SUFFICIENT CONDITIONS FOR AN OPERATOR T TO BELONG TO THE SECOND COMMUTANT OF $\left\{\mathbf{T}^{2}, \mathbf{T}^{\mathbf{3}}\right\}$

\author{
Abdullah H. Al-Moajil*
 النملاصة
 " ان الموثر T يكون تابعاً للمبادل الثاني \}

}

Abstract

Let T be an operator on a Hilbert space. Some sufficient conditions on the range and kernel of T are given that ensure T to belong to the second commutant of $\left(T^{2}, T^{3}\right)$ The conclusion is equivalent to the statement:" T belongs to the.secondcommutatn of ($\mathrm{T}^{\mathrm{n}}, \mathrm{T}^{\mathrm{m}}$) for any two relatively prime positive integers n and m

INTRODUCTION

Given a ring \mathcal{R} we let $A(\mathcal{R})=\{x \in \mathcal{R}: x y=y x$ whenever $x^{n} y=y x^{n}$ and $x^{n+1} y=y x^{n+}$ for some $\mathrm{n}\}$. It is easy to show that if $\mathrm{x} \in \mathrm{A}(\mathbb{R}), \mathrm{n}$ and m are relatively prime positive integers, $x^{n} y=y x^{n}$ and $x^{m} y=y^{m}$ then $x y=y x[1]$. The author proved that in a prime ring $\mathcal{R}, \mathrm{A}(\mathcal{R})=\mathbb{R}$ if and only if \mathbb{R} contains no nilpotent elements [1]. This leads to an investigation of the set $A(\mathbb{R})$ for some special types of rings.

An involution on \mathbb{R} is a map ${ }_{*}$ from \mathbb{R} onto \mathbb{R} such that for all $\mathrm{x}, \mathrm{y} \in \mathbb{R} \mathrm{x}^{* *}=\mathrm{x},(\mathrm{x}+\mathrm{y})^{*}=\mathrm{x}^{*}+\mathrm{y}^{*}$ and (xy$)^{*}=\mathrm{y}^{*} \mathrm{x}^{*}$. If, moreover, \mathscr{R} is a complex algebra then (ax)* $=a x^{*}$ for all complexes a and all $x \in \mathscr{R}$. If there is an involution defined on \mathcal{R}, we say \mathcal{R} is a *-ring.

An involution on \mathbb{R} is said to be proper if $x=0$ whenever $x^{*} x=0$. In this case we say \mathscr{R} is a proper * - ring. We say \mathcal{R} is prime if $I J=0$, where I and J are ideals in \mathscr{R}; this implies $\mathrm{I}=0$ or $\mathrm{J}=0$. Given $x \in \mathscr{R}$ we let $A R(x)(A L(x))$ denote the right (left) annihilator of x in \mathbb{R},i.e.,
$A R(x)=y\{\in \mathbb{R}: x y=0\}$ and
$\mathrm{AL}(\mathrm{x})=\{\mathrm{y} \in \mathbb{R}: \mathrm{yx}=0\}$.
The author proved in [1] that in a proper * - ring \mathbb{R} which is prime, an element $x \in \mathbb{R}$ will belong to $A(\mathscr{R})$ if x commutes with everything that commutes
with x^{n} and $\mathrm{x}^{\mathrm{n+}}$ for some integer n greater than one. So, to check whether an element x belongs to $A(\mathscr{R})$, it suffices to check whether it commutes with everything that commutes with x^{2} and x^{3}.

It was also shown that in a prime proper * - ring \mathscr{R}, if $x \in A(\mathcal{R})$ then one of the following conditions must hold : (i) A R (x) $=0$, (ii) $\mathrm{AL}(\mathrm{x})=0$, or (iii) $\operatorname{AR}(x)=\operatorname{AR}\left(x^{2}\right)$ and $\operatorname{AL}(x)=\operatorname{AL}\left(x^{2}\right)$. It is easy to check that each of the conditions (i) and (ii) imply that $\mathrm{x} \in \mathrm{A}(\mathscr{R})$. Whether condition (iii) implies that $\mathrm{x} \in \mathrm{A}(\mathcal{R})$ is not known. The purpose of this paper is to find conditions that are closely related to condition (iii), which will insure that a Hilbett space operator T will belong to $A(\mathcal{R})$ where \mathscr{R} is the ring of all bounded operators on the Hilbert space.

OPERATORS ON HILBERT SPACE

Let H be a Hilbert space and let $\mathrm{B}(\mathrm{H})$ denote the algebra of bounded operators on H . We will use the notation $A(H)$ to mean $A(B(H))$. It is well known that $\mathrm{B}(\mathrm{H})$ is a prime proper ${ }^{*}$ - ring [2].

If $T \in B(H)$ we let ker T denote the null space of $\mathrm{T}\{(\mathrm{x} \in \mathrm{H}: \mathrm{Tx}=0\})$ and $\mathbb{R}(\mathrm{T})$ denote the range of T . We also let T^{*} stand for the adjoint of T [3]. If K is a subset of H we let K denote the closure of K in H . The conditions (i), (ii), and (iii) become in

[^0]this case, (i) ker $\mathrm{T}=0$, (ii) ker $\mathrm{T}^{*}=0$ and (iii) ker $\mathrm{T}=\mathrm{ker} \mathrm{T}^{2}$ and ker $\mathrm{T}^{*}=\mathrm{ker} \mathrm{T}^{* 2}$. Since the orthogonal complement of ker T^{*} is $\overline{\mathcal{R}(\mathrm{T})}$ [3], the condition ker $\mathrm{T}^{*}=\operatorname{ker} \mathrm{T}^{* 2}$ is equivalent to $\overline{\mathcal{R}(\mathrm{T})}=\overline{\mathcal{R}\left(\mathrm{T}^{2}\right)}$ which is equivalent to saying $\mathcal{R}(T)$ is a subset of $\overline{\mathcal{R}\left(\mathrm{T}^{2}\right)}$.

The author proved that if T is an algebraic operator, then the condition $T \in A(H)$ is equivalent to any of the following conditions: (a) ker $\mathrm{T}=\mathrm{ker} \mathrm{T}^{2}$, (b) $\mathscr{R}(\mathrm{T})=\mathscr{R}\left(\mathrm{T}^{2}\right)$. (c) $\mathcal{R}(\mathrm{T}) \cap$ ker $\mathrm{T}=(0)$ and (d) $H=\mathscr{R}(T)+$ ker T [1]. In the same reference it was also shown that if $\operatorname{ker} \mathrm{T}=\operatorname{ker} \mathrm{T}^{2}$ and $\mathrm{T} \overline{(\mathcal{R}(\mathrm{T}))}$ $=\overline{R(T)}$ then $T \in A(H)$. Thus, if T has a closed range and T satisfies condition (iii) then $T \in A(H)$.

CONDITIONS ON T TO BE IN A(H)

In this section we show that certain conditions on ker T and $\mathcal{R}(T)$ will imply $T \in A(H)$.

Lemma:

Suppose that ker $\mathrm{T}=\operatorname{ker}^{2}$. If S commutes with T^{2} and T^{3}, then $\mathrm{T}^{2} \mathrm{~S}=\mathrm{TST}=\mathrm{ST}^{2}$.

Proof:

We have $\mathrm{T}^{2}(\mathrm{ST}-\mathrm{TS})=\mathrm{T}^{2} \mathrm{ST}-\mathrm{T}^{3} \mathrm{~S}=\mathrm{ST}^{3}-$ $\mathrm{T}^{3} \mathrm{~S}=0$. Hence $\mathrm{T}(\mathrm{ST}-\mathrm{TS})=0$, i.e. $\mathrm{TST}=$ $\mathrm{T}^{2} \mathrm{~S}=\mathrm{ST}^{2}$.

Theorem:

Let ker $\mathrm{T} \subset$ ker $\mathrm{T}^{*}=\operatorname{ker} \mathrm{T}^{* 2}$, then $\mathrm{T} \in \mathrm{A}(\mathrm{H})$.

Proof:

First note that if $T^{2} x=0$, then $T^{*} T x=0$, hence $\|T x\|^{2}=(T x, T x)=\left(T^{*} T x, x\right)=0$. Therefore ker $T=\operatorname{ker} \mathrm{T}^{2}$. Let S commute with T^{2} and T^{3} and let $\mathrm{C}=\mathrm{TS}-\mathrm{ST}$. Then by the lemma $\mathrm{TC}=0$. Hence $\mathrm{T}^{*} \mathrm{C}=0$. We also have $\mathrm{T}^{* 2} \mathrm{~S}^{*} \mathrm{C}=\mathrm{S}^{*} \mathrm{~T}^{* 2} \mathrm{C}=0$, hence $\mathrm{T}^{*} \mathrm{~S}^{*} \mathrm{C}=0$. Therefore, $\mathrm{C}^{*} \mathrm{C}=\mathrm{S}^{*} \mathrm{~T}^{*} \mathrm{C}$ $\mathrm{T}^{*} \mathrm{~S}^{*} \mathrm{C}=0$ and thus $\mathrm{C}=0$.

Theorem:

Suppose that $\operatorname{ker} \mathrm{T}^{*}=\operatorname{ker} \mathrm{T}^{* 2}$ and $\operatorname{ker} \mathrm{T} \cap \overline{\mathbb{R}(\mathrm{T})}$ $=(0)$. Then $T \in A(H)$.

Proof:

Let S commute with T^{2} and T^{3}. Then S^{*} commutes with $\mathrm{T}^{* 2}$ and $\mathrm{T}^{* 3}$. Hence, by the lemma, and taking adjoints we get $\mathrm{T}^{2} \mathrm{~S}=\mathrm{TST}=\mathrm{ST}^{2}$.

Let $\mathrm{C}=\mathrm{ST}-\mathrm{TS}$. Since $\mathrm{TC}=0$, we have $\mathcal{R}(\mathrm{C})$ \subset ker T.

Taking orthogonal complements of ker T^{*} and ker $\mathrm{T}^{* 2}$ we get $\overline{\mathcal{R}(\mathrm{T})}=\overline{\mathcal{R}\left(\mathrm{T}^{2}\right)}$. Hence, if $\mathrm{x} \in \mathrm{H}$ then $S T x=\lim _{n} S T^{2} x_{n}=\lim _{n} T^{2} S x_{n}$ for some sequence $\left(\mathrm{x}_{\mathrm{n}}\right) \subset \mathrm{H}$. Hence $\mathscr{R}(\mathrm{ST}) \subset \overline{\mathcal{R}(\mathrm{T})}$. Therefore $\mathcal{R}(\mathrm{C})$ $\subset \mathscr{R}(\mathrm{T})$. But ker $\mathrm{T} \cap \mathscr{R}(\mathrm{T})=0$, which implies $\mathcal{R}(\mathrm{C})$ $=(0)$, or $\mathrm{C}=0$.
Theorem:
If ker $T=$ ker T^{2} and $H=k e r T+\mathscr{R}(T)$, then $T \in A(H)$.

Proof

Let S and C be as in the previous theorem. If $T x=0$, then $T^{2} S x=S T^{2} x=0$. Hence $T S x=0$. Thus $C x=S T x-T S x=0$. This says that $C(\operatorname{ker} T)=$ 0 . We also have $C(\mathcal{R}(T))=0$, hence $C(\overline{R(T)})=0$. Thus $\mathrm{C}(\mathrm{H})=0$, i.e., $\mathrm{C}=0$.

For the next theorem we remind the reader that the condition $\mathscr{R}(T) \subset \bar{R}\left(\mathrm{~T}^{2}\right)$ is equivalent to ker $\mathrm{T}^{*}=\mathrm{ker} \mathrm{T}^{* 2}$ (by taking orthogonal complements).

Theorem:

Suppose that ker $\mathrm{T}=\operatorname{ker} \mathrm{T}^{2}$ and $\mathcal{R}(\mathrm{T}) \subset \overline{\mathcal{R}\left(\mathrm{T}^{2}\right)}$ such that given $x \in H$ there exists a bounded sequence $\left(x_{n}\right) \subset H$ with $T x=\lim _{n \rightarrow \infty} T^{2} x_{n}$. Then $T \in A(H)$.

Proof:

Taking orthogonal complements of ker T and ker T^{2} we get $\mathbb{R}\left(\mathrm{T}^{*}\right) \subset \overline{\mathcal{R}\left(\mathrm{T}^{* 2}\right)}$.
Let S and C be as before, and choose $x, y \in H$ with $\|x\| \leq 1$. Choose (x_{m}) $\subset \mathrm{H}$ with $\left\|\mathrm{x}_{\mathrm{m}}\right\| \leq \mathrm{t}$ for all m and $T x=\lim T^{2} x_{m}$. Choose $\left(y_{n}\right)$ and $\left(z_{n}\right) \subset H$ such that $T^{*} S^{*} y \stackrel{m}{=} \lim _{n} T^{* 2} y_{n}$ and $T^{*} y=\lim _{n} T^{* 2} z_{n}$. For each n and m let $a_{n m}=\left(T^{* 3} y_{n}-T^{n} S^{*} T^{* 2} z_{n}, x_{m}\right)$. Then $\left|a_{n m}\right| \leq\left\|t T^{* 3} y n-T^{*} S^{*} T^{* 2} z_{n}\right\|$ for all n and m . Hence, $\lim _{\mathrm{m}}\left|\mathrm{a}_{\mathrm{nm}}\right| \leq \mathrm{t}\left\|\mathrm{T}^{* 3} \mathrm{y}_{\mathrm{n}}-\mathrm{T}^{*} \mathrm{~S}^{*} \mathrm{~T}^{* 2} \mathrm{z}_{\mathrm{n}}\right\|$ for all n and m. Hence, $\underset{m}{\lim }\left|a_{n m}\right| \leq t\left\|T^{* 3} y_{n}-T^{*} S^{*} T^{* 2} z_{n}\right\|$ for all n, and thus $\lim _{n}^{m} \lim _{m}\left|a_{n m}\right| \leq t \| T^{* 2} S^{*} y-$ $T^{*} S^{*} T^{*} y_{\|} \|=0$. Hence $(y, C x)=\left(C^{*} y, x\right)=\left(T^{*} S^{*} y-\right.$ $\left.S^{*} \mathrm{~T}^{*} \mathrm{y}, \mathrm{x}\right)=\lim _{\mathrm{n}}\left(\mathrm{T}^{* 2} \mathrm{y}_{\mathrm{n}}-\mathrm{S}^{*} \mathrm{~T}^{* 2} \mathrm{z}_{\mathrm{n}}, \mathrm{x}\right)=\lim _{\mathrm{n}}$ $\left(T^{*} y_{n}-S^{*} T^{*} z_{n}, T x\right)=\lim \lim \left(T^{*} y_{n}-S^{*} T^{*} z_{n}\right.$, $\left.T^{2} x_{m}\right)=\lim _{n} \lim _{m}\left(T^{* 3} y_{n}-T^{n} T^{m} S^{*} T^{*} z_{n}, x_{m}\right)=\lim _{n}$ $\lim \mathrm{a}_{\mathrm{nm}}=0$. Since x and y were arbitrary, we get $\stackrel{\mathrm{m}}{\mathrm{C}}=0$.

REFERFNCES

[1] A.H. Al-Moaji1, "The commutants of relatively prime powers in operator algebras", Proceedings of the American Mathematical Society, to appear.
[2] I., Kaplansky, Rings of Operators, New York: W.A. Benjamin, 1968.
[3] F. Riesz and B.SZ-Nagy, Functional Anàlysis, New York: Frederick Ungar Publishing, 1965.

Reference Code for ASJE Information Retrieval : QA 1276 MO 1. Paper Received June 30, 1975.

[^0]: * Department of Mathematics, University of Petroleum and Minerals, Dhahran, Saudi Arabia.

