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ABSTRACT 
The definition of the Mobius function of classical number theory has been ex­

tended to locally finite partially ordered sets. In this paper, the definition of the 
Mobius function is extended further to locally finite networks. In the course of this 
extension, a family of convolution algebras is found which is equivalent to the net­
work. 

The definition of the classical Mobius function has We now associate a family of partially ordered 
been extended to partially ordered sets. See for example sets with the network N = (V, E, p). For v ~ 0, the 
the important 1964 paper by Gian-Carlo Rota (1), v-poset of N will be defined as the digraph v-po(N) = 
or the 1969 expository paper by Robin Wilson (2). (V, ~ v ) where x ~ v Yiff x = y, or if x and yare 

adjacent {x, y} E ExE) and v + p(x) < p(y). Easily,
The purpose of this paper is to extend further the 

if v~O, then v-po(N) is indeed a poset
definition of the Mobius function to locally finite 

The isopotential graph of N will be defined as the networks. In the course of this extension we define 
graph isop (N) = (V, I) where {x, y} E I iffx and yarea family of algebras equivalent to a network and make 
adjacent in Nand p(x) = p(y).an analogy corresponding integration to a type of 

union of certain digraphs. This paper is restricted to Example 1. 
locally finite networks in order to emphasize the graph 

As an imprecise, but intuitive example of the two theoretic detail and minimize the analytic difficulties. 
definitions above, consider the surface of the earth as a Later work will attack the analytic problems. 
network with the potential p(x) equal to the height of 

Section 1: Definitions and Examples point x above sea level. The isopotential graph consists 
of all curves of constant elevation, a topographic map In this paper, a graph (V, E) consists of a non­
of the earth. The v-posets contain all curves of direc­empty set V, called the ~Iertices, together with a set 
tionalE of unordered pairs of vertices (x, y), called edges. derivative greater than v. 


Thus loops will be permitted, but never multiple or A reconstruction of the Earth's surface is possible 

parallel edges, A digraph (directed graph) (V, A) from the usual topographic map because the curves 

consists of a set V ¥- 4>, together with a set A of ordered of constant elevation are labelled with their elevation. 

pairs (x,y) of vertices, called arcs. But the isopotential graph has no such potential in­


dicated upon it; it consists solely of curves. However, 
A network N = (V, E, p) is a graph (V, E) 

we shall see that the network edges and potential
together with a realvalued function p defined on V. 

are both recoverable (up to an additive constant)
Call p, the potential function of N. The theory pre­

from the v-posets and the isopotential graph. 
sented here requires only trivial modifications, if a 
network is defined to be a graph together with In order to concentrate on the graph theoretic 
F:E -+Re, a flow. detail, rather than analytic detail, we begin the defi­
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nition of, then restriction to, locally finite networks. 

If (V, E) is a graph, then define a chain of (V,E) 
to be an alternating sequence ( ... , ej_l , Xj' ej, xj+I, ... ) 
such that each vertex Xj is adjacent to by the xj+1 

edge ej, and such that no vertex nor edge is repeated 
in the sequence. The length of a chain is defined to 
be the number of its edges. 

If (V, A) is a digraph, then define a chain from 
XI to Xo to be an alternating sequence (XI' ai' x2, ... , 

a 1-0' xo) such that each arc a j is oriented from its 
end vertex Xi to xj+I' and such that no vertex nor 
arc is repeated in the sequence. If no confusion results, 
mention of the edges (or arcs) of a chain will be fre­
quently supressed. 

If N=(V, E, p) is a network, then given vertices 
x, z EV and v~O, the closed v-interval [x, z]v is defined 

by [x, z]v= {yEVlx~vy~vz}.Sincetheremaybe 
more than one chain from x to z, [x, z]v need not be 
a chain. 

The network N will be called locally finite if for 
all x, z E V, and all v>O, the three sets; [x, z]v' the 
set of all vertices adjacent to x, and the edges I of the 
isopotential graph (V, I) are all finite. Therefore, 
if N is a locally finite network, then all of the v-posets 
of N are locally finite posets. 

Henceforth, all networks considered in this paper 
will be locally finite and the term "network" will be 
redefined to mean "locally finite network". 

Following standard procedure, for v:(O, the v­
incidence algebra of N, v-alg(N), is defined as the 
incidence algebra of v-po(N). The Mobius function 
of v-alg(N) will be denoted by J.1v' 

Example 2: 
-. 

Let Z+ be the digraph consisting of the positive 
integers ordered by divisibility. Then Z+ is the graph 
naturally associated with 

~ 

Z+. Note that Z+ is a 
direct product of the ~hains 1 Ip Ip2 1· .. , for p a prime. 
Regard p as the coordinatizing function p(n) = n. 
Thus J.1v is the classical Mobius function for 0 ~ v< 1. 

Example 3: 

The numbers beside the vertices of the left-hand 
graph indicate their potential. 

network N isopotential graph (V,I) 

The cover graphs below indicate the various v-po(N). 
A decending line indicates a cover relation. 

O~v<l 1~v<2 2~v<3 3~v<5 

For 5 ~ v, v-po(N) is discrete. 

There are several things to notice in this example. 
First, the union of these cover graphs and the isopot­
ential graph gives the edges of the original network. 
Second, given anyone edge, e, the set co(e) of non­
negative v such that e is in the cover graph of v-po(N) 
is an interval closed on the left, open on the right. 
Third, the least upper bound of co(e) is the potential 
difference between the two end vertices of e. 

These observations are true in general, and provide 
a means of recovering a network from its collection 
of v-posets, hence of recovering a network from its 
collection of incidence algebras. 

Given a network N, denote the cover graph of 
v-po(N) by v-co(N)= (V, Cv)' 

Section 2: Families of Algebras Equivalent to a Network. 

We shall see that the collection of the v-cover 
graphs of N (or equivalently, the collection of the v-po 
(N», together with the isopotential graph characterizes 
the network N. 

IfN = (V, E, p) is a network, let E be the edges of 
E oriented from higher potential to lower. It the end 
vertices of e E E have the same potential then e re­
mains unoriented. Thus (V, E) is the union of a 
digraph and the isopotential graph. Regard an edge 
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e E E as an arc by orienting e in both directions. 

If ch(x,y) is a chain of E from y to x, then define 
m ch(x,y) as the minimum of lp(b) - p(a)1 where b 
and a vary over all pairs of adjacent vertices of ch(x,y). 
Since N is locally finite, m ch(x,y) is finite. For x, y E V, 
let [x,y] be the union of all chains from y to x. If 
(x, e, y) is a chain from y to x, then define Mm[x,y] = 
l.u.b. { m ch Ich :I: (x, e, y) is a chain of E from y to 
x). Since N is locally finite, Mm [x,y] < 00 . 

The following gives an arithmetic characterization 
of the statement that a is an arc of the cover graph 
v-co(N). 

Lemma: 

IfN= (V, E, p) is a network and if (x, e, y) is a chain 
of E from t to x, p(x)<p(y), then co(e) is the half 
closed, half open, interval [Mm[x,y], p(y)-p(x». If 
p(y) = p(x), then the interval co(e) is singleton {o}. 

Proof: 

If p(x) = p(y), then the lemma is obvious. If p(x)< 
p(y), and if ch :I: (x, a, y) is a chain from y to x, then 
m ch ~ p(y) - p(x). Hence Mm[x,y] ~ p(y) - p(x). 
For all v such that Mm [x,y] ~ v ~ p(y) - p(x), we 
have a E Cv, since clearly a is an arc of v-po(N) and 
if y does not cover x by a, then v < Mm[x, y]. Hence 
the half open interval of the lemma is a subset ofco(e). 

The reverse inclusion follows by assuming v E co(e). 
Then v < p(y) - F(x) is clear. If v < Mm[x,y], then 
there is a chain ch:l: (x, a, y) of E from y to x such 
that v < Ip (w) - p(z) Ifor adjacent vertices w, z of ch. 
But the existence of such a chain ch denies that y 
covers x by a. 

Theorem: 

Let e be an indexed collection containing some 
cover digraphs and exactly one finite graph I. There 
exists a network N = (V, E, p) such that e is the 
collection of cover graphs of N and the isopotential 
graph of N if and only if each of the following hold: 

I. 	 Each cover digraph of e and the finite graph 
lEe has the same set of vertices V, 

2. 	 The cover digraphs are indexed with v ~ 0, 

3. 	 If the vertex y covers x in some cover digraph in 
e, then for all of the cover digtaphs in e, x 
never covers y, 

4. 	 Denoting the cover digraphs of C by (C,Cv), 

the set of edges of I E C is disjoint from the graph 

associated with the digraph (V, U Cv), 


v ~o 

5. 	 For a E Cy , recall the definition of co (a) = {v~ 0 

Ia E Cv}, then co(a) must be an interval of the 

form (ua, va], 


6. 	 U {co(a) Ia E Cy , v> o} = [0, b) for some 


b < 00, and 


7. 	 Kirchoff's law on the sum of voltage differences 

around a circuit must apply to (V, Ue). More 

precisely, for every circuit Cc ue, we have ~ +va 


aEc 

=0 where if a E C is traversed with its orient­
ation, + va is taken; -va otherwise. 

Before proving this theorem we state a corollary. 

If we begin with a network N = (V, E,p) and let e 

= {v-co(N), (V, I) I~ 0 }, then apply the cons­

truction of the above theorem to C we obtain a net­

work N' = (V', E', p'). The corollary states a type 

of uniqueness in the fact that V' = V, E' = E and p' 

differs from p by a real-valued function c which is 

constant over any connected component K. Therefore 

if N is connected, then the edges and potential of N 

can be recovered from the collection of v-cover graphs 

of N and the isopotential graph of N, up to an additive 

constant on p. 


Corollary: 

Let N = (V, E, p) be a network and let e be the 

collection of the isopotential graph (V,I) and all the 

v-cover graphs of N. Then: 


1. 	 The graph (V,E) is the undirected graph asso­

ciated with the mixed directed and undirected 

graph (V, Ue). Further, E= ue. 


2. 	 Let K be any connected component of (V, E), 

then define p' : K -+ Re by the following inductive 

procedure: 


Select any vertex Xl E K and assign p' (Xl) = c 
where c is any constant. Now, if p' (xJ is defined, 
let Xi+l be any vertex adjacent to Xi by an arc a of 
U e. Then Ip' (Xi+l ) - p' (Xi) Iis the least upper 
bound of co(a) where the orientation of the arc ind­
icates which potential of these vertices is higher. If 
a is an edge of U e, then define p' (Xi+l ) = p' (xJ 

This defines p'. Claim: p-p' is constant on K. 
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Proof of the theorem: 

If a network is given, the necessity stated in the 
theorem is straight-forward. To prove the sufficiency, 
Jet an indexed collection e with the required proper­
ties be given. We must construct a network N = (V', 
E/,p'). Take V' = V and define (V, E/) to be the 
graph associated with the mixed directed and un­
directed graph ue. Define p' by the inductive pro­
cedure of part 2 of the corollary taking Ip' (Xi+1) ­

p' (Xi) I= Va of condition 5. Condition 7 of the 
theorem is exactly what is needed to show that p' is 
single-valued. Among other implications, condition 6 
implies that p' (x) is always finite . The network N 
is now constructed. 

We must show that e = {v-co(N), isop (N) Iv~O}. 
Let E be the edges of N oriented from higher potential 
p' to lower. First we establish E= ue. Note E ::::> ue 
is trivial. To see the reverse inclusion, let the edge 
e E E connect vertices x, y. If p' (x) = p' (y), then C E 

isop (N), hence done. Th~refore assume p' (x) < p' (y). 
The lemma establishes the existence of v~O such 
that c E C cue. Therefore E= ue.v 

Clearly the finite graph of e is isop (N). Now let 
v-co(N) be given. By condition 6 there is a cover 
digraph Cv E e. We need v-co(N) = Cv , but con­
dition 5 guarantees this. Hence {v-co(N), isop(N) I 
v~O} c e. To obtain the reverse inclusion let Cv E e 
be given. To see v-co(N) = Cv' consider any chain 
(x,a,y) of Cv from y to x. By condition 5, 
va<P'(y) _p' (x). By the lemma then, (x,a,y) is a chain of 
v-co(N). Since E = ue, (x, a, y) is a chain of v-co(N) 
from y to x. Hence v-co(N)::::> Cv ' 

The reverse inclusion obtains from condition 5 
and the definition of p', hence v-co(N) = Cv and 

{v-co(N), isop(N) I v> O} = e, and this finishes the 
proof of the theorem. 

In addition, the corollary has been proved above, 
except for the last claim of part 2. We show that for 
all z E K, p(z)-p (z) = p(x) - c (*)where X=X1 was 
the initial vertex of the inductive procedure defining 
p'. Let ch [x, z] be the set of all chains with end vertices 
x and z. Define l (z) as the minimal length among 
all chains in ch(x, z). We induct on the range of las 
z varies over K. 

If l (z) = 0, then x = z and (*) holds. Now suppose 
(*) holds for all minimal lengths, less than the minimal 
length n. Let C E ch[x,z] be any chain with this minimal 
length n and let y E C be adjacent to z. Then the induc­
tion hypothesis holds for the subchain of C with end 
vertices x and y. Hence p(y) - p'(y) = p(x) - c. 
Observe p(z) - p(y) = p' (z) - p(y), and combine the 
two equations to obtain. (*). 

We have found a network equivalent to some 
families of convolution algebras. 
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