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ABSTRACT 

00 
Let D be abounded domain in the complex plane. Let H (D) be the Banach 

algebra of bounded analytic functions on D. Let ~ be a regular Borel measure on the 
ex> 

maximal ideal space M(D) of H (D). 
- 1\ 

Define J.! on D by ~(E) = Jl(Z-1 (E) ) for EcD, where Z is the coordinate function 
1\ 

on D and Z is its Gelfand transform. 

In this paper we prove that if ~ is orthogonal to Hex>(0), ~#O, the closed support 
1\ 

of ~ is contained in M(O) \ Z-l (D) and Jl is completely singular then Jl=O'. 

INTRODUCTION 

Let D be a bounded domain in the complex plane 

¢' let Hex>(D) be the Banach algebra of bounded analy
tic function on D. M(O) will denote the maximal ideal 

ex> .1\ 
space of H (D). Z is the Gelfand transform of the 

1\ 
function Z defined by Z(A) = A, for all A in O. Also f 

ex> 
denotes the Gelfand transform of f for fEH (0). 

1\ 
It was shown in [3] that Z (M(O» = 0 and 

Z-1(0) is homeomorphic to O. MA(0) = Z-l {A} 

is the fiber over A, for A E O. See [3] for detailed 
description of this algebra. 

For a compact set Kc¢, R(K) denotes the algebra 
of all functions in C(K) which can be approximated 
uniformly on K by rational functions with poles off K. 

All measures considered in this paper are regular 
Borel measures. 

For a measure ~ on M(O) define ~ on 0 by ~(E)= 

1'(~-1 (E» so I fdit = Ifo2rl1' for all continuous 

D M(D) 

functions on D. 

Lemma 1: 
. ex>

If JlIS a non-zero measure on M(O) and Jl .l H (0) 

i.e. Ifdl' = 0 for every fEH "',,<D),then I'.L R(D). 

Proof: 
A. 

Claim foZ = f, for every f E R(O), letq,EM(O) and 
assume q,EM then (f02)(q,) = f(Z(q,» = f(A) but f is

A 

analytic at A so [I] f(A) = f(<I» so ~fdl' = I f02dl' = 

"IT M(D) 

r fd~ = 0 for all f E R(O), so ;.lR(D).JM(D) 

Definition I : 

Let Jl be a finite measure on ¢ with compact 
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support, the Cauchy transform of Il is defined by 

Il*(w) = rdJ.l (z) Clearly J.l* is an analytic function Jz w 

off the closed support of Il. 


Notations: ~pp Il denotes the closed support, of J.l, 
and aD = D\ D. 

Theorem A: 

Let Il be a measure on a compact subset K of C 
then Il* vanishes off K if J.l.lR(K). 

Proof: 

The proof of this theorem is given in reference 
[2], page 46. 

Lemma 2: 

Let J.l be a non-zero measure on D, J.l.l R(D) and 

supp J.l coD then 3 zoe D such that 1l*(Z) ¥: O. 

Proof: 

Assume J.l*(z)=O,for all zeD; since Il.lR(D), then 
by theorem A, 1l*(Z) = 0 for all z e C \ D so J.l*(z)=0 
for all z ria D, again using theorem A, this implies 
Il.l R(oD) but [2], R(oD) = C(oD) hence J.l = 0, a 
contradiction. 

Corollary 1: 

For Il as in Lemma 1, 1l*(z)¥:O for all zeD, except 
at a discrete set in D. 

Proof: 

This is clear from the fact that J.l* is a nalytic in D. 

Definition 2: 

Let A be a function a~gebra on X, let 4> be a maxi
mal ideal in A, (or a non-zero complex-valued algebra 
homomorphism on A). A representing measure for 

c\> is a positive measure 11 on X, such that c\>(f)=) f dl1 

for all fe A. 

Definition 3: 

If J.lI' 112 are two measures on X, we say J.lI is 
absolutely continuous with respect to J.l2 if J.lI (A) = 0 
for each set A for which 11121 (A) = 0, we write J.lI ~J.l2 
where 11l2\ is the total variation of J.l2' 
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Theorem B: 

Let A be a function algebra on X, let 4> be a maxi

mal ideal in A, let J.l be a complex represe nting measure 

for 4>, then there exists a representing measure v for 

4> such that v ~J.l. 

Proof: 

The proof of this theorem is given in Reference [2], 
page, 33. 

Corollary 2: 

Let J.l be a non-zero measure on D. supp J.lC aD 
and Il.lR (D). Ifz e D with J.l* (z) ¥: 0 then 3 a 
representing measure Ilz for z such that J.lz ~Il· 

Proof: 

Let Zo eD, Il* (zo ) =F 0, then 11l*(z) I< 00 because 

supp J.l <a D. Let f be a rational function with poles 

off D, then f(z)-f(z) is also a rational function with 
z-z 

o 

poles off D. So 

fi(z) - fi(zo) 
-------- dJ.l(z) = 0, hence ) Z-Zo 

f(zo) = 	 __1 _ ( f(z) dJ.l(z) for all rational functions 
J.l*(z) Jz-zo 

f with poles offD. By taking limits we get 

f(Zo) = *(1 ) r f(z) dll (z) for all fe R(D).
Il Zo JZ-Zo 

So 1 dll(Z) is a 
1l*(Z) z-zo 

complex representing measure for Zo which is absolu
tely continuous with respect to J.l. Apply theorem B 
to get the required result. 

Definition 4: 

If Ill' J.l2 are two measures on X, we say III and J.l2 
are mutually singular if there exist two sets A and 
B in X such that X=A uB and IJ.lI I(A) = (J.l2' (B)=O, 
we write J.ll .1 1l2' 

Definition 5: 

Let A be a function algebra on X. For 4>e MA = 
the maximal ideal space of A, define M 4> to be the 



set of all representing measures for 4> . A measure p
on X is said to be completely singular if p-1. v, for every 

v e M4>, for every 4>e MA. 

Theorem: 
00 

Let p- be a non-zero measure on M(D), p-1.H (D) 

and supp p- c M(D) \ " Z-I (D). If p- is a completely 
singular measure, then J..l = 0. 

Proof: 

Assume p- ~ 0, by lemma 1, ; 1. R(D) and 

supp jicoD. By lemma 2, 3 Zo eo such that'ji*(zo) ~ ° 
oo

and lii'* (z )/< 00. If feH (D),then fez) f(zo) is also 
o 	 z - Zo 

00 
in H (D), considering its Gelfand transform, 

r f(4» - f (4) ) " 1
J Z(4)) - z: dJ..l=O, where 4>0 = Z- (zo) 


M(O)\O· 

and 0* = Z-l(D). 

So 	 r f(4)) dJ..l = f(4) 0) r dJ..l _ 
J2(4)) - Zo J Z(4)) - ZO 

M(D)\O· M(O) \0· 

f(~ ,) 1..~z, = f (~, ) ji> (z,) 

ao 
" 1 r f(4)) 00 

So f(4)o ) = jj*(zo) J Z(4))-zo dJ..l for all feH (D) 

M(D) \ 0 

dJ..l 
So v = -- -A-- is complex representing 

J..l*(zo) Z - Zo 
measure for 4>0 in H (D) and v~ J..l. Using theorem B, 

Waleed M. Deeb 

3 Yo 	 representing measure for 4> 0 such that v0 ~ v 
< < 	 J..l, so J..l is not completely singular . 

Corollary 3: 

If J..l is as in the theorem, then r (D) c supp J..l , where 

00 
r (D) is the Shilov boundary for H (D). 

Proof: 

From the theorem /f(z) I~c(z) Ilf 11-- for every 
suppJ..l, 

00 
fe H (D) and aUzEDsuch that J..l*(z) ~ 0, where e(z) 

is a 	constant, which depends on z, so If n(z) I= 
1 

If(z)ln~ c(z)ltflln-- Hencef(z) ~(z)]nllf\I __ 
supp J..l. supp J..l. 

If c(z) < 1 then fez) 	= 0, if c(z) ~ 1 then 

/ fez) I~ II f 11-- for every zeD with J..l* (z) =1= O. By 
supp J..l, 

Corollary 1, we havelf(z)1 ~ IIfli __for every zeD, 
so r (D) c S'ii'j)pji. supp J..l 
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