SUFFICIENT CONDITIONS FOR AN OPERATOR T TO BELONG TO THE SECOND COMMUTANT OF $\{T^2, T^3\}$

Abdullah H. Al-Moajil*

الحلاصة

في هذا البحث نقدم شروط كافية لجعل المؤثر T المعرف على مجال هلبرت تابعاً للمبادل الثاني { T²,T³ } وتتلخص النتيجة في العبارة الآتية : « ان المؤثر T يكون تابعاً للمبادل الثانى{T^n,Tm} لأى أعداد صحيحة موجبة خاضعة للشرط 1=(n,m).''

ABSTRACT

Let T be an operator on a Hilbert space. Some sufficient conditions on the range and kernel of T are given that ensure T to belong to the second commutant of (T^2, T^3) The conclusion is equivalent to the statement:"T belongs to the second commutatn of (T^n, T^m) for any two relatively prime positive integers n and m

INTRODUCTION

Given a ring \mathcal{R} we let $A(\mathcal{R}) = \{x \in \mathcal{R} : xy = yx \text{ whenever } x^n y = yx^n \text{ and } x^{n+1} y = yx^{n+1} \text{ for some } n\}$. It is easy to show that if $x \in A(\mathcal{R})$, n and m are relatively prime positive integers, $x^n y = yx^n$ and $x^m y = yx^m$ then xy = yx [1]. The author proved that in a prime ring \mathcal{R} , $A(\mathcal{R}) = \mathcal{R}$ if and only if \mathcal{R} contains no nilpotent elements [1]. This leads to an investigation of the set $A(\mathcal{R})$ for some special types of rings.

An involution on \mathcal{R} is a map $_*$ from \mathcal{R} onto \mathcal{R} such that for all $x, y \in \mathcal{R}$ $x^{**} = x, (x + y)^* = x^* + y^*$ and $(xy)^* = y^*x^*$. If, moreover, \mathcal{R} is a complex algebra then $(a x)^* = ax^*$ for all complexes a and all $x \in \mathcal{R}$. If there is an involution defined on \mathcal{R} , we say \mathcal{R} is a *-ring.

An involution on \mathcal{R} is said to be proper if x=0whenever $x^*x=0$. In this case we say \mathcal{R} is a proper *-ring. We say \mathcal{R} is prime if IJ = 0, where I and J are ideals in \mathcal{R} ; this implies I = 0 or J = 0. Given $x \in \mathcal{R}$ we let A R (x) (AL(x)) denote the right (left) annihilator of x in \mathcal{R} , i.e., A R (x) = y { $\in \mathcal{R}$: xy=0 } and AL(x) = { y $\in \mathcal{R}$: yx = 0 }.

The author proved in [1] that in a proper * - ring \mathcal{R} which is prime, an element $x \in \mathcal{R}$ will belong to $A(\mathcal{R})$ if x commutes with everything that commutes

with x^n and x^{n+} for some integer n greater than one. So, to check whether an element x belongs to A(\mathcal{R}), it suffices to check whether it commutes with everything that commutes with x^2 and x^3 .

It was also shown that in a prime proper * - ring \mathfrak{R} , if $x \in A(\mathfrak{R})$ then one of the following conditions must hold : (i) A R (x) = 0, (ii) AL(x) = 0, or (iii) AR (x) = AR (x²) and AL(x) = AL(x²). It is easy to check that each of the conditions (i) and (ii) imply that $x \in A(\mathfrak{R})$. Whether condition (iii) implies that $x \in A(\mathfrak{R})$ is not known. The purpose of this paper is to find conditions that are closely related to condition (iii), which will insure that a Hilbett space operator T will belong to A (\mathfrak{R}) where \mathfrak{R} is the ring of all bounded operators on the Hilbert space.

OPERATORS ON HILBERT SPACE

Let H be a Hilbert space and let B(H) denote the algebra of bounded operators on H. We will use the notation A(H) to mean A(B(H)). It is well known that B(H) is a prime proper * - ring [2].

If $T \in B(H)$ we let ker T denote the null space of T { ($x \in H$: Tx = 0 }) and \mathcal{R} (T) denote the range of T. We also let T* stand for the adjoint of T [3]. If K is a subset of H we let K denote the closure of K in H. The conditions (i), (ii), and (iii) become in

^{*} Department of Mathematics, University of Petroleum and Minerals, Dhahran, Saudi Arabia.

this case, (i) ker T = 0, (ii) ker $T^* = 0$ and (iii) ker $T = \ker T^2$ and ker $T^* = \ker T^{*2}$. Since the orthogonal complement of ker T^* is $\mathcal{R}(T)$ [3], the condition ker $T^* = \ker T^{*2}$ is equivalent to $\mathcal{R}(T) = \mathcal{R}(T^2)$ which is equivalent to saying $\mathcal{R}(T)$ is a subset of $\mathcal{R}(T^2)$.

The author proved that if T is an algebraic operator, then the condition $T \in A(H)$ is equivalent to any of the following conditions: (a) ker $T = \ker T^2$, (b) $\mathcal{R}(T) = \mathcal{R}(T^2)$. (c) $\mathcal{R}(T) \cap \ker T = (0)$ and (d) $H = \mathcal{R}(T) + \ker T$ [1]. In the same reference it was also shown that if ker $T = \ker T^2$ and $T(\overline{\mathcal{R}(T)}) = \overline{\mathcal{R}(T)}$ then $T \in A(H)$. Thus, if T has a closed range and T satisfies condition (iii) then $T \in A(H)$.

CONDITIONS ON T TO BE IN A(H)

In this section we show that certain conditions on ker T and $\mathcal{R}(T)$ will imply $T \in A(H)$.

Lemma:

Suppose that ker $T = \text{ker}T^2$. If S commutes with T^2 and T^3 , then $T^2S = TST = ST^2$.

Proof:

We have $T^2 (ST - TS) = T^2ST - T^3S = ST^3 - T^3S = 0$. Hence T(ST - TS) = 0, i.e. $TST = T^2S = ST^2$.

Theorem:

Let ker $T \subset \ker T^* = \ker T^{*2}$, then $T \in A(H)$.

Proof:

First note that if $T^2x = 0$, then $T^*Tx = 0$, hence $||Tx||^2 = (Tx, Tx) = (T^*Tx, x) = 0$. Therefore ker $T = \ker T^2$. Let S commute with T^2 and T^3 and let C = TS - ST. Then by the lemma TC = 0. Hence $T^*C = 0$. We also have $T^{*2}S^*C = S^*T^{*2}C = 0$, hence $T^*S^*C = 0$. Therefore, $C^*C = S^*T^*C - T^*S^*C = 0$ and thus C=0.

Theorem:

Suppose that ker $T^* = \ker T^{*2}$ and ker $T \cap \mathcal{R}(T) = (0)$. Then $T \in A(H)$.

Proof:

Let S commute with T^2 and T^3 . Then S* commutes with T^{*2} and T^{*3} . Hence, by the lemma, and taking adjoints we get $T^2S = TST = ST^2$.

Let C = ST - TS. Since TC = 0, we have \mathcal{R} (C) \subset ker T.

Taking orthogonal complements of ker T* and ker T^{*2} we get $\mathcal{R}(T) = \mathcal{R}(T^2)$. Hence, if $x \in H$ then $STx = \lim_{n} ST^2x_n = \lim_{n} T^2Sx_n$ for some sequence $(x_n) \subset H$. Hence $\mathcal{R}(ST) \subset \overline{\mathcal{R}(T)}$. Therefore $\mathcal{R}(C)$ $\subset \mathcal{R}(T)$. But ker $T \cap \mathcal{R}(T) = 0$, which implies $\mathcal{R}(C)$ = (0), or C=0.

Theorem:

If ker $T = \ker T^2$ and $H = \ker T + \mathcal{R}(T)$, then $T \in A(H)$.

Proof

Let S and C be as in the previous theorem. If Tx = 0, then $T^2Sx = ST^2x = 0$. Hence TSx = 0. Thus Cx = STx - TSx = 0. This says that $C(\ker T) = 0$. We also have $C(\mathcal{R}(T)) = 0$, hence $C(\overline{\mathcal{R}(T)}) = 0$. Thus C(H) = 0, i.e., C = 0.

For the next theorem we remind the reader that the condition $\mathcal{R}(T) \subset \overline{\mathcal{R}(T^2)}$ is equivalent to ker $T^* = \ker T^{*2}$ (by taking orthogonal complements).

Theorem:

Suppose that ker $T = \ker T^2$ and $\Re(T) \subset \overline{\Re(T^2)}$ such that given $x \in H$ there exists a bounded sequence $(x_n) \subset H$ with $Tx = \lim_{n \to \infty} T^2 x_n$. Then $T \in A(H)$.

Proof:

Taking orthogonal complements of ker T and ker T² we get $\mathcal{R}(T^*) \subset \overline{\mathcal{R}(T^{*2})}$. Let S and C be as before, and choose x, $y \in H$ with $||x|| \le 1$. Choose $(x_m) \subset H$ with $||x_m|| \le t$ for all m and $Tx = \lim T^2 x_m$. Choose (y_n) and $(z_n) \subset H$ such that $T^*S^*y \stackrel{m}{=} \lim T^{*2}y_n$ and $T^*y=\lim T^{*2}z_n$. For each n and m let $a_{nm} = (T^{*3}y_n - T^*S^*T^{*2}z_n, x_m)$. Then $|a_{nm}| \leq ||t|T^{*3}yn - T^*S^*T^{*2}z_n||$ for all n and m. Hence, $\lim_{m \to \infty} |a_{nm}| \le t || T^{*3}y_n - T^*S^*T^{*2}z_n ||$ for all n and m. Hence, $\lim_{n \to \infty} |a_{nm}| \le t || T^{*3}y_n - T^*S^*T^{*2}z_n ||$ for all n, and thus $\lim_{m \to \infty} \lim_{m \to \infty} |a_{nm}| \le t || T^{*2}S^*y T^*S^*T^*y = 0$. Hence $(y, Cx) = (C^*y, x) = (T^*S^*y - C^*y)$ $S^{*}T^{*}y$, x) = lim $(T^{*2}y_{n} - S^{*}T^{*2}z_{n}, x)$ = lim $(T^*y_n - S^*T^*z_n, Tx) = \lim \lim (T^*y_n - S^*T^*z_n, Tx)$ $T^{2}x_{m}$) = lim lim $(T^{*3}y_{n} - T^{*2}S^{*}T^{*}z_{n}, x_{m})$ = lim $\lim_{n \to \infty} a_{nm} = 0$. Since x and y were arbitrary, we get C=0.

REFERFNCES

- [1] A.H. Al-Moajil, "The commutants of relatively prime powers in operator algebras", *Proceedings* of the American Mathematical Society, to appear.
- [2] I., Kaplansky, *Rings of Operators*, New York: W.A. Benjamin, 1968.
- [3] F. Riesz and B.SZ-Nagy, Functional Analysis, New York: Frederick Ungar Publishing, 1965.

Reference Code for ASJE Information Retrieval : QA 1276 MO 1. Paper Received June 30, 1975.