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ABSTRACT 

A system of constitutive equations applicable to elasto-plastic metals sUbjected 
to large deformations has been proposed. These equations, written in the material 
form, combine the kinematic and the isotropic hardening models. A method of 
experimental determination of the necessary material parameters has been demons­
trated for the case of an aluminum alloy. 
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CONSTITUTIVE EQUATION FOR 

WORK-HARDENING PLASTIC MATERIALS 


1. 	 INTRODUCTION 

An extensive research effort has been devoted in 
recent years to the analysis of elasto-plastic deforma­
tions of various structural elements and solid bodies. 
Numerous successful solutions have been obtained, 
mainly with the use of the finite element method and 
electronic computers. A large majority of the published 
results deal with the small-deformation problems. 
(An excellent review of the basic approaches and a 
comprehensive bibliography of the subject can be 
found in [1, Ch. 18]). Although there are several im­
portant contributions to the problem of large elasto­
plastic deformations [2-4], it appears that a thorough 
investigation of the implications of the assumption 
of arbitrarily large strains and rotations has not been 
made. In fact, even the foundatiQDS of the theory of 
plasticity at large strains have been formulated only 
recently and are not devoid of certain controversial 
aspects (see, for example [5, 6 and 7]). 

This paper deals with the problem of large elasto­
plastic deformations of materials which initially display 
linear elasticity followed, at increasing loading, by 
plastic strains with no rate, or viscous effects. This kind 
of mechanical behavior is typical for structural metals. 
The topics included in this paper are: (a) a system of 
constitutive equations; (b) an experimental procedure 
for the determination of a smal1 number of material 
parameters. 

The constitutive equations formulated in this paper 
have been selected for possible applications in two 
areas: large deformations of elastoplastic structures 
and - perhaps more demanding - mechanics of cold 
forming of metals. 

2. 	PRELIMINARY DEFINITlONS AND 
RELATIONS 

The following is a brief summary of the concepts of 
continuum mechanics which are used in this work. 
This section is based on the monograph by Truesdell 
and Toupin [8]. 

Displacement 

Let Bo be the initial, or undeformed, state at t=O, 
and B the current, or deformed, state at some time t 

Figure 1. Coordinate systems and description of displacement. 

(Figure 1). The displacement of the body is described 
by 

k=I,2,3 (2.1) 

or xA=XA(Zl'Z2,z3;t), A= 1,2,3 (2.2) 

The usual assumptions of singlevaluedness and con­
tinuity with 

°< det\aZk \ == J< 00 	 (2.3)
aXA 

are made with regard to Equations (2.1) and (2.2). 

Under the conditions shown in Figure 1, the 
components of u are related to Zk and XA by 

u l =Zt-xl' U2=Z2-X2' U3=Z3-X3 (2.4) 

The material and spatial forms of the displacement 

vector are uA=UA(X t X x3,t), A = 1,2,3, and Uk = 
" Uk(Zl'Z2,Z3,t), k= 1,2,3, respectively. 

The velocity vector v is defined as 

auA(x,t) (2.5)vA = at 

or, equivalently, 
aZk(x,t) (2.6)v k = ---:a:--t-­

The expression (2.5) results in the material form of v, 
if in Equation (2.6), the variable x is replaced by z 
(using Equation 2.2), the spatial form of the velocity 
vector is obtained. 
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Strain 

The material strain tensor is defined as 

(2.7)eAB=t(~kl ::: ~;B - OAB) 
or, in terms of the displacement vector, 

l(OUA OUB oucoucj
eAB="2 - +- + (2.8)oxB 0 xA 0 xA 0 xB 

The changes of length of a line segment dlo at Po 
can be computed as 

dP - d~ = 2eAB dx.AdXB 
or 

(2.9) 

where lOA are the components of the unit vector along 

dlo' 

The spatial strain tensor is defined as 

1 ( 0 xA 0 xB ) (2.10)h k 1= "l Okl - 0 Zk 0 Z1 0AB 

or hkl = t( OUk + 0 _ OUm OUm) (2.11)oZl 0 Zk 0 Zk 0 z\ 


The terms of hkl' the length changes are 


dP - dl~ = 2hkl dZk dz, (2.12) 
or 

(2.13) 

where I k are the components of the unit vector along 
dl at P. 

The measure of extension defined as 

e = dl ~ dlo (2.14) 
o 

is frequently used in describing the results of unixial 
testing of various materials. It can be related to the 
components of the material or spatial strain tensors. 
For example, for a line segment dlo whose initial 
direction at Po was parallel to Xl' 

(2.15) 

The volumetric strain dVjdV is equal to the,o 

Jacobian determinant J defined in (2.3). 


Strain rates 


The material strain-rate tensor is defined as 


. oeAB 

eAB = (2.16)~ 

whence 

~t dF = 2eAB dXA dXB (2.17) 

The spatial strain-rate tensor is defined as 

d _ 1 (OV k 0 VI)
kl - 2" ~ + 0:: (2.18)

uZ t Zk 
whence 

(2.19) 

The condition of incompressibility has a simple 
form in terms of dkl' namely, 

dkk = 0 (2.20) 

The following relation exists between the material 
and the spatial strain-rate tensors; 

OZk ~ 
(2.21)

OXA oXB 

Stress 

Let ten) denote the stress vector, or surface traction, 
acting on the area element at P with the unit normal 
vector n (note: t(n) is force per unit area of the deform­
ed body), In terms of the spatial, or Cauchy, stress 
tensor tk1 , the components of t(n) are 

(2.22) 

In this work, the material, or Piola-Kirchhoff, 
stress tensor will be used. Its definition is 

oXA OXB 
SAB = tkl J 0- r­ (2.23)

Zk uZ1 

The components of the stress vector P(n) defined as 
the surface force per unit area in the undeformed 
body, i.e. 

can be expressed in terms of tkl or SAB in the follow­
ing manner 

t J OXA DoA (2.24)P(n)1 = kl oz 
k 

OZI= SAB --nOA
OXB 

It is understood that P(n) acts on an area element 
whose unit normal in the initial state is Do' 

Stress-rates 

In terms of the material stress tensor SAB' an 
objective stress-rate tensor is 
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. OSAD (2.25) 
SAB = Ot­

provided SAB in (2.25) is given as a function of the 
material coordinates x and time t. 

Principle of Virtual Work 

Let fA be the components of the body forces per 
unit volume of the undeformed body, and PA the 
components of the surface forces per unit area of 
the undeformed body. The condition of equilibrium 
can be written in the form of the following Principle 
of Virtual Work (material form):

LsAD OeADdV- ~/A /luAdV - ItA /luAdS=O (2.26) 

where ~UA are the virtual displacements and oeAB 
the corresponding variations of the material strain 
tensor. In (2.26), V is the volume and S the bounding 

surface of Bo' 

Matrix notation 

In addition to the indicial notation used above, 
the matrix notation appears to be helpful in some 
applications. The displacement, body force, and 
surface forces matrices are column matrices, 3 x 1, or 
vectors with the components: 

Tu	 == (UI'U2,U3) == (u,v,w) 

rT == (fl,f2,f3) 	 (2.27) 

pT (PI,P2,P3) 

The strain matrix is the 6 x column matrix 
Te (ell' e22, e33, 2e12, 2e23, 2e31) (2.28) 

and, similarly, the stress matrix. 

ST (Sll' S22' S33' S12' S23' S31) (2.29) 

Note that the expressions SAB ~eAB' fA ~UA' etc., 
read now: 

oeTs==sToe, OUT f=fT OU etc. 

3. 	CONSTITUTIVE EQUATIONS 

The constitutive equations used in this work are 
based on the general theory of plasticity at large strain 
presented in [5]. 

The material strain tensor eAB will be decomposed 
into two parts: e lAB which will be called the elastic 
strain and e"AB' the plastic strain. Thus, 

(3.1) 
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The assumption is made that e'AB and e"AB have the 
same invariance properties as eAB ; however, only 
eAB corresponds to a continuous displacement field. 

/For the elastic strain e AB, it is postulated that 
it is a linear function of stress, i.e., 

SAB = EABCD e'CD 	 (3.2) 

or in the matrix rotation 

s=Ee' 	 (3.3) 

where E is a 6 x 6 symmetric matrix. The form of the 
elastic modu1i matrix is well known for isotropic 
materials. 

The plastic behavior of the material is specified in 
the following manner. The existence of the yield surface 
in the form. 

(3.4) 

is postulated. The function f(SAB' e"AB'X) is the loading 
or yield function, while x is the hardening parameter, 
which is a functional of plastic strain. Furthermore, if 

f=O and oOf SAB >0 (3.5)
SAB 

then e /IAB =F 0 and 'X. =F 0 and it is assumed 

/I "( " )e AB= e AB SCD,SCD' e CD 	 (3.6) 

If 
of .

f = Oand -0 SAB <0 	 (3.7)
SAB 

or, if 

f< 0 (3.8) 
then 

e"AB = 0, Yo = 0 	 (3.9) 

In selecting the form of the function f, the para­
meter x , and the relation (3.6), certain generally 
recognized facts of the plastic deformation of metals, 
especially such as low-carbon steel and aluminum 
should be utiJjzed. They appear to be the following: 

1. 	 The Mises yield condition and the associated 
flow rule are satisfactory forms of (3.4) and 
(3.6) in the small deformation plasticity theory 
of metals. 

2. 	 The hydrostatic state of stress has no effect 
on the plastic behavior of metals even at large 
strains. 

3. 	 There are no plastic volumetric strains. 
Certain difficulties exist in establishing a model 

for the changes in the yield surface caused by past 
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histories of plastic strains. Reference [9] contains 
an exhaustive review and bibliography of 131 works on 
this subject. In addition to the known experimental 
problems connected with the generation of complex 
states of stress and the measurement of the correspond­
ing strains, the results are extremely sensitive to the 
particular way of defining the yield point and, for a 
given material, they depend on the mechanical and 
thermal treatment of the specimens. 

A systematic study of the subsequent yield surfaces 
is a serious research topic for itself and clearly beyond 
the scope of this work. Also, an important constraint 
against too complicated material relations is their 
adaptability in a workable computing scheme. For 
these reasons, in formulating the yield function, a 
simple hypothesis involving a possibly small number 
of material parameters has been assumed. It allows 
for a relatively simple determination of the material 
parameters from a uniaxial tension-compression test. 

Two frequently discussed models of subsequent 
yield surfaces have been considered. They are the 

(0) 

-------1 

25 0 

-___'J 
Figure 2. Kinematic hardening: (a) changes of the yield surface 

under uniaxial stress: (b) uniaxial stress-strain relation. 

(01 (b) 

-+-+_-+----.:.:..t--I-:...::!.-_.....5 I 

Figure 3. Isotropic hardening: (a) changes of the yield surface 
under uniaxial stress,' (b) uniaxial stress-strain relation. 

kinematic hardening model, shown in Figure 2, and 
the isotropic hardening model, shown in Figure 3. 
The proposed hypothesis,expressed by Equation (3.10) 
contains both these models. The kinematic hardening, 
is controlled by the constant c1, and the isotropic 
hardening by c2' 

The experimental data obtained in this research 
seem to indicate, however, that for large plastic strains 
in a stress reversal, the isotropic hardening model leads 
to reasonable approximations. The typical form of 
the uniaxial stress-strain relation obtained for an 
aluminum alloy is shown in Figure 4; detailed results 
of the tests performed are discused in the second 
part of this section. 

Figure 4. 	 Typical uniaxial stress-strain relation under stress 
reversal (continuous line) and isotropic hardening 
model (broken line). 

In the spatial form, the loading function and thf" 

flow rule which possess the above features are, respec­

tively, 


f=t(tk1-c1h" kl) (tkl-c1h" kt)-k2-c2 x = 0 (3.10) 

and 
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(3.11) 

where 
- 1 ~ 
tkl =tkl - 3" tmm Ukl (3.12) 

in the deviatoric stress. 

i = tkl d\l (3.13) 

is the rate of plastic work, and Ais a scalar function. 
The constants k, cl' and C2 describe the initial yield 
stress, kinematic hardening, and isotropic hardening, 
respectively. The absence of the hydrostatic stress in 
(3.10) is evident; similarly, the lack of plastic volum­
metric strain can be verified in (3.11) 

d" kk = At kk= 0 	 (3.14) 

In order to express the loading function and the 
flow rule in terms of the material stress and material 
strain, use must be made of Equations (2.21) and 
(2.23). The following expression results for f 

f == t [(SAB aZk aZI J-ISCD aZk aZI J-l) 
aXA aXB axc aXD 

aZn _ 	 l (s aZm aZm J-I s aZn J-1 )] ­
3" EP aXE axp OH axo aXH 

" J-l- c1 Su e u 

(3.15) 

with 
. . . J 1 
X = SAB eftAB -	 (3.16) 

If the kinematic hardening is neglected, Le., =0c1 

the function f becomes 

aZk aZI J-I aZk.E!:.1 J-I­
f == 1_ SAB a- -a SCD -a a

"I [ 	 XcXA XB XD 

aZm aZm J-1 Ii aZn aZn J-1 ] 

- 1s EP aXE axp OH axo aXH 


(3.17) 

k2 
- c2x = 0 

The flow rule (3.11) is transformed as folJows 

af af aSCDd"kl=A -A - ­
- at l'!at kl aSCD 
afaxc aXD=A -J - ­

aSCD aZk aZI 

Multiplication of both sides of the above equation by 

aZk az 
_I yields

axA aXB 

af 
e"AB = A 	 (3.18)

aSAB 

(with A = J A). 

It should be noted that the function A is not in­
dependent. Its value must be such that for any plastic 
deformation the stress point remains on the yield 
surface, i.e., Equation (3.4) is satisfied. The following 
steps result in the elimination of A and a system of 
relations between the stress-rate tensor SAB and the 
strain-rate tensor eAB. 

Combining (3.2) and (3.18), 

af ) (3.19)SAB=EABCD (eCD - A as 
co 

Differentiation of f=0 with respect to time yields 

af. af ." af. 0 
-a SAB+ a-elf e AB + av x = 

SAB AB '" 

or, with (3.16) and (3.18), 

af. (af af) ~ =0 (320)- SAB+ a-/f- + ox: SAB A as .aSAB e AB 	 AB 

The above equation could be solved for A . The result­
ing expression, however, would become indeterminate 
for a perfectly plastic solid. Furthermore, the resulting 
relation between the stress-rate tensor and the strain­
rate tensor would be implicit rather than explicit. 
To avoid these shortcomings, Equation (3.19) is mult­
iplied by af/ asAB' with summation in A and B, 

af . ( . af) af 
-s SAB= EABCD eCD- A a;- asaAB 	 CD AB 

and subtracted from (3.20) 

af af af af ar . (- +-s J-1)A - =AEABCD - - ­
.. 	 aeAB" ax AB aSABOSCDaSAB 

af . 

-EABCD eCD
~ 

VSAB 

The function A is now 
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with the above A, Equation (3.19) becomes 

SAD = EADCD [eCD ­

of. of 
OPQR RQ 

OP CDE as e as J 
( of -.£f.. )_( of + ..E£ s J-l) ~ 
EEFGH O~F OSGH oe"MN oX MN OSMN 

(3.22) 

which is the sought relation between SAD and eAD 

In matrix notation, Equation (3.22) reads 

s= De (3.23) 

where D is the elastic-plastic moduli matrix. 

A series of unixial tension and compression tests 
have been performed for the aluminum alloy 2024, 
temper T4. The purpose of the tests was: (a) the exposi­
tion of the character of the hardening model (isotropic 
vs. kinematic) ; (b) a verification of the general validity 
of the proposed form of the constitutive equations; 
(c) the determination of the material parameters to 
be used in numerical examples. 

Tubular specimens (0.5 in. outer diameter, 0.25 in 
inner diameter, 1.0 in. gage length) were prepared 
from slabs of 2 in. thickness. The relatively smal1 
gage length - outer diameter ratio was selected to 
reduce the effect of possible eccentricities in the com­
pression test. 

The testing machine was a Universal Testing 
Instron, model TTD, of 20,000 lb. loading capacity. 
The strains were measured with electrical, resistance 
type gages (maximum strains up to 4 %) and With an 
optical gage (strains up to 8 %). 

The results of tension tests including unloading 
and loading in compressions are shown in Figure 5, 

Load (lb) 

12000 

-12000 

Speclm.n I . 

Specimen 2. l 

Specimen 3'" 

Figure 5. 	 Load-elongation curves for aluminum alloy 2024 T4. 

S, (k,i I 

70 

Specim.n 2 Ie 

Specimen :3 + 

Theorefical ., [d'f; 56 kli ] 
C2-901", 

-40 

-50 

-60 

-70 

Figure 6. 	 Theoretical and experimental relations between material 
strain el and Piola-Kirchhoff stress SI. 

where the load is plotted vs. elongation e =(L-Lo)/Lo' 
Figure 6 shows the theoretical and the experimental 
relations between the material strain component e1 

and the Piola-Kirchhoff stress component SI' 

SUMMARY AND CONCLUSIONS 

A system of constitutive equations applicable to 
elasto-plastic metals subjected to large deformations 
has been proposed. These equations represent the 
simplest generalization for the large-deformation condi­
tions of the classical theory of plasticity of metals based 
on the Von Mises yield conditions and the associated 
flow rule. The material formulation of the kinematical 
and dynamical relations has been used. The proposed 
equations combine the kinematic and the isotropic 
strain hardening models. A method of experimental 
determination of the material parameters (the initial 
yield stress, 'the kinematic hardening coefficient, and 
the isotropic hardening coefficient) has been demons­
trated for the case of the aluminum alloy 2024 T4. 
It has been found that for sufficiently large stress 
reversals, resulting in the strain recoveries of at least 
two to three percent , the isotropic hardening model 
represents a fairly reasonable approximation of the 
actual behavior. 

The work described here seems to demonstrate 
that certain topics require further extensive investiga­
tions: 

1. 	 Development of more general hardening rules. 
The yield function containing a linear term of 
plastic work, as in this paper, can hardly be 
expected to cover a large variety of metals. 
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fA = 	 components of the body forces per unit
2. Experimental data on the elastic-plastic be­

volume of the undeformed body havior of metals in complex states of stress and 

at large strains. 


components of the surface forces per unitPA = 
area of 	the undeformed body NOTATION 

Bo 	 initial, or undeformed, state at time (t=O) bUA = virtual displacements 

variations of the material strain tensor B = 	 current, or deformed, state at some time t beAD = 

Zk = 	 spatial description of the displacement of uT = displacement matrix 

the body. 
fT = body force matrix 


= material description of the displacement of
xA 
the body. 	 pT = surface force matrix 

T 
uA 	 material form of the displacement vector e = strain matrix 

ST 	 Stress matrixUk 	 spatial form of the displacement vector = 

e/AD = 	 elastic strainVA 	 velocity vector 

E 	 6x6 elastic moduli matrixeAD = 	 material strain tensor = 

hkl = 	 spatial strain tensor x. = hardening parameter 

-dlo = 	 changes of length of a line segment A,A = scalar functions 

lOA = 	 components of the unit vector along dlo at Po k,C1,C2 = constants 

1k = 	 components of the unit vector along dl at P. J = Jacobian 

E = 	 measure of extension D = elastic-plastic moduli matrix 

dVjdVo = volumetric strain 
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