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ABSTRACT

In this paper, we show that the entropy of degree o cannot be generalized in a
natural way from the discrete to the continuous case. Since the non-standard
analysis fails to do this extension, we define what we call the sup-entropy of degree
o which can be extended naturally from the discrete case to the continuous case.
Moreover, we study the properties of the new suggested entropy. A brief review of
the application areas of the new entropy is given.
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SUP-ENTROPY OF DEGREE «a

1. INTRODUCTION
There are four types of information measures:

(/) Parametric measures such as the Fisher
information.

(i) Non-parametric measures such as the
Kullback-Leibler measure.

(iii) Entropy measures such as the Shannon
entropy, and

(iv) Statistical information measures such as
the likelihood function.

For more details the reader is referred to Ferentinos
and Papaioannon [1] and Basu [2].

One of the oldest and most widely used measures
of entropy is Shannon’s entropy [3]. This measure
proved to be successful in the analysis of communi-
cation systems. It was also the basis for several
extensions, see for example Csiszar [4]. Several
characterizations of this measure have been consi-
dered in the literature. These characterizations
depend on one of the following approaches:

() Maximum probability approach (see for
example Kapur [5]).

(ii) Probabilistic axiomatic approach (see for
example Frote and Ng [6]).

(iii) Non-probabilistic axiomatic approach (see
for example Cerny and Brunovsky [7]).

(iv) Parent function approach (see for example
Behara and Nath [8]).

We will now review some of the extensions of the
Shannon entropy.

Let X be a discrete random variable taking values
Xy,-..,X, with probabilities p,,...,p,. One of the well-
known entropies is the Shannon entropy which is
defined by:

H.(X)=H,(py,----pn) =~ Zl pilogp;,. (1)

If X is a continuous random variable with density
f(x) then its Shannon entropy is defined by:

HX)=- J. f(x) log f(x) dx .

One way to generalize the Shannon entropy from the

discrete case to the continuous case is to partition the
range of X into n intervals A,,...,A, of equal lengths
Ax, then

p;=P(X € A) =1(x,)Ax
where x; is some point in A;. So one expects

H(X) = hr_r}o Hn (pb'"’pn)

= tim | - 3 {atx) ax log ft) A |

It is well known that the entropy of a continuous
distribution defined by Shannon [3] is not a natural
extension of the entropy of a discrete distribution
despite their analogous forms. Ingels (reference [9],
pp. 91-92) showed that if X is a continuous random
variable with density f(x), then the average Shannon
entropy of X is

500 =tim, | - £ ) 29 10g, () 4 |

i=-—

= —.r f(x) log, f(x) dx—gm0 (log, Ax).

The divergent term, limo (log, Ax), will not allow us

to define the Shannon entropy of a continuous
random variable X as

HX)=- r f(x) log, f(x)dx.

Ozeki [10] used non-standard analysis to overcome
this difficulty. He has shown that if X is a continuous
random variable then for any positive infinitesimal
dx the non-standard Shannon’s entropy of X is

*H(X, dx) = *¢(dx) — *log,(3x)

where *a denotes the hyperreal number a. He has
noted that for any positive infinitesimal dx, the
standard part of *¢(dx),

st(*¢(dx)) = — I f(x) log, f(x)dx

coincides with H(X). The second term —*log,(dx)
is a positive infinite hyperreal number and it is inde-
pendent of the density of X. This justifies the use of
H(X) as the entropy of X. For the details of the
terminology of non-standard analysis, the reader is
referred to Keisler [11].

The Arabian Journal for Science and Engineering, Volume 12, Number 4.



Awad [12] suggested another approach to over-
come this difficulty. He suggested an extension of
the Shannon entropy, namely,

AX)== L p1og (p/s) @

where s =sup{p,,...,p,} and p,,...,p, are the probabi-
lities assumed by the discrete random variable X. He
has shown that this definition can be extended
naturally to the continuous case as

AX) = —j f(x) log (f(x)/s) dx

where s = sup f(x).

The Shannon entropy has been generalized in two
directions in the literature, namely, the entropy of
order a (Renyi’s entropy) and the entropy of degree
a. If X is a discrete random variable with probabili-
ties, py,...,p, then the entropy of order a is

(X)) = R (X) =

log Zp‘,?, a¥l, a>0(3)
i=1

l1-a

and the entropy of degree a is

1 n
H:(X)=W(__le°;—1), a#l, a>0. (4)

These are extensions of the Shannon entropy
Equation (1), since

lim H,(X)=lim Hi(X)=H,(X).

In Section 2 we will show that H,(X) and H;(X)
cannot be generalized naturally to the continuous
case. The non-standard analysis will fail to extend
H3(X) to the continuous case even though it is
successful in both H,(X) and  H,(X). However,
Awad’s approach will be successful in both the cases
H;(X) and .H,(X). Section 3 gives some properties
of the new generalizations of  H,(X) and H(X).
Section 4 gives a brief survey of statistical applica-
tions which support the use of the new entropies
instead of the entropies (1), (3), and (4).

2. SUP-a-ENTROPY

Let X be a continuous random variable with
density f(x); then it can be shown that:

. 1 . y "
fim, oH,(X)= 7= lim, log 2, (1(x)ax)

= H(X) - Rr_go (log Ax)
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where

JH(X) =

logjf"(x) dx.

1-a
Using Ozeki’s approach it can be shown that
JH(X, 8x) *R,(8x) — “*log(dx)
where st(*R,(8x)) = H(X).
On the other hand it can be shown that

= (] — (1 : a—1
Al)l(_n% H;(X) = H*(X). hr_go (Ax)
+ ! lim(Ax)*"'-1
2l—a_1 (lm( x) ),

where

H(X)= ﬁ“f“(x)dx— 1].

It is clear that if a > 1 then }imﬂ H(X) is free of

H*(X) and hence the non-standard analysis will not
help in generalizing H;(X) to the continuous case.

Now, we suggest the following extended
a-entropy measures.

Definition 1: Let X be a discrete random variable
assuming probabilities p,,....,p, where p, =0,

i=1,...,n and Z p;= 1. The generalized entropy of
i=1

order a of X is

aAn(X)= 1—(! logz (pi/s)a—lph
i=1
a¥1 and a>0, 5)

and the generalized entropy of degree a of X is

1 L _
300 = 51 (L iorp-1),

a#1 and a>0 (6)
where s = sup{p;,...,p,}.
Using L’Hopital’s rule, it can be shown that
lim ,A,(X) = lim A3(X) = 4,(X),
s0 ,A,(X) and Aj(X) are extensions of A,(X)
defined in Equation (2). ’

If X is a continuous random variable with density
f(x) then it can be shown that
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lim ,A4,(X) = ,A(X) = % log I(f(x)/s)“‘lf(x)dx

and

lim A3(X) = A*(X)

_ E%T U(f(x)/s)“' 1f(x) dx— 1],

where s =sup f(x). So Definition 1 has been general-
ized naturally to the continuous case. Therefore the
use of the sup-method is more appropriate than the
non-standard analysis method to generalize the
definitions of entropies from the discrete to the
continuous case.

3. PROPERTIES OF A3 (X)

Definition 2: (see for example Aczel and Darozy
[13], pp. 51-53).

Let
T,={(py,.--,p); 0=p,=1,i=1,...,n and Z p;=1},
i=1

A, ={(p1,---p.); 0=p;=1 and Zl pi=1}

and

I,:T,— R be a sequence of real valued functions on
[,. I, is said to be

(i) Decisive if I,(1,0) = L,(0,1)=0.

(#i)) Bounded from above if I,(1—p, p)=K for
some constant K.

(iii) Normalized if L,(12,'2)=1.

(iv) Monotonic if the function p— L(1—-p, p) is
non-decreasing on [0, /2].

(v) Measurable if p—IL(1—p,p) is Lebesgue
measurable on ]0,1[ (or on [0, 1]).

(vi) Small for  small
liI})l+ L(1-p,p)=0.
p—>

(vii) Stable at p, if lir}}li L(py, q) = I,(py) provided
q-——)

probabilities if

that p,€10,1] and p,+g=1.

Theorem 1: The entropies A;:I,—>R(n=2,3,...)
of degree a are decisive, bounded, measurable,
small for small probabilities, and stable. They are
not normalized and not monotone.

Proof: 1t is clear that

A5(1—x, x)
1
W[(l—X) {1+/(1 —x))“}—l] if 0=sx=s¥%
E%—[x{l+((l—x)/x)“}—l] if h<x=1.
Hence
() A3(1,0)=A43(0,1)=0, so A is decisive.

(i) A3((1-x),x)=1/2'"*—1), so A? is bound-
ed from above.

(iii) A5(Y2,%) =0, so Aj is not normalized.

(iv) Note that if x €[0,!2] then

3A5 1 ( x )“‘1 a—x_l]
ax 2 —1|\1-x 1-x

may be positive and may be negative when
a>1 or 0<a<1. Therefore A5 is not
monotone.

(v) Itis clear that the function p—A5(1—p, p) is
Lebesgue measurable on |0, 1[.

(vi) lirg]+ A5(1—x,x) =0, so A; is small for small
probabilities.

(vii) Consider p, fixed such that 0<g+p,=<1.
In A5(po,q), we have

3 a 1 a
lim A3(Po, 9) = 5r=a—7 [Po =11 Ai(po)-
Hence it is stable at p,.

Definition 3: The sequence of functions
I,:A,—»R(n=12,..)or I',>R(n=2,3,...) is:

({) Symmetric if for all n

L(p1se-sPn) = In(pk(l)""’pk(n))

for all (p,,...,p,) € T,, where k is an arbitrary
permutation on {1,...,n};

(if) Expansible (that is, null events discarded), if for
all n

L,(pise-sPs) = 1,410, pys....p,)
=1,:1(p1,0,pz5.,p,) = ...
=1,s1(Pise- P 0) 5

(&ti) Nonnegative if for all n

L(pis--pn) 20 ;

(iv) Maximal if for all n

L(pise-spn) = 1,(Yn,...,Yn),

The Arabian Journal for Science and Engineering, Volume 12, Number 4.



and it is minimal if for all n

In(pl""’pn)zln(l/"r-"l/”):
for all (py,...,p,) €T, ;

(v) Continuous if for all n, I, is continuous on I',.

Note that all parts of this definition are given in
Aczel and Daroczy (reference [13], pp. 51-53),
except the minimal property, which reflects the sta-
tistical fact that a uniform distribution is non-
informative from a Bayesian point of view.

Theorem 3: The entropies A} :I',— R of degree a
are symmetric, expansible, minimal, nonnegative,
and continuous. They are not maximal.

Proof: 1t is clear from the definition of

1 [¢ _
AL(Prs-eopa) = Ta__l[;(pi/s)u ‘p,--l],
that:

({) The cumulative property of the summation
operator implies that Aj; is symmetric;

(i) Since sup{p,...,p,} =sup{p;,...,p.,0} and the
arguments of A}, are added to each other through

(pi/s)a—lpi' A:(plv' o "pn) = A:(Oaph" -’pn)‘ ThlS
together with the symmetry property implies
that A} is expansible.

(iiij) Note that for all i, p/s=<1 and hence:
a-1 =

Di =1, if

Z( s) pi{ =1, if
This, together with the fact that:

ma_ =0, if
2 1{.>_O, if

a=1
a<l.

a=1
a<l,

implies that A}(p;,...,p,) is nonnegative.

(iv) Since A;(pi,...,p,) is nonnegative and
A5 (Va,...,Yn) =0, AS(py,...,p,) is minimal. And
hence it is not maximal.

(v) The continuity property is obvious.

Consider a discrete bivariate random vector with
joint probabilities

(P11s++-P1asP21s++sP2ni++3Pmis+ -+ sPmn) € Lo
Let p;= Z p; for i=1,...,m and q].:Z p; for
i=1 i=1

i=1,...,n be the corresponding marginal prob-

‘A. Awad, M. Azzam, and D. Hussein

abilities. For i=1,...,m and j=1,...,n let g; = p;/p;
be the corresponding conditional probabilities.

For a given non-negative real number a#1,
let I,:T,,—R, I,:;[,»R and I;:I,—R be
sequences of real valued functions.

Now we will use the definition of an additive
function as given by Aczel and Daroczy (reference
[13], p. 52) and generalize the definitions of strong
additive and the sum property, to state:
Definition 4:

() Additive of degree a if

L..(P:91, P2 P \qn;
P15 Ponse++5 P>+ sPmdn)

=I;(plv""pm)+Iﬁ(q1""1qn)
+(2'7-1) L(piyPm)- 15(qys-.,q,) for all

(p1s---Pw) € Ty (q15---,9,) € T, n=2,3,...
m=2,73,...

(i) Strong additive of degree « if

Ifnn(plqlla' . ,P1‘I1n;' oo pmqml, ..,pmqmn)

m a-1
- pj
=1;(P1’-~’Pm)+zl I (‘L‘h---ﬂm)( /) pj.
j=

Sp

for all (py,....pn) EL,  (gj15---q) E L,
j=1,....m, m=273,...; n=2,3,., where

s,=sup{pi,...,p,}.
(iii) I satisfies the sum property of degree « if there
exists a function 85, measurable in ]0,1[

such that I(p,,...,p,) = Z gsp,u(pk) for all
k=1

(pis--pn) ET, (n=2,3,...).

Theorem 4: The entropies A;:I',— R of degree a
satisfy the sum property, and they are additive of
degree a.

Proof (i): Set P = (py,...,p,.), O =(q,,..-,q,) and use
the notation

L. (p\Q, P20, .pnQ) = L (P)+L(Q)
+Q2' =) I (P).[(Q)
for additivity of degree a.

Let s,=sup{q,,...,q,} and s=sup{p,Q,...,p,0}.

It is clear that §=8,.58, and

The Arabian Journal for Science and Engineering, Volume 12, Number 4.
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Q=) [A5(P1QD,-.PmQ) — AL(P)— AN(Q)]

n

a-1 m a—1 a-1

P4q; Pi q;
(_‘"]) P4~ Z (‘s“) pPi— Z (‘;l) git1
[] i=1 \Pp P

(£ ) P ]lE @) ]

=(2'7"=1) AL(P). A%(Q).

Hence A; is additive of degree a.

(i) Aj satisfies the sum property with

_ 1 Pk a-1
8ya(Pi) = W[(;;) “1]Pk-

Theorem 5: A} is strongly additive with degree « if
8q;=Sq for all j, where sqj=sup{qj,,...,q,-,,} i=1,....m

8% = Sup{q1, G125+ Gt
Proof: Note that

a 3 Pj
Am(pl""spm)+ Z (';i
j=1\"p

S
R’

p; Aﬁ(‘]jn---aq,'u)

m n a-1
d;ir Dj
e [Z Z( 55 ]) q"’p"“l]
Amn(plqll’ ,quun ’pmqmla---,pmqmn)
if S, = Sg* for all j.
Definition 5.

() Let (M5 s T Tatyee s Tomse e 3Tmpse e sTomn) E L e

n m
Setp, = Z T q;= Z m, i=1,..mj=1,..,n
i=1

i=1

Sm=SUP{P1s---sPm}> Sn=sup{qy,--.,4.}, and

S = SUP{T ey Tinsee 3 Tmise e s Tomn b The
discriminant function of I, of degree a is

a-1 a=-11-1
smsasnn=| () (5]

(ii) I is subadditive if
l':un(ﬂll gees 7‘"11!;'“219 neo 9172n;' . ;‘n'mlﬁ' .. aﬁmn)

=L(pr L) T 1.(q15e--q0)

for all (m,...,m,,) €T,, and all m and n
where p; and g; as in (i) above.

Note that (i) is given in Aczel and Daroczy
(Reference [13], p. 52).

Theorem 6: A; is subadditive if 0<a<1 and the

discriminant function of degree a is less than or
equal to 1.

Proof: Note that

(21_(!._1)[‘4:1(2 Trila"'s Z ’"im)
i=1 i=1

Aﬁ(z TWiiyeres Z 'rr,,j):l

j=1 j=1

=srln—ui (i ﬂij)a—{-slka i (i 17,"‘)““‘2:], Say.
j=1 \i=1 i=1 j=1

Using Holder’s inequality we obtain that for a
given j,

n o n
(Z n,.,.) = n*') m2; 0<a<l,
i=1 i=1 .

Hence

~1
ms\*
a .
+(-S-—) ] Anm(ﬂlh'--)ﬂ1m9 nl: nm)
n
S0, Agp(TigseeesTimsee s TutseeesTom)
n
= G(n) m, Sn Sy S, &)[A;(Z Titsees '"im)
i=1 i=1
m m
A:(Z Wijyerns Z 'n',,),.)].
j=1 j=1

Therefore A5 is subadditive.

™=

]

Definition 6 [14].

A sequence of function [,:I',—>R(n=23,...) is
said to satisfy the independence inequality if
L (0115 s Ty 15 o>y e e« 3T n1 500+ 5 W)

= nm(plql"'-,plqm;qul»"'vPqu;"';pnql»""pnqm)
for all n,m and all (m,...,m,,) €L,, with =, p;

and g, as given in Definition 5.

Theorem 7: A}, satisfies the independence inequality
if 0<a<1 and the discriminant function of degree a
of Aj is less than or equal to 1.

Proof: The proof depends on a theorem given by -
El-Sayed [14]. Since 0<a<l1 , :
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Afnn(qul,---,qun) = A:ln(pl""’pm)+A:(ql’-“’qn)’
from the additivity of degree a.

Since the discriminant function is less than or equal
to one, Aj is subadditive, i.e.

A;‘nn(ﬂlla""‘"mn) = A?n(pl""’pm)+A:(q17"'7qn)'
Therefore A, satisfies the independence inequality.
Definition 7: I is said to be k-recursive of degree a

if there exist three functions g, (s,, s, @), fi(s,, 5, @, ;)
and g,(8,,3, @, p;) such that

L i-1(PiGys--P1GiP2s- - Pn) = 81(Sp , @) [2(Pys-.Py)

+fi(Sp 8, 0, p) I3 (q1,---,q4) +8, (S5, @, py)

where s, =sup{p,,....p,}, $,=sup{q,...,q,} and
= sup{p1qy,--- P1Gu:P2>---Pr}-

It is clear that:

(l) if a= 1’ &1 (sq,s, 0‘:1’1) = 1’ gZ(qu S, axpl) =0
and f, (s, s, a, p;) = G,(p,) then this definition
reduces to the k-generalized recursive property
given in Ebanks [16].

(@) if k=2, g(s,s,0)=1, g(s,5a,p;)=0 and
fi (s, 5,0, p) =p7 then this definition reduces
to the recursive property of degree a given in
Aczel and Daroczy ([13]; p. 186). Moreover if
a=1 then this definition reduces to the
recursivity property given in Aczel and Daroczy

([13]; p. 51).
Theorem 8: A} is the k-recursive of degree a.

Proof:
AL k-1(P1q1s D125+ sP1dk> P2se++sPn)

1 k ~ n .
=Sy [Zl (Pg/9)”" pait Zz (p/s)"" pi= 1]
i= j=

= (5,/9)" " AR(Prye-P) F L (5y/5) T AR (o4
+ % (so7'-1).
Hence Aj is k-generalized recursive with
81(s, 8, @) = (s,/5)* 7",
fisg 5,0, p1) = pi(s,/5)*,
and
82(s, 8,0, p1) =pis'o(sy7 =1/ =1).
=pi((s,/s) "' =1/ 2"~ 1).

A. Awad, M. Azzam, and D. Hussein

Definition 8:

If there is a function {s,,,: R*X[0,1]—=R such that
LinA=@)p1se (1= Q)P q G154 4]
=Y [l (D1 Pm)s 12(q1s---5qn)s @ @, 55,5, 5]
Y(pi---sPm) € Ty (q1,---59,) €T, q € [0,1].

then I* is said to satisfy the (m,n)-compositivity
property of degree a. It is compositive if it satisfies
the (m, n)-compositivity property for all m and n.

Theorem 9: A; is compositive of degree a.

Proof:
AL A=9)py, ., (A=@) s 4 91,9 G,

_ 21—1_1 [‘: {(1 -q) %}H(l -q)p;

GRS )

B ﬁ a-1 o . (l_q)u (sp)a—l
- (%) a-ar Anpo-p+ S (2

s a-1
+(7") 9" An(ds>--59)

a a-1
9 (s __ 1
Ty (s) 1

- (isp)a_l(l-q)“ AL (PrseesPm)

s a-1
+(—s") 4" Ar(q1s--45)

[ o) ]

= Ul A (P15 sPm)s A(Gise-390)5 @5 @, Sy 8, 8]

Therefore Aj is compositive of degree a.

4. CONCLUSIONS

It is clear from Section 2 that the use of the
sup-method is more appropriate than the non-
standard analysis method to generalize the defini-
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tions of entropies from the discrete to the continuous
case.

In Section 3 it was shown that the new entropy has
almost the same properties of the entropies given in
the literature. It is interesting to note that the new
entropy is not normalized and it is not maximal.
More specifically A5 (Va,...,%:) =0 for all n = 2. This
property is usually used in Bayes methods to define
what is called non-informative distribution, i.e. the
uniform distribution is non-informative.

Awad [12] gave eight critical comments on the
Shannon entropy. These comments motivated the
definition of his entropy (2) which does not suffer
from the drawbacks of the Shannon entropy. Some of
these comments may be used to motivate the
definition of the entropies (5) and (6). Since the
arguments are the same as those given by Awad [12]
we have not mentioned them here.

Awad [12] applied the entropies (1) and (2) to
evaluate the information stability coefficient when
the model is Bernoulli, uniform or normal. He noted
that entropy (2) gives more meaningful results on this
problem than those given by using entropy (1).

The results of this paper were applied by Abu-
Taleb [15] to define several normed information rates
as informational correlation and association mea-
sures. Some of these measures depend on the
H-entropies (1), (3), and (4). Others depend on the
A-entropies (2), (5), and (6). Comparing the be-
havior of these normed information rates, Abu-Taleb
concluded that the rates derived from A-entropies
are more meaningful than the rates derived from
H-entropies. :

Alawneh [16] also applied the results of this paper
to find a truncation point ¢, such that the relative loss
of information in using an exponential model trun-
cated at ¢, instead of an exponential model is less than
a given constant ¢. Using the six entropies (1)—(6),
he concluded that the A-entropies give more
meaningful results than the H-entropies.

These three applications support the use of the
A-entropies instead of the H-entropies.
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