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ABSTRACT 

The dynamics of the generalized multiphoton Jaynes-Cummings model (J.C.M.) 
when the mode has initially a logarithmic distribution is investigated. The atomic 
and the field dynamics are both studied. In particular, the phenomena of collapses 
and revivals as well as bunching and antibunching and squeezing effects are shown. 
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DYNAMICS OF THE GENERALIZED MULTIPHOTON JAYNES-CUMMINGS 

MODEL IN THE LOGARITHMIC STATE 


1. INTRODUCTION 

The studying of the quantum effects in a system 
comprising of two-level atom interacting with a 
single non-decaying electromagnetic field mode 
inside a cavity lies at the heart of quantum optics. 
Some of these quantum effects have been investi­
gated experimentally [1,2] and theoretically [3-7]. 
The effects of finite cavity damping have also been 
discussed [8]. In particular, the Jaynes-Cummings 
model [9] of a two-level atom interacting with a 
quantized single mode electromagnetic field is at the 
core of many problems in quantum optics and 
quantum electronics. The importance of this model 
lies in that it is perhaps the simplest solvable model 
that describes the essential physics of radiation­
matter interaction. The dynamics of this model is 
very sensitive to the statistical properties of the field. 
For example, if the atom is prepared in its excited 
state and the field is initially prepared in a number 
state In), the population oscillates sinusoidally 
between the ground and the excited state at Rabi 
frequency, which is proportional to v'(n+ 1) [9]. 
However, if the field ~ a superposition of the 
number states, the oscillations in the population 
inversion collapse and revive repeatedly, exhibiting 
apparently chaotic behavior over a long period of 
time [4-8]. These revival features are due to the 
quantum nature of the cavity field which manifests 
itself in the discreteness of the photon number in 
statistical averages [6]. Field quantization is essential 
to predict collapse-revival phenomena in a system 
in a cavity. The nature of this phenomenon has been 
studied in detail, when the field is in a coherent state 
[4,5] and chaotic state [6,8] as well as when there is 
a superposition of coherent and chaotic fields, by 
Puri and Agarwal in 1987 [8]. The effects of squeez­
ing have been discussed by considering the initial 
state of the field to be squeezed state [7]. The effects 
of squeezing and a sub-Poissonian photon number 
distribution on the phenomenon of collapse and 
revival have been investigated when the field is in a 
binomial state [10]. The dynamics of the JCM in the 
logarithmic state has been studied in [11]. Normal 
squeezing of J CM has been investigated for large 
mean photon number (Ii> 10) [12]. Recently, the 
time evolution of squeezing in a single-mode single­
atom JCM has been examined [13]. The phenomena 
of collapses and revivals for JCM have recently been 

observed using Rydberg atom masers in ultra-high-Q 
cavities [2]. 

Sukumar and Buck [14] proposed two exactly 
solvable generalizations of the Jaynes-Cummings 
model, one involving intensity dependent coupling 
and the other involving multiphoton interaction 
between the field and the atom. These models also 
exhibit periodic decay and revival of atomic coher­
ence. The emphasis, however, has been on the 
atomic dynamics. On the other hand, Singh [15] has 
studied the effect of interaction on the field statistics 
and has shown that the mean photon number may 
also exhibit periodic decay and revival. The concept 
of higher order squeezing [16,17] has also been 
applied to the generalized multiphoton Jaynes­
Cummings model of a single two-level atom inter­
acting with an initially coherent cavity field mode 
[18, 19]. Very recently, we have investigated JCM 
and the present model for amplitude-squared 
squeezing [20,21]. 

Recently, the logarithmic state has been intro­
duced and investigated [22]. The dynamics of the 
JCM when the mode initially has a logarithmic distri­
bution was studied by Mahran and Obada [11]. The 
temporal behavior of the atomic inversion and dipole 
moment have been shown. Photon statistical aver­
ages such as, mean photon number, the second­
order correlation function, and finally squeezing 
effects have also been studied. In conclusion, we 
found that the dynamical effects of the logarithmic 
state initially seem to be similar to the single photon 
effect (as Iq I~ 0 with fIXed IeI, where Iq I and IeI 
are the parameters of the logarithmic state), but, as 
Iq I increases chaotic behavior begins to appear. 

In this paper, we continue our investigation for the 
effects of the logarithmic state [22]. We inv.estigate 
the dynamics of the generalized multi photon 
Jaynes-Cummings model of a single two-level atom 
interacting with an initially logarithmic cavity field 
mode. The previous results of JCM in the logarith­
mic state [11] will be taken into consideration when 
we discuss the results of the present model. It should 
be noted that for certain values of the parameters, 
the logarithmic state becomes a linear combination 
of the vacuum and the one-photon state [22]. Such a 
superposition state has been studied recently [23], in 
the context of squeezing. Moreover, the logarithmic 

598 The Arabian Journal for Science and Engineering, Volume 15, Number 4A. October 1990 



state exhibits squeezing as well as photon anti­
bunching, but this squeezed state is not a minimum­
uncertainty product state [22]. The effect of squeez­
ing in this case should therefore be contrasted with 
those discussed in [7]. In fact, logarithmic state can 
be viewed as a interpolation between the generalized 
Bose-Einstein state and coherent state. The latter 
interpolation is true only as far as the counting 
distribution, i.e. the diagonal elements of the density 
matrix in the occupation number representation, is 
concerned [22]. It is important to note that logarith­
mic states are pure states whereas Bose - Einstein 
states are mixed states. Finally, logarithmic states 
have attracted interest because they have the prop­
erties of both classical and nonclassical light [22]. It 
is therefore of interest to investigate the dynamics of 
the generalized multiphoton Jaynes-Cummings 
model of a single two-level atom interacting with an 
initially logarithmic cavity field-mode, because of 
its rich characteristics. 

The plan of this paper is as follows. In Section 2, 
we derive an expression for the density matrix of the 
system in the logarithmic state of the field. In Sec­
tion 3, we use these results to study the evolution of 
the atomic population inversion and dipole moment. 
We discuss the statistical properties of the field in 
Section 4. A summary is contained in Section 5. 

2. DESCRIPTION OF THE SYSTEM 

We consider a two-level atom interacting with a 
single-mode radiation field in a lossless resonant 
cavity via a k-photon transition mechanism. The 
Hamiltonian for this system in rotating wave approx­
imation (RWA) [14] is 

H= wa+ a+woc:iz+A{cr+ak+a+k(L) , (I) 

where wand Wo are the frequencies of the field and 
the atom, respectively, A is the multiphoton atom­
radiation coupling constant, k is the photon multiple, 
crz , cr+, and cr_ are the atomic pseudospin operators, 
and a+ and a are the creation and annihilation 
operators of the field. 

When we take the detuning parameter 

and then use the following constants of motion 

N= a+ a + (lh)kc:iz, C= ~c:iz + A(cr+ ak+a+k0'_), 

the Hamiltonian becomes solvable [15]. 
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Initially, let the field be in the logarithmic state 
Iq; e) where [22] 

00 

Iq;e) = elO) + J3 L [qn /vn] In) , (2)
n=1 

with q, e complex numbers with lel:s 1 and J3 is 
defined as 

The field density operator Pf(t) is given by 

Pf{t) Trtl p(t) , (4) 

where p(t) is the density operator of the system. In 
the resonance case (i. e. ~ 0) and for the atom 
initially taken in its excited state, ~f(t) is found to be 
[15] 

00 

Pf(t) L [cos{Atv[(n+k)!/n!]) 
m,n=o 

x COS{Atv[(m + k) lim!]) Pn,m{O) 

+ sin(Atv[n!/ (n - k)!]) 

x sin{Atv[m!/(m-k)!]) Pn-k,m-k(O)], (5) 

and Pn,m the initial density operator, is given by 

(6) 

where [11] 

Pn,m lel2 8n,0 8m,0 + eJ3 [q*m /vm] 8n•o {l- 8m.o) 

+ J3e*[qn /vn] 8m.o{1 8n,0) 

+ J32[qn q*m /v(nm)] (1- 8n,0) (1- 8m.o). (7) 

It is clear from the above equation that logarithmic 
states have the counting distribution: 

for n = 0 

for n = 1,2.... , (8) 


that is, the vacuum has probability lel 2 and n-photon 
probability for n ~ 1 follows a logarithmic counting 
distribution. Thus with fixed value of e we have a 
two parameter family of normalized states and it is 
this family that is termed the logarithmic state [22]. 
Further discussion for the behavior of the probability 
as well as the dispersion and mean photon number 
for different values of parameters q and e is found in 
the appendix. 
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3. ATOMIC DYNAMICS 

The expectation value for the inversion operator 
c7z (t) when the atom starts from its excited state 
is given by: 

(9) 

where the trace is taken over the atomic and field 
state. 

Thus by using Equation (5), we obtain: 

Pe(t) = (cTz(t» = I
<Xl 

Pn,n COS(2Atv[(n + k)/n I)]) , 
n=o 

(10) 

where Pn,n is given by Equation (7). 

The dipole moment D(t) can also be calculated by 
using the same technique. In this case D(t) is given 
by: 

A 


! c 
.5 

-
IS 1\, 

D(t) = i I Pn_k,nsin(Atv[n!/(n-k)!]) 
n=k 

x cos(Atv[(n+k)!/n!])exp(-ikwt). (11) 

Note, for a pure number state Pn-k,n 0 

In Figures 1, 2 we have plotted Pe(t) of equation 
(10) as a function of At for different values of Iql, lei 
and k with e= <t> = 0, where e and <t> are the phases 
of q and e respectively. We note that for the small 
values of q and e, which is almost the state of 
one-photon, the oscillation of Pe(t) is much similar 
to the case of number state discussed in [9]. The 
oscillations are almost sinusoidal in this case. As the 
value of k increases the oscillations become very 
rapid. It is also clear from the figure that the popula­
tion oscillates sinusoidally between the ground 
state and the excited state at Rabi frequency, 
proportional to v[(n + 1)], v[(n + 1) (n + 2)] and 
v[(n+l)(n+2)(n+3)] for k= 1, k=2, and k 3 
respectively. Thus as k increases the Rabi frequency 

1 B 
.5 

5 IS t.t 

-,5 

-I 
~ 

Figure 1. The Temporal Behavior of the Atomic Inversion (Equation 10) for e= 4> = 0: A - q = c = 0.2 & k = 1; 

B - q = c = 0.2 & k 2; C q c 0.2 & k = 3; D - q = 0.8, c 0.6, & k 3. 
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Figure 2. The Temporal Behavior of the Atomic Inversion for e <f> = 0 and: A - q 0.8, c 0.6, & k = 1; 
B - q =0.8, c == 0.2, & k = 2; C - q = 0.8, c 

increases and consequently the oscillations of the 
inversion become very rapid. This explains why the 
oscillations of the population become very fast as 
the value of k increases. 

In Figure 1(a, b, e) we take e = q = 0.2. We find 
for this case n= 0.98 and var(n) = 0.06. This means 
that the distribution is narrowly peaked around n. 
Thus the one-photon state is predominant. 

We observe also that as the values of q and e 
increase the states of more than one photon start to 
contribute as well as the vacuum state. This means 
that the photon number as well as the dispersion 
increase. This is almost clear in Figure 2a, b, e, d 
(where as an example, we find n= 1.7 and 
a(n) 1.4 for q = 0.8 and e = 0.2). The behavior 
of the population is different from that noted for the 
small value of q and e. The sinusoidal oscillations 
start to disappear and the picture starts to look like 
the collapse and revival (see Figure 2a, b, e). The 
disappearance of the sinusoidal oscillations is mainly 

0.6, & k = 2; D - q = 0.8, c = 0.2, & k 3, 

attributed to the interference between the different 
frequencies which destroys the sinusoidal oscilla­
tions. It may be noted also that as k increases we 
note a decrease in the collapse time (Figure 2e, d). 
This is due to the collapse time being inversely 
proportional to the spread in Rabi frequencies. 
Therefore as k increases the spread in the Rabi 
frequencies increases and consequently the collapse 
time decreases. In fact the dependence of the 
collapse time here on the strength of the field is 
completely different from that noted for initially 
coherent field (tc 1/A) [5] independent of the field 
strength. The dependence of the collapse time on 
field strength was noted for the atom initially in its 
ground state interacting with chaotic field for large 
value of Ii in [6]. The figure shows also that the 
revivals in the initially-logarithmic generalized 
multiphoton Jaynes-Cummings are similar to those 
noticed in [6]. The revivals are not regularly spaced 
out but appear to be generated more rapidly as time 
progresses (Figure 1d). 
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It should be noted that Buck and Sukumar [14] 
proved that the atomic inversion of the multiphoton 
JCM has a periodic dynamics with careful choice of 
the detuning, A, (for 2-photon JCM) for arbitrary 
initial conditions of the atom and field. On the other 
hand, and for the case of two-photon JCM, we can 
obtain a quasi-periodic dynamics for sufficient high 
initial mean photon number. We believe that this is 
not observed in our case for two reasons. First, since 
we investigate the inversion in the case of resonance 
(A = 0) the linear dependence of the arguments of 
the trigonometric functions on the oscillator eigen­
values disappears. Therefore we cannot find any 
commensurable frequencies for terms in the series 
representation of the inversion for the case of 
resonance. Second, because of the behavior of the 
logarithmic state we observe as q increases with 
small value of c the dispersion increases very rapidly 
(Figure 6b) and the behavior of the probability is 
almost Gaussian in this case (Figure 6a & c). 
Therefore the chaotic effect is dominant for this 

.1 A 

-.1 

.5 c 

-.5 

case. For example, when we take c = 0.05 and 
q = 0.98 we find ii =::: 12.54156 and A(n) = 21.74622. 
Increasing q and decreasing c further gives larger 
values for ii and even larger amounts for the 
dispersion. Hence we cannot expect any quasi­
periodic behavior for this state. 

Figure 3, shows 1m D(t) of Equation (11) against 
At in a rotating frame for different values of Iq I, Ic I, 
and k. We observe a regular chaotic behavior for the 
case of k = 2 (Figure 3a and b). This behavior 
disappears for k = 3 and rapid oscillations take place 
(Figure 3b and d). This is because the frequency here 
depends on the square root of (n+ 1) (n+2) (n+3). 
It is interesting to note that for a fixed value of k the 
observed amount of dipole increases as the value of 
q approaches unity (see Figure 3a, c for k = 2 and 
Figure 3b, d for k = 3). On the other hand for fixed 
value of q the observed amount of the imaginary part 
of the dipole moment decreases as the value of k 
increases (Figure 3a, b for q = 0.2 and Figure 3c, d 
for q = 0.8). This behavior could be attributed to 

.1 B 

. 1 ... -l/t , 1 JlI 
., .... W" '-If' .•, " '" "r .""(" ~"-'I 
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Figure 3. The Temporal Behavior of the Imaginary Part of the Dipole Moment (Equation 11) for (} <t> = 0 and: 
A - q c = 0.2 & k =2; B q c = 0.2 & k = 3; C q = 0.8, c 0.2, & k = 2; 0 q = 0.8, c 0.2, & k = 3. 
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the appearance of the factor Iq Ik /V(n + k) in Equa­
tion (11). For example, for fixed value of q this 
factor minimizes the value of the dipole as the value 
of k increases. Thus the inclusion of multiples of 
photons decreases the observed amount of dipole 
moment for the case of a field having initially a 
logarithmic distribution. 

4. 	 FIELD STATISTICS 

In this section, we study squeezing, bunching, and 
antibunching as an example of the field dynamics. 

First, we study squeezing effects [24] by evaluting 
S1(t) and S2(t) where 

S1(t) = V4{2(n)+1+(a 2)+(a+2)} 

V4{(a)+(a+)F, (12) 

S2(t) = V4{2(n)+ 1-(a2) (a+2)} 

+V4{(d)-(a+)F. (13) 

The state of the field is said to be squeezed if: 

(14) 

It should be noted that the probability distribution 
function for finding n photons in the mode at time 
t > 0 is defined as 

P(n,t) = (nlpf(t)ln), 

therefore using Equation (5) 	one finds, 

P(n,t) = COS2(AtV[(n+k)!/n!])P(n) 

+ 	sin2(AtV[n!/(n-k)!])P(n-k), (15) 

where P(n) is given by Equation (7). Hence from 
Equation (15) we can obtain the expectation value 
for operators nand n2 at any time I> O. For the rest 
of operators we use Equation (5). 

For example, we can obtain the expectation value 
for the photon number operator net) as 

(n(/» 
'XJ 

= L nP(n,t) 
n=o 

'XJ _ k k 
=n+--- L P(n) COS(2AtV[(n + k)!/n!]).

2 2 n=o 

(16) 

It is clear from Equations (10) and (16) that 
(n(t»+k/2Pe(t) is a constant of motion as should 
be expected. It is therefore expected that the 

temporal behavior of (n(t» and Pe(t) are the same 
(except for a phase factor of 7f). Hence what has 
been said in the previous section about the features 
of Pe(t) can be transcripted for (n (t) ) . 

In Figure 4, we have plotted S1(t) of Equation 
(12) for different values of Iql, lei, and k. The effect 
of multiplicity on the squeezing is shown in the 
Figure. It is noted that as the value of k increases the 
squeezing disappears. This could be attributed to the 
increase in the interferences between the different 
frequencies which spoil the squeezing. However, it is 
well known that producing squeezing from a two­
level atom in its excited state is very difficult, 
because squeezing is associated with a higher 
popUlation in the upper level that produces 
simultaneous emissions that spoil squeezing [24]. 
We believe that the lack of the squeezing due to the 
increase of k is compatible with the temporal 
behavior of the inversion explained in the previous 
section. We observe for the inversion that as the 
value of k increases random evolution starts to 
appear. In this region the waves are almost decor­
related and dephasing is almost complete; we 
therefore expect a very high level of noise and 
squeezing in the field operators is washed out. 

Next, we investigate the bunching and antibunching 
properties of the field [25] by evaluating the 
second-order correlation function g(2)(t), where 

(n2(t» - (n(t» 
(n(t) )2 

A field is said to be antibunched if g(2)(t) < 1 and 
bunched for g(2) (t) ~ 1. 

In Figure 5, we show g(2) (t) as a function of At for 
different values of Iq I, Ie I, and k. It is noted that the 
antibunching decreases and bunching starts to con­
tribute as the values of Iq I and k increase. The 
comparison between the cases of k = 1, 2 and 3 
shows that the observed amount of bunching 
increases as the value of k increases. This lack of 
antibunching is expected for the same reason as 
mentioned in the case of inversion. Finally, we would 
mention that although g(2) (I) < 1 means a non­
classical effects, there is no direct relation between 
squeezing and this phenomenon. 

5. SUMMARY 

We have investigated the dynamics of the system 
of a two-level atom interacting with a single-mode 
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Figure 4. Squeezing in Sit) of Equation (12) for 9 = <t> =0 
and: A - q = 0.8, c = 0.6, & k = 1; B - q 0.8, c = 0.6, 
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Figure 5. The Second· Order Correlation Function g(2) (t) 
Against At 
A - q = c = 

C-q = c = 

F-q = 0.8, 


for 9 = <t> = 0 an4 the Following Values: 
0.2 & k =1; B - q c = 0.2 & k = 2; 
0.2 & k = 3; D-q = 0.8, c =0.2, & k = 1; 

c = 0.2, & k = 2; G-q = 0.8, c ='0.2, 
& k=3. 
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electromagnetic field via a k-photon process when 
the mode has initially a logarithmic distribution. The 
dynamics of both atomic and field operators are 
shown. As an example for the atomic dynamics, we 
have investigated the inversion and the dipole 
moment. Squeezing effects as well as photon 
bunching and antibunching are also shown as an 
example for the field dynamics. The effects of 
multiplicity on the dynamics of both atomic and field 
operators are pointed out for this model. 

APPENDIX 

In this appendix we feel it is instructive to 
investigate some of the characteristics of the loga­
rithmic state [22]. Using Equation (3) one can find 
the mean photon number (n) = (a+ a) and the 
variance as 

(la) 

and 

var(n) (n2)-(n)2 

= J32IqI2[1- J32IqI2]![I-lqI2]2 . (2a) 

In Figure 6a we have ploUed P(n) (Equation (8)) 
against n for different values of c and q. We observe 
as q and c approach unity the probability behaves 
almost like the Gaussian distribution (see curve e). 

Figure 6b and 6c shows the mean photon number 
(Equation (Ia)) and dispersion (&(n) = v[var(n)]) 
as a function of q for different values of c. We notice 
that the largest mean photon number corresponds 
to a large amount of dispersion. 
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