MEASURES ORTHOGONAL TO $H^{\infty}(D)$

Waleed M. Deeb

الخلاصة : لنفرض أن D مجال محدود في المستوى المركب. ولنفرض أن (D) H^{∞} لمثل جبريات بناخ للدوال التحليلية المحدودة المعرفة على D. ولنفرض أن (M (D) تمثل فراغ المثاليات العظمى . فاذا كانت µ مقياس بورلي معرفة على (M (D) فاننا نعرف المقياس µ على \overline{D} كما يلي ((E)=µ(Z⁻¹(E)) حيث $\overline{D} - 3$. في هذا البحث نبرهن على أنه اذا كانت µ عمودية على (D) M^{∞} و (D) $\hat{Z}^{-1}(D)$ M تحتوي على دعم µ المغلق وكانت µ تامة الانفراد فإن 0 = µ .

ABSTRACT

Let D be abounded domain in the complex plane. Let $H^{\infty}(D)$ be the Banach algebra of bounded analytic functions on D. Let μ be a regular Borel measure on the

maximal ideal space M(D) of H^{∞} (D).

Define μ on \overline{D} by $\mu(E) = \mu(\hat{Z}^{-1}(E))$ for $E \subset \overline{D}$, where Z is the coordinate function on D and \hat{Z} is its Gelfand transform.

In this paper we prove that if μ is orthogonal to $H^{\infty}(D)$, $\mu \neq 0$, the closed support of μ is contained in $M(D) \setminus \hat{Z}^{-1}(D)$ and μ is completely singular then $\mu = 0'$.

INTRODUCTION

Let D be a bounded domain in the complex plane \oint , let H^{∞}(D) be the Banach algebra of bounded analytic function on D. M(D) will denote the maximal ideal space of H^{∞}(D). \widehat{Z} is the Gelfand transform of the function Z defined by $Z(\lambda) = \lambda$, for all λ in D. Also \widehat{f} denotes the Gelfand transform of f for $f \in H^{\infty}(D)$.

It was shown in [3] that $\hat{Z}(M(D)) = \overline{D}_{and}$ $\hat{Z}^{-1}(D)$ is homeomorphic to D. $M_{\lambda}(D) = \hat{Z}^{-1}_{\{\lambda\}}$ is the fiber over λ , for $\lambda \in D$. See [3] for detailed

description of this algebra. For a compact set $K \subset \mathbf{C}$, $\mathbf{R}(K)$ denotes the algebra

of all functions in C(K) which can be approximated uniformly on K by rational functions with poles of f K.

All measures considered in this paper are regular Borel measures.

For a measure μ on M(D) define $\overline{\mu}$ on D by $\overline{\mu}(E) =$

$$\mu(\hat{Z}^{-1}(E)) \text{ so } \int_{D} f d\overline{\mu} = \int_{M(D)} f d\overline{\lambda} d\mu \text{ for all continuous}$$

functions on D.

Lemma 1:

If
$$\mu$$
 is a non-zero measure on M(D) and $\mu \perp H^{\infty}(D)$
i.e. $\int fd\mu = 0$ for every $f \in H^{\infty}(D)$, then $\overline{\mu} \perp R(\overline{D})$.

Proof:

Claim fo
$$\hat{Z} = f$$
, for every $f \in R(\overline{D})$, let $\phi \in M(D)$ and
assume $\phi \in M_{\lambda}$ then $(fo\hat{Z})(\phi) = f(\hat{Z}(\phi)) = f(\lambda)$ but f is
analytic at λ so [1] $f(\lambda) = f(\phi)$ so $\int fd\mu = \int_{M(D)} fo\hat{Z}d\mu =$

$$\hat{fd}\mu = 0 \text{ for all } f \in R(\overline{D}), \text{ so } \overline{\mu} \perp R(\overline{D}).$$

Definition 1 :

Let μ be a finite measure on \mathbf{C} with compact

^{*} Department of Mathematics, University of Petroleum and Minerals, Dhahran, Saudi Arabia

support, the Cauchy transform of μ is defined by $\mu^*(\omega) = \int \frac{d\mu(z)}{z-\omega}$ Clearly μ^* is an analytic function off the closed support of μ .

Notations: supp μ denotes the closed support, of μ , and $\partial D = \overline{D} \setminus D$.

Theorem A:

Let μ be a measure on a compact subset K of C then μ^* vanishes off K if $\mu \perp R(K)$.

Proof:

The proof of this theorem is given in reference [2], page 46.

Lemma 2:

Let μ be a non-zero measure on \overline{D} , $\mu \perp R(\overline{D})$ and supp $\mu \subset \partial D$ then $\exists z_{\circ} \in D$ such that $\mu^{*}(z_{\circ}) \neq 0$.

Proof:

Assume $\mu^*(z)=0$, for all $z\in D$; since $\mu \perp R(\overline{D})$, then by theorem A, $\mu^*(z) = 0$ for all $z \in C \setminus \overline{D}$ so $\mu^*(z)=0$ for all $z \notin \partial D$, again using theorem A, this implies $\mu \perp R(\partial D)$ but [2], $R(\partial D) = C(\partial D)$ hence $\mu = 0$, a contradiction.

Corollary 1:

For μ as in Lemma 1, $\mu^*(z) \neq 0$ for all $z \in D$, except at a discrete set in D.

Proof:

This is clear from the fact that μ^* is a nalytic in D.

Definition 2:

Let A be a function algebra on X, let ϕ be a maximal ideal in A, (or a non-zero complex-valued algebra homomorphism on A). A representing measure for ϕ is a positive measure μ on X, such that $\phi(f) = \int f d\mu$ for all $f \in A$.

Definition 3:

If μ_1 , μ_2 are two measures on X, we say μ_1 is absolutely continuous with respect to μ_2 if μ_1 (A) = 0 for each set A for which $|\mu_2|$ (A) = 0, we write $\mu_1 \ll \mu_2$ where $|\mu_2|$ is the total variation of μ_2 .

Theorem B:

Let A be a function algebra on X, let ϕ be a maximal ideal in A, let μ be a complex representing measure for ϕ , then there exists a representing measure ν for ϕ such that $\nu \ll \mu$.

Proof:

The proof of this theorem is given in Reference [2], page, 33.

Corollary 2:

Let μ be a non-zero measure on \overline{D} . supp $\mu \subset \partial D$ and $\mu \perp R$ (D). If $z \in D$ with $\mu^*(z) \neq 0$ then \exists a representing measure μ_z for z such that $\mu_z \ll \mu$.

Proof:

Let $z_{\circ} \in \overline{D}$, $\mu^{*}(z_{\circ}) \neq 0$, then $|\mu^{*}(z_{\circ})| < \infty$ because supp $\mu < \partial D$. Let f be a rational function with poles off D, then $\frac{f(z)-f(z_{\circ})}{z-z_{\circ}}$ is also a rational function with poles off D. So

$$\int \frac{f(z) - f(z_{\circ})}{z - z_{\circ}} d\mu(z) = 0, \text{ hence}$$
$$f(z_{\circ}) = \frac{1}{\mu^{*}(z_{\circ})} \int \frac{f(z)}{z - z_{\circ}} d\mu(z) \text{ for all rational functions}$$

f with poles off D. By taking limits we get

$$f(z_o) = \frac{1}{\mu^*(z_o)} \int \frac{f(z)}{z - z_o} d\mu(z) \text{ for all } f \in R(D).$$

So $\frac{1}{\mu^*(z_o)} \frac{d\mu(z)}{z - z_o}$ is a

complex representing measure for z_{\circ} which is absolutely continuous with respect to μ . Apply theorem B to get the required result.

Definition 4:

If μ_1 , μ_2 are two measures on X, we say μ_1 and μ_2 are mutually singular if there exist two sets A and B in X such that $X = A \cup B$ and $|\mu_1|(A) = |\mu_2|(B) = 0$, we write $\mu_1 \perp \mu_2$.

Definition 5:

Let A be a function algebra on X. For $\phi \in MA =$ the maximal ideal space of A, define M to be the set of all representing measures for ϕ . A measure μ on X is said to be completely singular if $\mu \perp \nu$, for every

$$v \in M_{\phi}$$
, for every $\phi \in MA$.

Theorem:

Let μ be a non-zero measure on M(D), $\mu \perp H^{\infty}(D)$ and supp $\mu \subset M(D) \setminus Z^{-1}(D)$. If μ is a completely singular measure, then $\mu = 0$.

Proof:

Assume $\mu \neq 0$, by lemma 1, $\overline{\mu} \perp R(\overline{D})$ and $\overline{\operatorname{supp} \overline{\mu}} \subset \partial D$. By lemma 2, $\exists z_o \in D$ such that $\overline{\mu}^*(z_o) \neq 0$ and $|\overline{\mu}^*(z_o)| < \infty$. If $f \in H^{\infty}(D)$, then $\frac{f(z) - f(z_o)}{z - z_o}$ is also in $H^{\infty}(D)$ considering its Galfand transform

In A (D), considering its Gehand transform,

$$f(\phi) - f(\phi)$$

$$\int \frac{I(\psi) - I(\psi_o)}{Z(\phi) - z_o} d\mu = 0, \text{ where } \phi_o = \hat{Z}^{-1}(z_o)$$

M(D)\D*

and $D^* = Z^{-1}(D)$.

So
$$\int \frac{f(\phi) d\mu}{\hat{Z}(\phi) - z_{\circ}} = f(\phi_{\circ}) \int \frac{d\mu}{\hat{Z}(\phi) - z_{\circ}} =$$
$$\frac{M(D) \setminus D^{*}}{M(D) \setminus D^{*}} = f(\phi_{\circ}) \overline{\mu^{*}}(z_{\circ})$$

So
$$\hat{f}(\phi_{\circ}) = \frac{1}{\overline{\mu}^{*}(z_{\circ})} \int \frac{f(\phi)}{\hat{Z}(\phi) - z_{\circ}} d\mu$$
 for all $f \in H^{\infty}(D)$
 $M(D) \setminus D$

So $v = \frac{1}{\overline{\mu^*}(z_o)} \frac{d\mu}{\hat{Z} - z_o}$ is complex representing measure for ϕ_o in H (D) and $v \ll \mu$. Using theorem B, $\exists v_{\circ}$ representing measure for ϕ_{\circ} such that $v_{\circ} \ll v$ << μ , so μ is not completely singular.

Corollary 3:

If μ is as in the theorem, then $\Gamma(D) \subset \overline{\operatorname{supp} \mu}$, where $\Gamma(D)$ is the Shilov boundary for $H^{\infty}(D)$. **Proof:**

From the theorem $|f(z)| \leq c(z) ||f||_{supp \mu}$, for every $f \in H^{\infty}(D)$ and all $z \in D$ such that $\mu^{*}(z) \neq 0$, where c(z) is a constant, which depends on z, so $|f^{n}(z)| =$

$$\begin{split} & \left| f(z) \right|^n \leqslant c(z) \| f \|_n \underbrace{\operatorname{supp} \mu}_{\operatorname{supp} \mu} \text{ Hence } f(z) \leqslant [(z)]^n \| f \| \underbrace{\operatorname{supp} \mu}_{\operatorname{supp} \mu}. \\ & \text{ If } c(z) < 1 \text{ then } f(z) = 0, \text{ if } c(z) \geqslant 1 \text{ then } \\ & \left| f(z) \right| \leq \| f \| \underbrace{\operatorname{supp} \mu}_{\operatorname{supp} \mu}, \text{ for every } z \in D \text{ with } \mu^*(z) \neq 0. \text{ By } \\ & \text{ Corollary 1, we have} | f(z) | \leq \| f \| \underbrace{\operatorname{supp} \mu}_{\operatorname{supp} \mu} \text{ for every } z \in D, \\ & \text{ so } \Gamma(D) \subset \overline{\operatorname{supp} \mu}. \end{split}$$

REFERENCES

- (1) T. Gamelin, "Localization of the corona problem," *Pac. J. Math.* 34 (1970), 73-81.
- (2) T. Gamelin, Uniform Algebras, Englewood Cliffs: Prentice-Hall, 1969.
- (3) T. Gamelin, "Lectures on $H^{\infty}(D)$," La Plata Notas de Matematica, **21**, 1972.

Reference Code for AJSE Information Retrieval: QA 1276 DE 1, Paper Received May 15, 1975.