SUFFICIENT CONDITIONS FOR AN OPERATOR T
TO BELONG TO THE SECOND COMMUTANT OF {T?*, T%}
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ABSTRACT

Let T be an operator on a Hilbert space. Some sufficient conditions on the range
and kernel of T are given that ensure T to belong to the second commutant of (T2, T?)
The conclusion is equivalent to the statement:*“T belongs to the.secondcommutatn
of (T*, T™) for any two relatively prime positive integers n and m

INTRODUCTION
Given a ring R we let A(R) = { xe R :xy = yx
whenever xy = yx"and x"t! y = yx"* for some

n}. It is easy to show that if x € A(<R), n and m are
relatively prime positive integers, x"y = yx" and
x®y = yx™ then xy = yx[1]. The author proved
that in a prime ring R, A(R) = <R if and only if R
contains no nilpotent elements [1]. This leads to an
investigation of the set A(<R) for some special types
of rings.

An involution on <R is a map ,from <R onto <R
such that for all x,y € R x** = x, (x + y)* = x*}-y*
and (xy)* = y*x*. If, moreover, R is a complex
algebra then (a x)* = ax* for all complexes a and
all x ¢ <R . If there is an involution defined on R,
we say R is a *-ring.

An involution on <R is said to be proper if x=0
whenever x*x=0. In this case we say <R is a proper
* - ring. We say <R is prime if IJ = 0, where I and
J are ideals in <R ; this implies I = 0 or J = 0. Given
xe€Rwelet AR (x) (AL(x)) denote the right (left)
annihilator of x in R, i.e.,

AR(X) =y {€ R : xy=0} and
ALx) ={ye<R :yx=01}.
The author proved in [1] that in a proper * - ring

<R which is prime, an element x € <R will belong to
A(<R) if x commutes with everything that commutes

with x" and x"* for some integer n greater than
one. So, to check whether an element x belongs to
A(<R), it suffices to check whether it commutes with
everything that commutes with x? and x>,

It was also shown that in a prime proper * - ring
R, if x € A(R) then one of the following conditions
must hold : (i) A R (x) =0, (i) AL(x) = 0, or (iii)
AR (x) = AR (x® and AL(x) = AL(x?. It is easy
to check that each of the conditions (i) and (ii) imply
that xe A(R). Whether condition (iii) implies that
x€ A(R) is not known. The purpose of this paper
is to find conditions that are closely related to condi-
tion (iii), which will insure that a Hilbett space ope-
rator T will belong to A (R) where R is the ring of
all bounded operators on the Hilbert space.

OPERATORS ON HILBERT SPACE

Let H be a Hilbert space and let B(H) denote the
algebra of bounded operators on H. We will use the
notation A(H) to mean A(B(H)). It is well known
that B(H) is a prime proper * - ring [2].

If T € B(H) we let ker T denote the null space of
T{(xeH: Tx=0}) and R (T) denote the range
of T. We also let T* stand for the adjoint of T [3].
If K is a subset of H we let K denote the closure of
K in H. The conditions (i), (ii), and (iii) become in
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this case, (i) ker T = 0, (ii) ker T* = 0 and (iii) ker
T = ker T? and ker T* = ker T*2 Since the ortho-
gonal complement of ker T* is <R (T) [3], the condi-
tion ker T* = ker T*? is equivalent to R(T) = R(T?)

which is equivalent to saying <R (T) is a subset ot
R (Ti).

The author proved that if T is an algebraic ope-
rator, then the condition TeA(H) is equivalent to
any of the following conditions: (a) ker T = ker T?,
OGRM=RT). ©RTnker T =(0) and
(d) H=<(T) + ker T [1]. In the same reference
it was also shown that if ker T = ker T? and T (<R(T))
= <R(T) then T eA(H). Thus, if T has a closed range
and T satisfies condition (iii) then T ¢ A(H).

CONDITIONS ON T TO BE IN A(H)

In this section we show that certain conditions
on ker T and <R (T) will imply T € A(H).

Lemma:

Suppose that ker T = kerT2 If S commutes with
T? and T?, then T?S = TST = ST-.

Proof:

We have T2 (ST—TS) = T2ST- TS = ST* —
T°S = 0. Hence T(ST—-TS)=0, ie. TST =
TS = ST

Theorem:
Let ker T< ker T* = ker T*2, then T € A(H).

Proof:

First note that if T?x = 0, then T*Tx = 0, hence
| Tx|? = (Tx, Tx) = (T* Tx, x) = 0. Therefore ker
T = ker T2 Let S commute with T? and T? and let
C = TS — ST. Then by the lemma TC = 0. Hence
T*C =0. We also have T*’S*C = S*T*2C = 0,
hence T*S*C = 0. Therefore, C*C = S*T*C —
T*S*C = 0 and thus C=0.

Theorem:

Suppose that ker T* = ker T*? and ker T n R(T)
=(0). Then T ¢ A(H).

Proof:

Let S commute with T> and T?. Then S* commutes
with T*? and T*? . Hence, by the lemma, and taking
adjoints we get T2§ = TST = ST

Let C= ST — TS. Since TC =0, we have R (C)
< ker T.
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Taking orthogonal complements of ker T* and ker
T*? we get R(T) =R (T?. Hence, if x ¢ H then
STx = lim ST?x, = lim T2Sx, for some sequence

x) < H.n Hence R (SEI’) < R (T). Therefore R (C)

<R(T). Butker T n R(T) = 0, which implies R (C)
= (0), or C=0.
Theorem:

If ker T = ker T? and H=ker T+ <R (T), then
T € A(H).
Proof

Let S and C be as in the previous theorem. If
Tx =0, then T?Sx= ST?x =0. Hence TSx = 0.
Thus Cx = STx — TSx = 0. This says that C(kerT)=
0. We also have C(R(T))= 0, hence C (R(T))=0.
Thus C(H) = 0, i.e.,, C=0.

For the next theorem we remind the reader that
the condition R (T) =R (T?) is equivalent to ker
T* = ker T*? (by taking orthogonal complements).

Theorem:

Suppose that ker T = ker T? and R (T) <R (T ?)
such that given x€ H there exists a bounded sequence
(x) = H with Tx = lim T*, . Then T ¢ A(H).

n-500
Proof:

Taking orthogonal complements of ker T and
ker T2 we get R (T*) < R (T*).

Let S and C be as before, and choose x, y ¢ H with

|x[|=1. Choose (x,) = H with |x, | < tforallm

and Tx = lim T?x_. Choose (y,) and (z,) = H such
m

that T*S*y = lim T*%, and T*y=lim T*?z,. For
n

each nand m let a,, = (T*%y, — T*S*T**z,x_).

Then |a,,| < |t T*yn — T*$*T*’z,) for all n and

m. Hence, lim|a,, | <t | T*y, — T*S*T**z, | for
m

allnand m. Hence,lim|a,, | <t || T*y,— T*S*T*z,

m
for all n, and thus lim lim | a,, | <t | T**S*y —

n m
T*S*T*y| = 0. Hence (y,Cx) = (C*y, x) = (T*S*y —
S*T*y, x) = lim (T*%)y_, — S*T*’z_, x) = lim

n

(T*y, — S$*T*z,, Tx) = lim lim (T*y, — S*T*z,
n m

T?x,) = lim lim (T*y, — T*!$*T*z,, x,) = lim

n m n

lim a,,, = 0. Since x and y were arbitrary, we get

C=0.



(1

(2

REFERFNCES

A.H. Al-Moajil, “The commutants of relatively
prime powers in operator algebras”, Proceedings
of the American Mathematical Society, to appear.

1., Kaplansky, Rings of Operators, New York:
W.A. Benjamin, 1968.

Abdullah H.Al- Moajil

[31 F. Riesz and B.SZ-Nagy, Functional Analysis,
New York: Frederick Ungar Publishing, 1965.

Reference Code for ASJE Information Retrieval : QA 1276
MO 1. Paper Received June 30, 1975,

The Arabian Journal for Science and Engineering,Volume 1, Number 2.

97



