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ABSTRACT 

The anisotropy in the Compton profile of aluminum has been calculated by the 
Impulse approximation. The structure in the anisotropy is related to topology of 
the Fermi surface, and its magnitude is qualitatively related to the cross-sectional 
area of the orbits on the surface. 

INTRODUCTION 

The single particle momentum density of an elec­
tronic system is an interesting and important physical 
quantity to study. It is very sensitive to the distribution 
of the valence electrons, incorporates such many-body 
effects as electron-correlation, and reflects the ani­
sotropy in the charge distribution of the system. Also, 
under certain conditions to be presented shortly, the 
full one-dimensional profiles for this quantity can be 
measured directly by high energy Compton scattering 
experiments. This experimentally observable function 
ofa single variable is termed the Compton profile (CP). 
In this paper, the anisotropy in the CP of aluminum 
along the three crystallographic directions is inves­
tigated and an attempt is made to qualitatively relate 
the structure in the anisotropy to the topology of the 
Fermi surface. This work may be regarded as a supple­
ment to a recent report of a calculation of the CP in 
this metal[l], and follows a similar approach to that 
used for nickel[2]. 

Consider the process of Compton scattering of 
energetic photons by bound electrons. The intensity 
distribution profiles of the scattered photons may be 
related to the ground state momentum distribution 
of the scatterers if the following assumptions are made: 
(i) a non-relativistic independent-particle description 

is used for the dynamics of the electrons; (ii) the final 
states of the recoil electrons are single plane waves; 
and (iii) the binding energies of the electrons are small 
compared to the energy transfers from the photon to the 
electrons. Assumption (iii) constitutes the Impulse 
Approximation (IA) [3]. One also might want to eli­
minate multiple scattering or correct for it, and 
ascertain that the probability of a photon interacting 
with any particular electron is independent of that 
electron's momentum. 

Let pdenote the initial momentum of an electron 
in the system under study; k, the change'in the momen­
tum after a Compton scattering event has occurred; 
and w(1i = I), the energy transferred to the electron. 
Then the intensity of the scattered radiation observed 
along some fixed direction ~ in the solid, is propor­
tional to 

" n f 3 -+ ",-+
Jx(q) = (27:)3 J d pP(p) o(q-x.p). (1) 

in which P(p) is the momentum distribution 

-+ 

k = ,\+i ,n is the volume of the Wigner-Seitz cell, 

-+ 1-+ 
and q = mw / I k I- 21 k I (2) 
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Equation (1) indicates that for a given direction x, 
the CP, Jx(q) is proportional to the integral of the 
momentum density in a plane perpendicular to x 
displaced from the origin by q. Alternatively, all 
electrons with a momentum component equal to q 
along k will contribute to this quantity. 

In an independent electron model, the shape of 
J~(q) is determined mainly by the momentum-space 
electronic wave functions and by the Fermi surface 
topology. The Fermi surface determines the occupancy 
assigned to the quasi-particle states and can produce 
sharp structure on the otherwise relatively smooth 
q-dependence of the electron wave functions in this 
space [2, 4-6]. For most systems, the Fermi surfaces 
are not spherical and thus the occupancy effects in­
troduce anisotropies in the CPo These anisotropies 
have been measured in the case of nickel [7,8]. At 
the present time, no such direct measurements have 
been reported on aluminium. 

The wave functions that are used in this investiga­
tion have been generated in a band structure calcula­
tion[9]. The method of the band calculations utilizes 
a fully self-consistent modified-tight-binding scheme 
in a variational approach to the solution of the one­
electron Schrodinger equation. Detailed accounts of 
the method have been published elsewhere [9-12] and 
will not be elaborated here. 

The mathematical background necessary for the 
current investigation is displayed in the following 
section. In Section 3, the results are presented and 
discussed. 

2. PROCEDURE 

In the tight-binding method, the wavefunction 
for a state of wavevector g in band n, '" n(g,1), is ex­
panded in a set of localized orbitals (Wannier func­

-+
tions) Ui(r) according to: 

where the Cni's are contraction coefficients determined 
-+ 

self-consistently as described in reference 9. RJ.1 is 

a direct lattice vector marking the site about which the 

is localized.Ui 

The counterpart of Eq. (3) in momentum space 
may be expressed as 

(4) 

with 

r -+-+ -+ 3 
Xi(p) = ( ~ )Y2 J exp(-ip.r) Ui(r)d r, (5) 

--+ 
and Ks is a reciprocal lattice vector. 

At T=Ook, the momentum charge density can be 
written 

-+ -+ 1 -+-+ 12pep) = ns 9(Er-En(g)) l\I n(g,p) , (6) 

-+
where Er is the Fermi energy, EnCg) is the energy of 
a state, and 9 is a unit step function. 

9(x) = 1 if x~o, 

9(x) = 0 if x<O. 

Substituting Equation (4) into Equation (6): 

n.g 
.... 

i.s 

= 
....... 


.n.I.5 

(8) 

Equation (8) explicitly indicates that plies outside the 
Brillouin zone, and as far as the step function is con­
cerned the value ofp is brought back into the zone by 
subtracting the appropriate K:. This cannot be done 
with Xlp), which must be considered for all p. 

Equation (8) is substituted into (1) to give: 

n ( -+ -+ ~--+ 
J~(q) = - ~ J d3p 9(Ep- En(P-k,) ) B(q-x.p) 

(2~)3 ..... 
n.l.s 

(9) 

In order to gain some insight into equation (9), the 
CP of the core bands will be considered first. Figure 
1 displays the results for the three crystallographic 
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directions in aluminum. For these bands, the occupa­
tion numbers are always unity (Le. in Equation 9 
the step function is set equal to unit) and the CP is 
a smooth function of q. For the valence bands the 
corresponding results are displayed in Figure 2. In 
this figure the "occupancy effects" cause the dis­
continuity in the slope of the CP at qp. Specifically, 
imagine the infinite p-space to be partitioned into 
regions which are repetitions of the Brillouin zone 

-+ 
centered at reciprocal lattice points Ks' The representa­
tion of the Fermi surface will now be the one in the 

.... 1\ 

extended zone scheme. Denotep.x by PU' and the 
remaining components by ~. Then the integration 
over PII in Equation 9 can be done immediately to 
yeild: 
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Figure 1 Core-electrons contribution to the Compton profile 
of Aluminium. 
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In equation (10), whenever a plane perpendicular to 
~ at a distance q from the origin is tangent to any of 
these repeated Fermi surfaces, structure is to be ex­
pected in J~ (q). The amplitude of this structure will 
not be the same in each case because of the presence of 
I;(JI2 is expected to decrease with increasing q in 
order to remain square integrable. 

The actual computation of Jx(q) employed wave­
functions expressed as linear combination of Gaussian­
T~pe Orbitals. The numerical methods are the same as 
described in Reference [1]. In the next section the 
modifications introduced on the method will be pre­
sented and the results will be discussed. 

3. RESULTS 

For each set of the values reported in Table 4 
of Reference[l], a fit utilizing Generalized Orthogonal 
Polynomials [13] of degree 6 was effected. The tole­
rance accepted in the fit was 10.5 which assured that 
the results in Table 1 are correct to the number of 
significant figures reported. The last column of this 
table includes the values obtained for the average CP 
which was approximated by the zeroth order in a 
six-degree Kubic Harmonic expansion. 

Figure 3 is presented in order to display the agree­
ment between the theoretical and experimental results 
[14,15]. The anisotropy in the CP for crystalline alu­
minium is presented in Figure 4. 

The features in the anisotropy curves can be natu­
rally subdivided into five regions. In the region for 
q> 1.00 a.u., no appreciable anisotropy is displayed. 

The slight anisotropies are due to the W1 orbit on 

the Fermi surface [16] which is a second zone orbit. 

Examination of the entries in Tables 4 and 5 of 

Reference [9] is recommended at this stage. 

The second region is bounded by O.8<q<O. 97a.u. 

This anisotropy is definitely resulting from the W1 

orbit which has the following dimensions: 

r -X=O.90S a.u. ; r -W=O.967 a.u. 

and r -K=O.831 a.u. (9) 

The structure in this region is the most prominent and 

is about 3.5 %of J~(O). The reasons that this structure 
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has not been observed experimentally are first, that 
it occurs at the discontinuity in the CP curves (Figure 
3), and second, that the experimental resolution with 
the present techniques is of the same order the agree­
ment between the two experimental measurements 
114,151 is about 3 % in this region. 

The region for q values between 0.28<q<0.62a.u 
can be subdivided into two subregions; the first is 
that subregion which corresponds to 0.28 < q < 0.42a. u., 
resulting from the ~ orbit with dimensions 0.376 a.u., 
0.281 a.u. and 0.417 a.u. in the[100],[110]and[111]direc­
tions respectively. The second subregion results from 
the y,orbit. Since the dimensions of the Y, orbit overlap 
those of the ~, the amplitUde in the anisotropy for the 
0.28<q<0.42 a.u. region would be larger than that 
in the 0.42<q <0.62 a.u. 

Noting that the Y, orbit is "ellipsoidal" (see figure 
5) with a large eccentricity, the anisotropy in the 
0.0<q<0.28 a.u. region is derived from this orbit and 
particularly from its cross-section in the (110) plane. 
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Figure 2 Valence-electrons contribution to the Compton Figure 3 Total compton profile (excluding ls2 - like band) 
profile of Aluminium. of aluminium. Cl results of Manninen et al. (Refe­

rence 14). + results ofCooper et al. (Reference 15). 
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Figure 4 Calculated anisotropy in the Compton Profiles of 
aluminium. 
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Figure 5 "(5 orbit cross section in the (111) plane. 

Granted that the J~(q) is proportional to the area 
of the cross-section of the Fermi surface in the plane 
perpendicular to ~, the analysis displayed above lends 
itself also to explaining the relative amplitudes of the 
anisotropy in the various regions. The anisotropy 
due to the '" 1 orbit is the largest since the '" 1 orbit 
encloses the largest cross-sectional area. Similarly 
one expects the amplitude (excluding the superposition 
effect) in the region O.28<q<0.42 a.u. to be inter­
mediate to that with O.O<q <0.28 a.u. and 0.42<q<0.62 
a.u. The "(5 orbit consists of 6 electron-pockets, the ~ 
orbit consists of 4. Each of the units in the two 
orbits encloses approximately the same area. 

SUMMARY 

In this paper it has been demonstrated that the 
Compton profiles in crystalline aluminium are ani­
sotropic and that this anisotropy is intimately related 
to the topology of the Fermi surface and the cross 
sectional area of its orbits. It is also found that this 
anisotropy is small to be measurable by the present 
techniques. Experimental measurements with increased 
resolution should reveal the additional structure 
associated with the Fermi surface. Such measure­
ments on the CP may enable determinations of alloy 
Fermi surfaces under circumstances in which de Haas­
Van Alphen and related measurements are not possible. 
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TABLE I 

Total Compton profile of aluminum including the 

contribution from the 1S2 band. 

q J [100] J [110] J [111] <J> 

0.000 3.958 4.066 4.089 4.041 

0.100 3.945 4.043 4.032 4.012 

0.200 3.919 3.988 3.900 3.945 

0.300 3.816 3.766 3.736 3.772 

0.400 3.653 3.757 3.547 3.590 

0.500 3.384 3.326 3.315 3.339 

0.600 3.092 3.038 3.016 3.047 

0.700 2.718 2.676 2.634 2.678 

0.800 2.261 2.555 2.272 2.261 

0.900 1.705 1.746 1.909 1.776 

1.000 1.550 1.626 1.635 1.635 

1.200 1.537 1.527 1.531 1.531 

10400 1.414 1.416 10405 1.412 

1.600 1.279 1.280 1.283 1.281 

1.800 1.151 1.157 1.157 1.155 

2.000 1.043 1.049 1.052 1.048 

2.500 0.766 0.772 0.769 0.770 

3·000 0.523 0.525 0.526 0.524 

3.500 0.350 0.349 0.349 0.349 

4.000 0.263 0.263 0.263 0.263 

5.000 0.183 0.182 0.182 0.183 

6.000 0.140 0.141 0.140 0.141 

7.000 0.103 0.103 OJ03 0.103 
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