always be a linear 
combination of rows in (1). For each row vector in the current tableau, the coefficients in this linear combination 
will be denoted by a row vector Jt = (Jtl,"" Jtm). These Jt-vectors for the various rows in the current tableau 
are stored and updated under a "memory matrix". These Jt-vectors for the various rows in the original tableau 
are the unit vectors in Rm. These are recorded in the original tableau before beginning the application of the 
GJ method. 

~e mmory atrix· Original tableau 

Jtl Jt2 Jtm Xl X2 Xn 

1 0 0 all al2 ain bl 

0 1 0 a2I a22 a2n b2 

0 0 1 amI a m 2 a mn bm 

.. Coeff. vector for expressing the row on the right 
of this memory matrix as a linear combination 
of rows in the original tableau. 

Carrying out all the computations involved in the pivot steps, also on the columns of the memory matrix, 
updates it. Here is a summary of the method. 

1. 	 Select the order in which rows 1 to m in the tableau are to be chosen as pivot rows. 

2. 	 General Step: Suppose row r is the pivot row for the pivot step in the present tableau. Let art, ... , arn , br 

be the coefficients of the variables and the updated RHS constant in row r in the present tableau. 

2.1. 	If (ar I, ... ,arn ) i= 0 select a variable X j for a j such that ar j i= 0 as the basic variable in row r, and 
the column of Xj in the present tableau as the pivot column, and perform the GJ pivot step. If row r 
is the last pivot row in the selected order, go to 3 if 2.3 given below has never occurred so far, or to 4 
otherwise. If row r is not the last pivot row in the selected order, with the resulting tableau go back 
to 2 to perform a pivot step with the next pivot row in the selected order. 

2.2. 	If (arl,' .. ,arn ) = 0 and br = 0, this row is called the "0 = 0" equation. This indicates that the 
constraint in the original system (1) corresponding to this row is a redundant constraint and can be 
eliminated without changing the set of solutions. 

If row r is the last pivot row in the selected order, go to 3 if 2.3 given below has never occurred so far, 
or to 4 otherwise. If row r is not the last pivot row in the selected order, with the present tableau go 
back to 2 to perform a pivot step with the next pivot row in the selected order. 

2.3. 	If (a;l,'" ,arn ) = 0 and br i= 0, this row is called the "0 = a" equation for a = br i= 0, or an 
inconsistent or infeasible equation. In this case the original system (1) has no solution. 


If (PI,.'" Pm) is the row in the memory matrix in row r in the present tableau, then 

7t = (l/br )(Pt, ... ,Pm) is a solution of the alternate system (2). 


If it is only required to either find a solution to (1) or determine that it is inconsistent, the method 
can terminate here. 
But to carry out infeasibility analysis, the method moves to 4 if row r is the last pivot row in the 
selected order, or to 2 with the present tableau to perform a pivot step with the next pivot row in the 
selected order. 
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3. 	Make all the nonbasic variables in the final tableau equal to 0, and the basic variable in each row equal to 
the updated RHS constant in that row in the final tableau. This is a basic solution to (1), terminate. 

4. 	 Infeasibility Analysis: In this case the original system (1) is infeasible. 

One possible way to make the system (1) feasible is: 

for each i = 1 to m such that the ith equation in the final tableau is "0 = bi" for some bi f:= 0, 
change bi in the original system (1) to bi - bi = bi 

and leave the other bi in the original system (1) unchanged. This change of b to b in (1) converts all ' 

inconsistent equations "0 = bt " for bt f:= 0 in the final tableau into redundant equations "0 = 0". 


A basic solution of the modified system Ax = is obtained by making all the nonbasic variables in the b' 
final tableau equal to 0, and the basic variable in each row equal to the updated RHS constant in that row 
in the final tableau. Terminate. 

As a numerical example, we consider the following system. 

Original system 

Xl X2 X3 X4 X5 X6 X7 b b' 

1 0 1 -1 1 1 0 -7 -7 
0 -1 2 1 -1 0 1 8 8 

1 -2 5 1 -1 1 0 9 9 

1 1 0 2 1 0 ° 10 10 

3 0 5 5 1 1 2 35 29 

° ° 1 3 1 ° 0 15 15 

3 0 7 11 3 1 2 55 59 

is the modified RHS vector found under the b' 
method to make original system feasible. 

The method is carried out by choosing rows 1 to 7 in natural order as pivot rows. The following final 
tableau is obtained. 

Memory matrix Final tableau 

1'1 1'2 1'3 1'4 1'5 1'6 1'7 BV Xl X2 X3 X4 X5 X6 X7 b 

-3 -4 0 4 ° -5 0 Xl 1 0 0 0 -8 -3 4 18 

5 4 0 -5 0 7 0 X2 0 1 0 0 13 5 -6 -38 

-1 -2 1 ° ° 0 0 0 0 0 0 ° 0 0 0 

3 3 ° -3 0 4 0 X3 0 0 1 0 7 3 -3 -15 

-1 2 0 -2 1 0 0 0 0 ° 0 ° 0 0 6 

-1 -1 ° 1 0 -1 0 X4 ° ° ° 1 -2 -1 1 10 

-1 2 ° -2 0 -2 1 ° 0 ° 0 ° 0 0 -4 

"BV" is basic variable selected in row 

The first inconsistent equation to be obtained in the method is the one in row 5 of the final tableau, 
"0 = 6" , it leads to the solution: 

1r = (-1,2,0, -2, 1,0,0)/6 
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of the alternate system. The second inconsistent equation to be obtained is "0 = -4" in the last row of 
the final tableau; it leads to the solution: 

1r = (1,-2,0,2,0,2,-1)/4 

of the alternate system. 


One way of making the original system feasible that is revealed by the information in the final tableau is 

to change b to b' (i.e., change b5 from 35 to 29, and b7 from 55 to 59). This leads to a modified system for 

which a basic solution is x = (18, -38, -15, 10,0,0, O)T. 


Here we changed the values of two RHS constants to make the system feasible, we decreased b5 from 35 to 

29, and increased b7 from 55 to 59. This is only one possible modification of the original b vector to make 

the system feasible, not necessarily the best. Models for determining the best possible change in the RHS 

constants vector to make the original infeasible system into a feasible one are discussed next. 


1.2 Models for Finding Optimal Changes in RHS Constants Vector to Make System Feasible 

In the example discussed above, we processed the rows in the order from top to bottom as pivot rows, and 
ended up with two inconsistent equations "0 = bt " for some bt i:- 0, and one redundant equation "0 = 0" in the 
final tableau. Does the number of inconsistent equations in the final tableau depend on the order' in which the 
rows of the tableau are selected as pivot rows? It does. Consider the following example. 

Original system 

Xl X2 X3 b Eq. no. 

1 ° ° 1 1 

° 1 ° 1 2 

° ° 1 1 3 

1 1 1 2 4 

1 1 1 3 5 

1 1 1 3 6 

Here are the final tableaus under different orders of selection of rows in the tableau as pivot rows. 

Final tableau when eqs. used 
as pivot rows in order 1 to 6 

Xl X2 X3 RHS Eq. no. 

1 ° ° 1 1 

° 1 ° 1 2 

° ° 1 1 3 

° ° ° -1 4 

° ° ° ° 5 

° ° ° ° 6 

No. inconsistent equations found = 1 
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Final tableau when eqs. used as 
pivot rows in order 4, 1, 2, 3, 5, 6 

Xl X2 X3 RHS Eq. no. 

1 0 0 1 4 

0 1 0 1 1 

0 0 1 0 2 

0 0 0 1 3 

0 0 0 1 5 

0 0 0 1 6 

No. inconsistent equations found = 3 

So, if we selected the equations in this system in the order 1 to 6 as pivot rows in the GJ method, we have 
to decrease just one RHS constant (the 4th in the original system) by one to make the system feasible by the 
above procedure. Changing the pivot row order to 4, 1, 2, 3, 5, 6, requires decreasing three RHS constants (the 
last three), each by one, to make the system feasible by the same procedure. 

What is the Maximum Number of Inconsistent Equations That Can Be Discovered? 

When system (1) is solved by the GJ method, and system (1) is infeasible, the method will find at least one 
inconsistent equation of the form "0 = bt " for some bt -I 0 before it terminates. Also, we have seen that the total 
number of such inconsistent equations found under the method may depend on the order in which rows of the 
system are selected as pivot rows. What is the maximum possible number of such inconsistent equations? 

In the GJ method, each time a new inconsistent equation of the form "0 = bt " for some bt -lOis encountered, 
the method generates a new solution for the alternate system (2) from this row. If this equation is from row 
r of the current tableau, then the variable 1fr in (2), which was 0 in all the solutions of (2) generated in the 
method in the past, has a nonzero value in the solution generated from this row. This implies that the set of 
all solutions of (2) generated in the method, which is the same as the number of inconsistent equations discovered 
in the method, is :::; 1 + the dimension of the set of solutions of (2) = 1 + m- rank(A:b) =m- rank(A). 

Models for Optimum Modification of the b- Vector 

In practical applications, each equation in the model represents a constraint that is expected to be satisfied; 
it usually corresponds to a contractual obligation agreed upon. In American business, contractual obligations 
can only be broken at the expense of paying a certain penalty. The amount of this penalty can vary from a small 
amount to an enormous sum depending on the importance of the contractual obligation. 

As an example, in 1999, a cable TV company, Mediaone, signed a contract to merge with another company, 
Comcast. After the signing of this contract, Mediaone received another merger proposal from AT&T on better 
terms, but in order to break the agreed-upon merger contract with Comcast, it had to pay Comcast a penalty 
of more than a billion dollars. In American business culture, such penalties for breaking all types of contracts 
are already an established business practice, and this practice is becoming widely adopted all over the world. 

We consider models for changing the inconsistent system Ax = b where A is of order m x n, by changing the 
b-vector. 

The Smallest Changes Model: This model for modifying the inconsistent system "Ax = b", seeks a modifi
cation of the RHS constants vector b = (bi) to b' = (bD to make the system feasible with the smallest number of 
changes, i.e., to minimize the number- of i for which bi -I b~. 
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The Smallest Penalty Model: If the cost of changing bi is the penalty (or fixed cost) Ii, which is known for 
all i, this model seeks to find the set of bi to change, to minimize the associated sum of penalties for making the 
system feasible. Actually the smallest changes model is a special case of this model obtained by taking Ii = 1 
for all i. These two models are suitable to use if the penalties are fixed costs that only depend on the number of 
changes and not on the amount of each change. 

The Smallest Variable Cost Model: In some applications, the cost of change may be a variable cost depending 

on the amount of each change, but not on the number of changes. In this case let: 


o~ ct = cost per unit increase in the value of bi 

o~ ci = cost per unit decrease in the value of bi. 

This model seeks to change biS to make the system feasible so as to minimize the total variable cost of all the 

changes. It leads to the linear program (LP) 


Minimize L
m 

(ci ut + ctui) 
i=l 

subject to Ax + u+ I - u-I = b 

u+,u- > 0 

where u+ = (ut, ... , u;tJT , u- = (u1, ... , u;;:'JT , and I is the unit matrix of order m. 

This model was introduced under the name elastic programming by G. Brown and G. Graves in a talk they 
gave at an ORSA-TIMS Conference in 1977, and discussed more fully by Chinnek and Dravineks [2]. They 
call the variables ut, ui elastic variables since they allow the constraints to "stretch" to make the feasible 
region nonempty. This LP has an optimum solution. If (x,u+,u-) is an optimum solution of this LP, then 
b' = b - u+ + u- is the optimum modification of b under this model; and x is a feasible solution of the modified 
model. 

So, this variable cost model can be solved very efficiently by linear programming techniques only. 

The Smallest Variable Cost Model with Bounds: This is the same as the above model, except that bounds 

are imposed on the changes. For i = 1 to m, let 


Pi ~. 0 denote the maximum possible increase allowed in the value of 

the RHS constant bi 


qi ~ 0 denote the maximum possible decrease allowed in the value of 

the RHS constant bi . 


If some of the RHS constants bi cannot be increased (decreased) from their present values, then we set Pi =0 
( qi = 0), and if the value of bi cannot be changed at all, we set both Pi, qi equal to zero, for those i. This model 
seeks to change biS subject to the bounds given above, to make the system feasible so as to minimize the total 
variable cost of all the changes. It leads to the linear program (LP) 

m 

Minimize L (ci ut + ctui) 
i=l 

subject to Ax + u+ I - u- I = b 

o~ ut ~ qi, 0 ~ ui ~ Pi, for i = 1 to m 

where I is the unit matrix of order m. 
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If this LP is infeasible, it means that the bounds specified for the changes are too tight to make the original 
system of equations consistent. 

On the other hand, if (x, u+, u-) is an optimum solution of this LP, then b = b - u+ + u- is the optimum' 
modification of b under this modelj and x is a feasible solution of the modified model. 

1.3 Results on the Smallest Penalty Models 

In order to find the change of b to b' that makes the inconsistent system Ax = b feasible with the smallest 
number of changes, we need to determine the order in which the rows in the system have to be chosen as pivot 
rows in the GJ method, to get the smallest number of inconsistent equations in the final tableau. We will prove 
that this problem is NP-hard. 

Theorem 1: Consider the inconsistent system of linear equations, Ax = b. Determining the smallest number 
of changes in the b-vector that will make this system feasible is NP-hard. 

Proof We review some definitions first. Let D be a matrix of order m x n and rank r such that the system 

Dx=d (3) 

is feasible. Let D.j denote the jth column vector of the matrix D. A solution x = (Xj) of this system is said to 
be a basic solution if {D.j : j such that xi f:. O} is linearly independent. So, the number of basic solutions of (3) 

iS S (:). 

A basic solution of (3) is said to be a 

nondegenerate basic solution if the number of nonzero variables in it is r 

degenerate basic solution if this number is ~ r - 1. 

The solutions of (3) with the smallest number of nonzero variables are always basic solutions of (3). 

Let M ~ 2, N ~ 2 be positive integers. Let {all.'" aM}, {bI, ... , bN} be two sets of positive integers 
satisfying the balance condition al + ... + aM =bl + ... + bN. Consider the following system of M +N -1 +MN 
constraints in M N double subscripted variables xii' i = 1 to M, j = 1 to N. 

i = 1, ... ,M } 
(4) 

j = 1, .. . ,N-1 

Xii =0, i =1, ... , Mj j = 1, ... , N } (5) 

(4) is the system of equality constraints in a balanced transportation problem, it is of full row rank. When 
(4) is solved by the GJ method, the final tableau will have a basic variable selected in each row, and the updated 
RHS constant in it becomes the value of that basic variable in the corresponding basic solution for (4). 

Since (5) requires all the variables Xii to be zero, the combined system (4), (5) is inconsistent. Also, it is clear 
that (4), (5) can be made consistent oy changing M +N - 2 or less RHS constants iff (4) has a degenerate basic 
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solution. However, it has been shown in (CKM [9]) that checking whether (4) has a degenerate basic solution 
is NP-hard. So checking whether (4), (5) can be made consistent by changing the values of M + N - 2 or less 
RHS constants is NP-hard. This implies that the problem of finding the smallest number of RHS constants in a 
general inconsistent system of linear equations, to make it consistent, is NP-hard. • 

Even though the smallest changes model is NP-hard, quite often, optimum solutions of the smallest variable 
cost model turn out to be also optimal to the smallest changes model. So, a reasonable heuristic approach to 
solve the smallest penalty model is to take as an approximate solution for it the optimum solution of the smallest 
variable cost model with both ct, ci equal to IdSi, where Si is an estimate of the range of change of bi to achieve 
feasibility. 

2 INFEASIBILITY ANALYSIS FOR SYSTEMS OF LINEAR CONSTRAINTS INCLUDING INEQUALITIES 

For the same reasons as mentioned in Section 1, it is hard to make changes in the coefficient matrix of 
the constraints in systems including inequalities. Hence, here also, we will only consider changes in the RHS 
constants that will modify an infeasible system into a feasible one. 

Models of systems of linear constraints including linear inequalities, usually involve nonnegativity constraints 
on variables. Nonnegativity constraints appear naturally in models involving economic activities, since these 
can only occur at nonnegative levels. These nonnegativity constraints of the form: x ~ 0, have the important 
property that it is impossible to decrease the RHS constants in them. Hence, in trying to modify an infeasible 
model involving linear inequalities into a feasible one by changing some RHS constants, the following features 
may be specified: some RHS constants cannot be decreased, some others cannot be increased, while some others 
cannot be changed at all. Also, any possible change may be limited by a practical bound. 

Let Ai., bi denote the row vector of the coefficients of the variables, and the RHS constant in the ith constraint. 
We consider the system in the following general form (clearly, all the inequality constraints can be expressed in 
the ~ form). 

= bi, i = 1, ... ,m 
Ai. X (6){ ~ bi, i =m + 1, ... ,m +p. 

Any nonnegativity constraints on individual variables are included among the p inequalities in the above 
model. Let b= (bi ). 

First we consider the simple case when all changes in the value of any bi are possible. 

The alternate system for (6) is 

L:m +p 
i=l 7ri A i. = 0 

+pL:m b > 0 (7)i=l 7ri i 

7ri > 0 i =m+1, ... ,m+p 

where 7r = (7rl' •.. , 7rm+p) is the vector of variables in the alternate system. The theorem of alternatives for (6) 
states that (6) has no feasible solution x iff (7) has a feasible solution 7r. 

To find a feasible solution for (6), we solve a Phase I problem that has additional variables u+ = (ui, ... ,u~)T, 
u- = (u1, ... ,u;;JT , t = (tm+l, . .. , tm+p)T called artificial variables; which is a linear program. 
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m m+p 

Minimize w =L(ut + ui) + L ti 
i=l i=m+l 

subject to Ai.X + ut - ui = bi , i = 1, ... ,m 

Ai.X + ti > bi , i =m + 1, ... ,m + p 

> ° for all i. 

If (x, t, u+, u-) is an optimum solution, and ill is the optimum objective value in the Phase I problem, then 
x is a feasible solution for (6) if ill =0. 

If ill > 0, then (6) is infeasible. In this case one possible way to make the system (6) feasible is 

for each i =1, ... , m, define b~ =bi - (ut - ui) 
for each i = m + 1, ... , m + p, define b~ = bi - ti 

and let b' = (bD. Changing the original RHS constants vector b to b' converts (6) into a feasible system, and x 
is a feasible solution of the modified system. This is only one possible modification of the originallrvector to 
make the system feasible, not necessarily the best. 

If ill > 0, let 1f = (1fl,"" 1fm +p ) be an optimum dual solution for the Phase I problem. Then, 1fb > 0, and 
therefore 1f is a feasible solution of the alternate system (7). 

2.1 Finding All (Minimal) Infeasible Subsystems 

When (6) is infeasible, there is often a mathematical interest in identifying a subset of constraints in (6) which 
by itself is infeasible. Such an infeasible subset can be found from any feasible solution 7r = (7rl,"" 7rm+p) for 
the Phase I dual satisfying trb > 0, Murty [5J. For any such dual feasible 7r = (7ri) satisfying trb > 0, the set of 
constraints with indices in the set {i : 1 ~ i ~ m +p is such that 7ri ::f O} is infeasible. Using this and the Phase I 
dual, one can generate all subsets of constraint indices that are infeasible. 

Also, when (6) is infeasible, the subset of indices of nonzero variables in an extreme point 7r of the Phase I 
dual satisfying trb > 0, is a minimal infeasible (or irreducibly inconsistent) subset of constraints of (6) (a set of 
constraints constitutes a minimal infeasible or irreducibly inconsistent system if it is itself infeasible, but every 
proper subsystem of it is feasible). Hence from the Phase I dual, we can also derive all minimal infeasible subsets 
of constraints in (6) 

When (6) is infeasible, the problem of finding the smallest cardinality subset of constraints in (6) which is 
infeasible is also of mathematical interest. By the above, this is equivalent to the problem of finding the most 
degenerate basic solution of the Phase I dual satisfying trb > 0, which is NP-hard from the results in [9, 10J. 

2.2 Optimum Modification of the b Vector to Make An Infeasible System Feasible 

Every linear equation can be expressed as a pair of linear inequalities. Using this and the result in Theorem 1, 
we can conclude that when (6) is infeasible, the problem of making the smallest number of changes in (bi ) that 
will modify (6) into a feasible system is NP-hard. 

Suppose (6) is infeasible. We will now consider the most practically useful model for modifying the lrvector 
in it optimally to make the system feasible. It is the smallest variable cost model with bounds, that leads to a 
type of Phase I problem with bounds. 
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For i = 1 to m, let 

Pi 2:: 0 	 denote the maximum possible increase allowed in the value of 

the RHS constant bi 


qi 2:: 0 	 denote the maximum possible decrease allowed in the value of 

the RHS constant bi 


o::; ct 	 denote the cost per unit increase in the value of bi 

o::; ci 	 denote the cost per unit decrease in the value of bi . 

If some of the RHS constants bi for 1 ::; i ::; m cannot be decreased (increased) from its present values we set 
qi =O(Pi =0), and we set both qi =Pi =0 if the value of bi cannot be changed at all. '" 

For i = m + 1 to m + p, notice that the ith constraint in (6) becomes tighter as bi is increased, so the 
modification in bi that is needed to make the system feasible is to reduce it as defined by Chinnek and Dravineks 
[2J. SO, for these i we only consider decreasing these bi. Hence, for m + 1 ::; i ::; m + p, let 

qi 2:: 0 	 denote the maximum possible decrease allowed in the value of 

the RHS constant bi (qi is set at 0 if bi cannot be decreased) 


o::; ci 	 denote the cost per unit decrease in the value of bi . 

This model leads to the linear program: 

m 	 m+p 

Minimize w = l)ctui + ciut) + L citi 
i=l 	 i=m+l 

subject to Ai.x + ut - ui = bi , i =1, ... ,m 

Ai.x + ti 2:: bi , i = m + 1, ... ,m + P 

o::; ut ::; qi, 0::; ui ::; Pi, 0::; ti ::; qi for all i. 

If this LP is infeasible, it means that the bounds specified for the changes are too tight to make the original 
system feasible. 

On the other hand, if (x, '11+, '11-, l) is an optimum solution of this LP, then b' = (bi) where: 

, {bi - ut + ui, for i = 1 to m 
b· = 

t bi - fi' for i = m + 1 to m + P 

is an optimum modification of b under this model; and x is a feasible solution of the modified model. 

3 OTHER MATHEMATICAL RESULTS 

3.1. Consider the smallest changes model for making the infeasible system "Ax = b" into a feasible one. Let 
A be of order m x n and rank r. Clearly r < m. When the OJ method discussed in Section 1.1 is applied to 
the system "Ax = b", exactly r pivot steps can be carried out, by the end of which all the remaining m - r row 
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vectors in A would become O-vectors. So, the smallest number of changes in the b-vector needed to make the 
system "Ax = b" feasible is ~ m - r. 

For i = 1 to m, let ti denote the change in bi to make the system feasible. Let t = (tl,"" tm ). Then x, a 
feasible solution of the modified system, and t, together satisfy: 

Ax -	 It = b, (8) 

where I is the unit matrix of order m. The smallest changes model is equivalent to finding a feasible solution 
(x, t) with t having the smallest number of nonzero components. 

Consider the case in which b is non degenerate in (8). Then any sequence of pivot steps performed on (8) 
will always keep every component of the updated RHS vector nonzero. Hence, in every basic solution of (8) 
corresponding to a basic vector with the maximum possible number, r, of Xj variables as basic variables, exactly 
m - r variables from the vector t will be nonzero. This implies that in every solution of (8), at least m - r 
variables from t will be nonzero. These facts imply the following in this case: 

(i) 	When b is non degenerate in (8), the number of inconsistent equations of the form 0 = a for some a ::j:. 0 
discovered in the GJ method applied on "Ax = b" is always m - r, independent of the order in which the 
rows are selected as pivot rows. 

(ii) 	In this case the smallest number of changes to be made in the b-vector to make the system "Ax = b" feasible 
is m - r. 

(iii) 	The infeasibility analysis step in the GJ method discussed in Section 1.1 always leads to a modification of 
the RHS vector in "Ax = b" to make the system feasible with the smallest number of changes, independent 
of the order in which rows are selected as pivot rows in the method. 

It is well known that in a probabilistic sense, most of the column vectors bERm will be nondegenerate in 
system (8). Thus even though in the worst case the smallest number of changes model is hard, for most of the 
systems the solution found by the GJ method of Section 1.1 will be optimum for it. Unfortunately, practical use 
of this argument is made difficult because checking whether a given b-vector is nondegenerate in (8) is possibly 
a hard problem itself. 

3.2. When a system of linear constraints is infeasible, a problem of mathematical interest is to find a small
est cardinality subset of constraints whose deletion from the system will make the remaining system feasible. 
Chakravarti [I} shows that this problem is NP-hard even when all the constraints in the system are equations 
(actually our Theorem 1 in Section 1.3 also follows from the elegant proof of this result of Chakravarti, through 
0-1 integer programming). In [3] it has been shown that this problem can be solved in polynomial time if the 
number of variables in the system, n, is fixed; however the complexity of this algorithm grows exponentially with 
n. 

3.3. Consider the system of linear constraints (6) containing m + p constraints numbered 1, ... , m + p. Let 
M = {I, ... , m + p}, the index set of all the constraints in the system. Let b E Rm+p be the RHS constants 
vector in the system. Suppose system (6) is infeasible. Let 

IS(b) = Class of all subsets of M which form infeasible subsystems, 


FS(b) = Class of all subsets of M which form feasible subsystems. 
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In Section 2 we have seen how the class IS(b) can be completely determined from the Phase I dual. The class 
IS(b) is closed under the operation of taking supersets (i.e., if D E IS(b), then any E satisfying DeE c M is 
also in IS(b». Similarly, the class FS(b) is closed under the operation of taking subsets. 

The classes IS(b), FS(b) are related. For example, if D is a minimal set in the class IS(b), then all proper 
subsets of D are in the class FS(b); and if E is a maximal set in the class FS(b), then all strict supersets of E 
(i.e., sets G :f. E satisfying E C GeM) are in IS(b). Using these properties, one can derive the class FS(b) 
from the class IS(b) by the following: it is the union of the classes of all proper subsets of minimal sets in the 
class IS(b). Therefore, if 

a = smallest cardinality of a subset in the class IS(b) 

f3 = largest cardinality of a subset in the class FS(b) 

then we have f3 ~ a-I, and in fact 

f3 = -1 + maximum cardinality among minimal sets in the class IS (b). 

It is interesting to study how the class IS(b) varies as b varies over the nonconvex set K = set of all RHS 
constants vectors in (6) for which (6) is infeasible, while the confficient matrix in (6) remains unchanged. 

3.4. When a system of linear constraints is infeasible, another problem of mathematical interest is to find a 
partition of the constraints in it into the smallest number of subsystems such that each subsystem is feasible. Let 
us consider two special cases of this problem, one dealing with equality constraints only, and the other dealing 
with inequalities only. 

Problem 1: Given an infeasible system of constraints 

(9) 

find a partition M I , ... ,Mr of M = {I, ... , m} into the smallest number r of subsets such that 

is feasible for all k = 1 to r. 


Problem 2: Given an infeasible system of constraints 


(10) 

find a partition PI"'" Ps of P = {I, ... ,p} into the smallest number s of subsets such that 

is feasible for alIi =1 to s. 

A heuristic approach for solving these problems is the following greedy scheme. 
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The greedy scheme: Find a maximum cardinality (or at least a maximal) feasible subset of the constraints. 
Make this one of the subsets in the partition. Peel it off and repeat the same process with the remaining system 
of constraints. 

Even if a maximum cardinality feasible subset of constraints is identified in each stage of this greedy scheme, 
we cannot guarantee that the partition generated is optimal, as the following example involving 8 equality 
constraints in two variables Xl, X2 illustrates. The original system is: 

Constraint Constraint Constraint constraint 
number number 

Xl = 1 1 Xl + X2 = 10 5 

Xl =2 2 Xl + 2X2 =15 6 

Xl =3 3 2XI + X2 =15 7 

Xl =4 4 Xl + 3X2 =20 8 

The maximum cardinality feasible subset of constraints in the original system is {5, 6,7, 8}, and the greedy 
scheme generates the partition {5, 6, 7,8}, {I}, {2}, {3}, {4} consisting of 5 feasible subsystems. However, the 
optimal partition {I, 5}, {2, 6}, {3, 7}, {4, 8} consists of only 4 subsystems. 

We have the following result. 

Lemma: Problem 1 is NP-hard. 

Proof. Let al,'" ,an ,/3 be positive integers satisfying /3;f (al + . .. +an )/2. Consider SSP (subset sum problem) 
of finding a solution to 

n

2: a jXj = /3 
j=l 

Xj E {O, I} for all j 

which is a well known NP-hard problem. Let a: = Ej=l aj - /3. Now consider the system of 2n + 2 equations: 

n

2: ajXj = /3
j=l 

n

2: a jXj = a: 
j=l 

Xj = 0 j = 1, ... ,n 


Xj = 1 j =1, ... ,n. 


This system can be partitioned into exactly two subsystems both of which are feasible iff SSP has a solution. 
Since SSP is NP-hard, this shows that Problem 1 is NP-hard too.• 
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It is well known that the system of equality constraints (9) is equivalent to the following system of inequality 
constraints (11): 

Ai. X > bi i= 1, ... ,m }. (11) 
-Ai.X > -b j i = 1, ... ,m. 

However, Problem 1 is not equivalent to Problem 2 applied to the inequality system (11). To see this, let 
a f: 0, a E Rn be a row vector, and let b1 < b2 < ... < bk be scalars. Consider the following systems of 
constraints: 

(12) 


ax ~ bk 
(13) 

-ax ~ -b1 

-ax ~ -b2 

Systems (12) and (13) are equivalent. Problem 1 for the infeasible system of equations (12) leads to an 
optimum partition with k subsystems each one containing exactly one constraint from (12). However, Problem 2 
for the infeasible system of inequalities (13) leads to an optimum partition of (13) into exactly two feasible 
subsystems. 

It is not known whether Problem 1 can be posed as a special case of Problem 2. Also not known is whether 
Problem 2 is NP-hard. 

It would be interesting to study whether Problems 1, 2 can be solved efficiently for systems involving two 
variables only. 

REFERENCES 

[lJ 	 N. Chakravarti, "Some Results Concerning Post-Infeasibility Analysis", European Journal of Operational Research, 

73 (1994), pp. 139-143. 


[2] 	 J.W. Chinnek and E.W. Dravineks, "Locating Minimal Infeasible Sets in Linear Programming", ORSA Journal on 

Computing, 3 (1991), pp. 157-168. 


[3] 	 J. Matousek, "On Geometric Optimization with Few Violated Constraints", Discrete Computational Geometry, 14 

(1995), pp. 365-384. 


[4] 	 K.G. Murty, Operations Research: Deterministic Optimization Models. Englewood Cliffs, NJ: Prentice Hall, 1995. 

[5] 	 K.G. Murty, Linear Programming. New York: Wiley, 1983. 

June 2000 	 The Arabian Journal for Science and Engineering, Volume 25, Number JC. 17 



K.G. Murty, S.N. Kabadi, and R. Chandrasekaran 

[6] 	 G.M. Roodman, "Post~lnfeasibility Analysis in Linear Programming", Management Science, 23 (1979), 
pp. 917-922. 

[7] 	 G.B. Dantzig, Linear Programming and Extensions. Princeton, NJ: Princeton University Press, 1963. 

[8] 	 K.G. Murty, Self-Teaching Webbook for Computational and Algorithmic Linear Algebra and n-Dimensional Geom
etry. Sophomore level webbook, Dept. IOE, University of Michigan, Ann Arbor, MI-48109-2117, USA. See web 
page: http://www-personal.engin.umich.edu./ ......murty/ 

[9] 	 R. Chandrasekaran, S.N. Kabadi, and K.G. Murty, "Some NP-Complete Problems in Linear Programming", OR 
Letters, 1 (1982), pp. 101-104. 

[10] 	 K.G. Murty, "On the Complexity of a Special Basis Problem in LP", Discrete Applied Mathematics, 47 (1993), 
pp. 181-185. 

Invited Paper Received 16 April 2000. 

18 The Arabian Jouma/for Science and Engineering, vblume 25, Number IC 	 June 2000 

http:http://www-personal.engin.umich.edu

