
PERFORMANCE MODELING AND EVALUATION OF

SAMIS COMPUTER NETWORK USING PAWS

Mehmet Ufuk Caglayan *
Department of Computer Engineering

Bogazici University

Bebek, Istanbul, Turkey

~ ..bf r_4'J ~.l...:.U PAWS ~ Js.\....... ~l;J. ~I..b-l .JA ~I llAil..u.f ~f

4,..) ~- 'I L - 'I 4Sl.J.1 i 4.,L.;.I..ul 0 I' \3.-1 - ~ -<'I ua;. - '.r- -.r ~.. ;;~ v' J'~ r
~I..,~IJ ~~ftAll j~I ~l;fo ~.l:.l ~l;.;.J1 IlA ~ ~> c.~1 ~ ~J
. ~_a"JlJ ~I ~f ;r ~I..ul oJI)J J j~1~~ ~.&I ~..Ul.i , oJs.WI

~I.r.oJ , ~ij;JJ If.ol~1 4J.,.....,J PAWS o\S'bJ.1 4AJ ~~ ;~4 c.r 4....1;..uIJ

. rua.:.l1 rl~1

t;.l!, ;r ~I ~b-I]J':lIJ o\S'bJ.1 ~ ;r ~~ ~I ~\::JI ~I~ TetJ

. rUi;JI ..1.)1 ~

ABSTRACT

A high level performance modeling and evaluation software tool called PAWS is
introduced, and its application to modeling the hardware and software of the
SAMIS Online System to evaluate its performance is demonstrated. Properties
of the SAMIS Online System are first presented. Some of the important
simulation language structures available in PAWS are briefly described, and their
ease of use and functionality are discussed. Problems encountered during the
performance modeljng process are discussed and procedures that are adopted to
create a successful model representing the actual system are presented. Two
models using the PAWS language are also described together with the modeling
assumptions and the reasoning behind the assumptions. Finally, the results
obtained through modeling and suggestions to improve the system performance are
presented.

• Present address:
ZXT-Informatik-Technologie
BASF AG
D-6700 Ludwigshafen
West Germany

October 1990 The Arabian Journal for Science and Engineering, Volume 15, Number 4A. 565

http:rua.:.l1

M. U. r;aglayan

PERFORMANCE MODELING AND EVALUATION OF SAMIS
COMPUTER NETWORK USING PAWS

1. INTRODUCTION

The goal of this paper is to introduce a high level
performance modeling and evaluation software tool
called PAWS, and to demonstrate its application to
modeling the hardware and software of the SAMIS
(Saudi Arabian Ministry of Interior System) Online
System for the purpose of evaluating its perfor
mance. The paper summarizes the work done in one
independent task of a research project carried out to
improve the operational effectiveness of the SAMIS
computer network.

The research project has been completed in eight
een months and has fully been documented in three
progress reports [1-3], a final report [4], and in [5].
It consisted of two major and independent tasks,
namely the development of Arabic input/output
devices, and performance engineering and system
modeling. Only the work done in the latter task is
presented in this paper. The objective of the latter
task was to develop and validate a simulation model
to predict system performance, identify potential
bottlenecks, explore alternative configurations, and
help fine-tune the systepl for best performance.

The SAMIS computer network is a large hardwarel
software system that is operated by the National
Information Center, Ministry of Interior, Riyadh,
Saudi Arabia. It is used to acquire, maintain, and
provide vital information about the citizens and the
expatriates in the country. A part of this network,
called the SAMIS Online System, has been modeled
and its performance has been evaluated to develop
an understanding of the interaction of all hardware
and software components, to verify whether it can
provide reasonable service to its users, and to plan
for the furture expansion of the network. The
general structure and properties of the SAMIS
Online System will be given in Section 2.

PAWS (Performance Analyst's Workbench
System) is a software package incorporating a very
high level simulation language and associated tools
[6, 7]. PAWS enables a modeler to concentrate on
the high level details of modeling rather than the low
level details of coding. A model is first pictorially
constructed in a notation called Information Proc
essing Graphs, then a simulation program is coded
in PAWS simulation language. Some important
primitive structures available in PAWS will be

briefly described, and their ease of use and func
tionality will be discussed in Section 3. Also, a
number of concepts available in PAWS and the statis
tical output generated by the PAWS package will be
evaluated.

In Section 4, the modeling approach, the problems
encountered during the performance modeling
process, and procedures that are adopted to create a
successful model representing the actual system will
be presented. Modeling assumptions and the rea
soning for the assumptions will also be provided.
Two models using the PAWS language will be
described in Section 5. Finally, the results that are
obtained through modeling process and suggestions
made to improve the network performance will be
presented in Section 6.

2. SAMIS ONLINE SYSTEM

The SAMIS computer network is a large informa
tion system operated by the National Information
Center, Ministry of Interior, Riyadh, Saudi Arabia.
The Online System and the Administrative System
are the two major components of the S AMIS com
puter network. Since they are mostly independent,
separate UNIVAC mainframe computer systems are
allocated to each, and there exists a third backup
mainframe which can take over either system in case
of failures. It has been decided to consider only the
Online System for modeling, because of the online
nature of applications and performance problems
already encountered in terms of poor response time.

The SAMIS Online System hardware consists of
dual CPU Univac 1100/82 computer system with
1.5M words (36 bits per word) main memory, 64
disk drives (78K pages each, 512 words per page) in
two large disk subsystems, 9 fast drums (262K words
each), and 15 slow drums (2M words each) in three
drum subsystems, around 1000 dual language termi
nals, and other associated components such as tape
drives, printers, communication controllers, etc. [4].

The SAMIS Online System uses the CSTS-II
operating system developed by Computer Science
Corporation. The Interaction Management Protocol
(IMP) subsystem of CSTS-II allows transaction
processing by switching a large number of terminals
among an integrated collection of application tasks.
A relational database system called MANAGE

566 The Arabian Journal for Science and Engineering, Volume 15, Number 4A. October 1990

provides file and database operations to support
both the operating system and the application
system.

The application system of the Online System
consists of eleven subsystems, namely Miscreant,
Passport Issuance, Criminal Records, Alien Control,
Border Control, Drivers License, Motor Vehicle,
Pilgrim Control, Civil Registry, Micrographics, and
Message Communication subsystems. Each sub
system supports a variety of functions that consist of
a specific transaction flow. Around 120 different
functions are supported in 11 subsystems. The
SAMIS computer network terminals are configured
to enable the selection of a specific set of functions
only. The invocation of a function from a terminal
starts the execution of a sequence of application
system tasks, where the execution sequence is well
defined in the thread chart description of the SAMIS
Online System [4,5].

3. OVERVIEW OF PAWS

Performance Analyst's Workbench System
(PAWS)· is a software package providing state-of
the-art simulation of computer and communication
systems. The PAWS language uses high level con
cepts and primitives, though it is simple, powerful,
and easy to learn [6, 7]. It enables the modeler to
concentrate on system structure and dynamics at
a high level, without getting involved in model
implementation intricacies.

The PAWS package was selected for a variety of
reasons. First, it was one of the best packages avail
able at the time and was used by many other teams
in complicated simulation studies. Second, the
package provided a very high level modeling
language, therefore a reduced modeling time was
expected. Third, the package came in source code,
therefore enabling the modeler to make changes in
the source code. And last, modelers were already
familiar with the package and re-training to use the
package properly was minimal.

In order to construct a PAWS model, the user
must first abstract, from the real system to be
modeled, a pictorial representation of the system
called an Information Processing Graph (IPG). The

·IRA, the developer of PAWS, changed its name to SES, Inc.
and PAWS has developed into DEW (Design Evaluation
Workbench). DEW is based on C, rather than Fortran as with
PAWS. DEWS runs much faster than PAWS and provides more
functions and a better grap~ical interface.

M. U. ~aglayan

user next translates the IPG into a complete PAWS
model description, which PAWS simulates to obtain
the requested performance statistic estimates.

IPGs are based on the concept of transactions
which are processed at some nodes. The category of
a transaction represents its type. It is static during
simulation. The phase of a transaction is used to
represent dynamic aspects of it. Transactions move
from a node to another according to the node
topology of a PAWS model.

Different types of nodes exist for different types of
transaction processing, such as resource manage
ment nodes, routing nodes, arithmetic nodes, inter
rupt nodes, and user nodes. Resource management
nodes are classified to represent active resources and
passive resources. An active· resource is represented
by a SERVICE node, which is basically a server with
a queue. Passive resources are either memories or
tokens, and represent objects that must be possessed
by a transaction to do work. Passive resources are
acquired and later released, therefore they are
represented by a pair of nodes. For example, tokens
are acquired at ALLOCATE nodes and released at
RELEASE nodes, and memories at GETMEN
nodes and RELMEM nodes respectively.

Routing nodes are used to create, destroy, or alter
the paths of transactions. Transactions of any
category/phase can be created at a SOURCE node
according to a specified interarrival time distribu
tion. They are destroyed at SINK nodes. FORK,
JOIN, SPLIT, and BRANCH are routing nodes to
move transactions according to their categories
and/or phases.

Arithmetic nodes are used to carry out computa
tions on PAWS variables and consist of COMPUTE
and CHANGE nodes. A COMPUTE node is similar
to an ordinary FORTRAN assignment statement.
A CHANGE node is used to change the phase of a
transaction in a probabilistic manner.

An interrupt node is used by one transaction to
interrupt the processing of another transaction. The
interrupted transaction immediately departs the
node with a new phase assigned to it by its inter
rupter. User nodes allow the modeler to interface
FORTRAN subroutines with a PAWS model. This
facility makes PAWS an extensible system.

A PAWS program mainly consists of: (a) a
DECLARE section, in which all variables, nodes,
categories, tokens, and memories are given;

October 1990 The Arabian Journal for Science and Engineering, Volume 15, Number 4A. 567

M. 	U. {:ag/ayan

(b) a TOPOLOGY section in which edges connec
ting the nodes are defined; (c) a DEFINE section in
which each node is defined in detail; (d) an INITIAL
section in which the initial conditions are declared;
(e) a STATISTICS section in which the type and
parameters of statistics to be collected are defined;
and (/) a RUN section that actually causes PAWS
to simulate a model.

The PAWS language is a declarative one, and
therefore it is easy to learn and use. The interested
reader can consult [6, 7] for more details since it is
impossible to include all aspects of PAWS in this
paper.

The PAWS software package has been run on a
DEC VAX-111780 VMS computer system, and it is
available for several other computer systems.

4. MODELING APPROACH 	AND
ASSUMPTIONS

The use of modeling and simulation versus
measurement as different methods of performance
evaluation is well known [8]. Modeling and simula
tion was chosen since the system whose performance
to be evaluated is very complex. Also the system was
partially operational, therefore the results of any
measurement study would not be indicative.

Initially, a number of trips were made to the
National Information Center (NIC) to obtain system
documentation on SAMIS hardware and software
configuration, and to meet and interview NIC key
personnel for the purpose of getting answers to
specific questions regarding system details and
recent system modifications.

Most of the existing SAMIS documentation
related to the project [1-4] were studied to identify
the hardware and software components, and their
functional relationships. The initial effort was con
centrated on understanding the details of the CSTS-II
operating system, the MANAGE database manage
ment system, and the components of the application
software system.

Since some subsystems were not operational at the
time of modeling and not all subsystems were
equally important because of their database size
and/or frequency of usage, it was decided to restrict
the initial modeling effort to cover the three most
important subsystems, namely Civil Registry, Alien
Control, and Border Control.

Modeling of the .communication hardware and
software components was not considered due to the
facts that not all components were operational, and
few problems were expected to be found there. The
model was constructed to take into account the
communication system in terms of communication
delays and the operator "think time" involved, both
of which are parameters affecting the transaction
arrival and departure rates. The sensitivity of the
model to these two parameters need to be evaluated
to find out whether it is worth the effort to model
the communication system separately.

The SAMIS Online System transaction volume,
broken down with respect to the Online System sub
systems, was computed and projected for the year
1990 [1]. It was calculated that the transaction rate
will be around 6 transactions per second and 850/0 of
the transaction load will be generated by four sub
systems, out of eleven s~bsystems.

Important observations that were made during
interviews and document evaluation were as follows.

1. 	 The mainframe on which the Online System is
operating seemed to have a relatively small
memory size compared with the size and complex
ity of the operating system, the database manage
ment system, and the application subsystems.

2. 	 Similarly, the amount of auxiliary storage pro
vided in terms of fast drums seemed to be small.
Also, the specific way these drums were used by
the syste~, namely the "file promotion" opera
tion, seemed to have a significant negative effect
on the system performance when very large files
are considered.

These observations implied that the amount of
main memory and the drum bandwidth may be
performance bottlenecks in the Online System,
especially after all the subsystems are operational
with fully developed databases. Therefore, it was
decided that the actual effects of these two important
system properties on system performance in terms of
response time and system throughout needed to be
quantified through the modeling process.

After a sufficient understanding of the SAMIS
Online System had been developed, a two-level
approach was agreed upon to construct a perfor
mance model. This approach has resulted in two
simulation models for performance evaluation,
namely the disk-drum model and the data-driven
model. These models were aimed at representing the

568 The Arabian Journal for Science and Engineering, Volume 15, Number 4A. 	 October 1990

SAMIS Online System's performance at different
levels of detail. The next section will give a descrip
tion of both of these models.

s. SIMULATION MODELS IN PAWS

Initially, a disk-drum model of the SAMIS
Online System was constructed. Although it was
expected that this model would not precisely reflect
the intricacies of the application system, it was
nevertheless constructed to have an overall under
standing of the. underlying computer hardware, and
its interaction with the operating system and the
application system in a global manner. The disk
drum model incorporated the following properties of
the Online System:

All hardware components such as CPUs, memory,
channels, drums, disks.

Physical properties and parameters of hardware
components in terms of quantity, size, speed, etc.

Configuration of the hardware components such
as which channels control which drums and/or
disks.

Properties and parameters of the operating system
components, i.e. scheduling, memory manage
ment, queuing disciplines, and input/output device
allocation strategies.

Parameters representing the overall average
behavior of all application software system com
ponents, such as input transaction arrival time
distribution, memory request patterns, frequency
of disk or drum input/output per transaction, etc.

The information processing graph of the disk-
drum model is shown in Figure 1. Modeling assump
tions and scenarios are as follows:

Input transaction load is assumed to consist of
PAWS transactions in 10 different categories,
namely ALIEN, BORDER, CIVIL, CRIM,
DRIVE, MISCR, MOTOR, PASS, PLGRM,
and OTHER. Each category represents an Online
System subsystem.

Transaction interarrival time is assumed to be
exponentially distributed. The mean interarrival
time in milliseconds is set according to the overall
transaction rate, in number of transactions per
second, ranging from 2 to 10 trans S-I. Distribu
tion of categories is assumed to be uniform,
representing the fact that there is equal load on
every subsystem. The load on each subsystem

M. U. Caglayan

should actually be characterized by measuring the
frequency of transactions during a representative
day.

All transaction interdependencies are ignored,
since it is not possible to represent such dependen
cies in the disk-drum model. The transaction
dependency means that a transaction of a certain
subsystem is not only created by the operator
of that subsystem directly, but also by other
subsystems.

2282 pages representing the total user area of
main memory is allocated by best fit. Main memory
requests are served First-Come-First-Serve (FCFS).

The memory requests are assumed to be uniformly
distributed between 6 and 108 pages of code that
includes both instruction and data. It is assumed
that transactions that arrive following a transac
tion that is already in the system and of the same
category request only one page of data area since
tasks representing the subsystems are reentrant.
The assumption on uniform distribution of memory
requests, irrespective of transaction categories, is
not a realistic one, since different category trans
actions request different amounts of memory. The
model can easily be updated once request distribu
tions per category are known.

Dual CPU, single scheduling algorithm results in
PAWS node with a single input queue and two
servers. Queuing discipline is FCFS.

Scheduling algorithm is simplified to FCFS.
CPU times are assumed to be exponentially
distributed with the same mean, irrespective of
transaction categories. Mean values ranging from
1 to 10 milliseconds have been studied in the
model.

Average number of disk I/O operations and aver
age number of drum I/O operations per transac
tion, irrespective of the transaction type, were
computed by taking a weighted average based on
file sizes expected in 1990 and file types as speci
fied in the design documents. Whether the files
are of type index or hashed was taken into account
since this fact very much affected the number of
disk operations. It was found that a transaction
issues, on the average, 28 drum and 9 disk I/O
operations every time it enters the system.

Based on the average number of disk-drum I/O
operations per transaction, the probability that a
transaction will request disk or drum I/O operation,
after its current CPU time is over is computed in

October 1990 The Arabian Journal for Science and Engineering, Volume 15, Number 4A. 569

U
'I

.....

:. <=

~

~

~

~

~

s::
I:

)"

,.
.r
•
•
•
•
o

t.
io

.
§"

..
A

I.
..

..
.
I

...
-..

....

I!
'o

ke
ll

a
i)

IU
C

."
I!

'O
K

..

..
.0

.1
..

I

C
.t

.e
9

0
ri

e
.

O
iq

(
~

~
-
-
-
-
-

;::

S"
,..

A
L

IE
N

'<

:;
A

L
I•

•

$:
:I

C
o

n
t.

in
u

e
d

7

aO
.o

K
R

;.:

!it

a
o

.o
•
•

"'
C

IV
IL

'C
'

I
C

IV
IL

.,
L
-
_
~
 *

a
a

2r:.~
b

el
.o

w

"'
C

.I
II

c
a
l.

.
7

D
.I

V
.

a
.1

C

PU

D
.I

V
•

aR
..

.C
.

S
•
•

V
IC

.
..

I.
C

.
I!

'''
IS

C
R

r
•
•

7
.R

..

..
..

.,.
.O

K

S.
..

..
.I

.....

.....

~

S
O

U
R

C
.

A
L

L
O

C
A

,..
.

C
O

"P
U

I!
'.

G
.I

!' .
..

..

,..
..

O
,..

O
R

..
o

,.
.o

a
§ ;:.

.
Ir-

--
--

--
--

--
--

--
--

--
--

--
--

- I
P

A
.S

"'

P
A

•
•

"'
PL

G
R

II
P

L
G

a
.

I
R

D
au

..
 M

 :

~
:

U
L

.A
S

.
1

I
ol

!'
a•

•

,..
O

,..
•
•

R
s"

I
I

....
....

_-

~

~

I
I

,..
D

R
U

II
s·

,..
D

IS
K

~

:
~~
~~
--
-

\
;

:
~

,..

C
B

01
i:

I!

'C
B

02
~

,.
.C

a
ll

~

..
..

..
..

,..0
1&

:
11

&
1.

..
..

.
,..

C
B

12

,
,

... _
.....

 _-

~
C

.A
R

G
.

A
L

L
O

C
A

7.

._
-

I
I

:i

.--
I

I
,.

.C
.O

O
I:

)"

1
.,~

--
-_

.-:
:::

..
--

--
'--

-7
l!

'c
a0

2
a

I!
'C

a1
0

~

I!
'c

a1
2

a

D
IS

K

L
.X

I,
..

S
.R

V
IC

.
.1

.1
&

:

V

I I
a
.A

.C
.

C
..

..
G

.
.o

IS
K

I

C
O

.P
U

,.
..

L

 _
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

I
t

•
•

L
.A

S
.

:
A

D
 1

.1
&

:

A

L
L

O
C

A
I!

'.

 F
ig

ur
e

1.

IP
G

 o
f

D
ru

m
 &

D

is
k

M
od

el
:

S
A

M
IS

 O
nl

in
e

Sy
st

em
.

~
 s ~ ., ~

order to route the transaction either into the disk
or the drum subsystems.

Each drum string has two control units connected
to separate channel interfaces, therefore up to six
concurrent drum I/O operations can be carried
out. The drum-to-interface connections have been
built into the model.

A transaction is routed to one of the 24 drums in
proportion to the free space available on that
drum, irrespective of transaction category, irre
spective of file distributions on drums, and also
irrespective of any other CSTS-II activity on any
drum. The proportion rule is simple. The larger
the size of the data allocated on a drum, the higher
the probability of accessing that drum.

Drum service time is approximated to be a simple
delay equivalent to the average access time. Data
transfer time is ignored considering the speed of
the drums.

There are two disk subsystems, two storage control
units per subsystem, and four strings of disk drives
per subsystem. Each string has two channel
adapter units connected to different storage con
trol units to enable simultaneous access to two
different drives in the same string. This means
there is a total of 64 drives, consisting of 8 strings,
therefore up to 4 concurrent disk I/O operations
are possible.

A transaction is randomly routed to one of the 64
disk drives since the NIC policy was to distribute
all Online System files on disk drives as uniformly
as possible.

It is assumed that disk access times are also uni
formly distributed between 18.3 to 83.3 milli
seconds, i.e. between minimum seek time plus
latency to maximum seek time plus latency. Disk
data transfer time is ignored.

The disk-drum model is unable to represent both
the detailed structure of the transactions of the Online
Application System and the interdependencies
among the transactions, although it models all
hardware properties plus the global behavior of the
application and operating systems. To remedy the
problems associated with this model, it was decided
to develop what is called a data-driven model.

The main idea behind the data-driven model is to
imitate the flow of a transaction of a function, in
terms of task executions and drum and disk I/O
operations. Functions consist of multiple tasks, each

M. U. t:;aglayan

identified by a stepcode. Tasks initiate each other in
a data dependent manner and perfJrm I/O opera
tions on pre-defined files.

The PDL (Program Description Language) descrip
tion of each function was studied to understand the
logic behind task sequences. The task execution
sequence of each function was represented by a
probabilistic graph, where the nodes of the graph
correspond to tasks of a function, edges represent
the task precedence relationship, and a probability
assigned on an edge represents the probability of the
execution of a task after the execution of a previous
task. Probabilities are assigned by studying the
meaning of the actual function carried out by each
task. The probabilistic graph of a function is kept in
a data file to be input later to the simulator [5].

The logic in the PDL of each function was further
studied to determine the I/O pattern of each task of
each function. A data file was prepared to contain
information about the identity of the files that are
accessed by each task, and how many times a task
accesses a specific file.

The Information Processing Graph (IPG) of the
data driven model of the SAMIS Online System is
shown in Figure 2. The most important node in the
graph is the user node. Detailed description of the
user node could be found in [3,4]'

The user node in the PAWS IPG contains a
number of tables to store information about all data
dependent aspects of the model. These tables are
used to assign a phase to a PAWS transaction at the
user node, so that the transaction can be routed to
execute on a CPU, or perform a drum-disk I/O, or
allocate memory, etc.

The Task Information Table stores all the infor
mation regarding the state, size, I/O pattern, execu
tion time, etc. of a SAMIS Online task. FP and FS
tables are used to locate the first task and the proba
bilistic task execution pattern of each SAMIS Online
function. The information contained in these tables
is as follows.

FP Table : Function pointer table

FPl : Function id, xxyy
FP2 : Pointer to the first task of this function in FS

FS Table : Function step indicator table

FSI : Stepcode of a function task. If it is zero the
task stepcode is the same as the one that has
the closest lower task index. This is used

October 1990 The Arabian Journal for Science and Engineering, Volume 15, Number 4A. 571

M. U. <;aglayan

I

... N 1ft W '" • 0
0 0 0 0 0 0 ...
III N N III III III N

0

• ..
~

N

•
I
U • •

.;
'-----'

... ...
N

III 0... 0
N N

• 0"' ..,II •

...
III
N

.... 0
AAo"
U.NIII

.. ...
~

.. ..
H H

•M •M
.:I U-

....:
~
~
~
IU
;:..
.~

~
S
c::t
~

t"i
~
~

~

572 The Arabian Journal for Science and Engineering, Volume 15, Number 4A. October 1990

M. U. {:aglayan

to define branches in the task sequence
diagrams.

FS2 : Pointer to table T to locate the task of this
task, FS1(I), of current function

FS3 : Probability of branching to the task pointed
by FS4(1). Probabilities are multiplied by
100 and stored as integer values. Probabil
ities must sum up to 100.

FS4 : Pointer to next task in this function. Zero
pointer ends the definition of a function.
Next task's index may be higher or lower
than current task index.

T Table : Task Information Table
Every column of T is defined as a
separate vector variable. Ti refers to
column i.

T1 : Task id no, xxdddd
T2 : Task step code, dddd
T3 : I-Bank (Instruction Memory) size in

pages
T4 : D-Bank (Data Memory) size in pages
T5 : Flag for task auto-creation at system

start-up 0 = Not created, 1 Created
T6 : Number of waiting terminals, after which

another copy of the task will be created
17 : Maximum number of copies allowed
T8 : Task kill time 1 : if an originally created

task (except auto-created ta$ks) does
not execute within this time, it will be
killed

T9 : Task kill time 2 : as above, but for task
copies

TID : Number of existing task copies
TIl : State and memory address of each copy

of this task given in pairs, up to 3 copies
state of i'th copy of task j is in TIl
(j, i*2-1)
State values are:

o : In main memory and not busy
1 : In main memory and busy
2 : Swapped out
3 : Being swapped out
4 : Being swapped in
5 : Being created

T11SZ : Size of TIl
T12 : Number of transactions waiting on this

task
T13 : Queue to store transaction id numbers

of up to 5 waiting transactions i'th trans
action id for task j in T13 (j, i)

T13SZ : Size of T13

T14 : Task maximum execution time
T15 : Not used now
T16 : Not used now
T17 : Not used now
T18 : Information about files accessed by a

task maximum of 10 files.

Transaction flow in the IPG of the data-driven
model can be summarized as follows.

Transactions are created according to the com
puted transaction load. Since the frequency of trans
actions for a specific SAMIS Online function varies,
transactions are assigned a PAWS category accord
ing to the computed frequency in nodes AF1 to
AF11. Transactions next move into the PAWS user
node, in which all operations such as task execution,
drum I/O, disk 110, terminal 110, etc., will be sched
uled according to the function and task information
tables previously defined. Transactions are routed
out of the user node with a different phase, which
identifies the next operation to be carried out by the
transaction. Details of nodes are given in [4].

6. RESULTS AND CONCLUSION

Most time and effort during the first twelve
months, of the project have been spent on finalizing
the initially conceived disk-drum model of the
SAMIS Online System, and on obtaining crudely
approximated results on the performance of the
computer system. The results obtained implied that
the Online System was capable of providing reason
able service at year 1990 peak load for a certain set
of assumptions, but could not provide reasonable
service for another set of assumptions. These
assumptions were mainly concerned with a few
system parameters such as system load in terms of
transactions per second, and CPU time distribution.
Results that showed reasonable service were
obviously in conflict with the service rates that were
being experienced by the users of the system under a
fraction of the projected peak load.

A large number of simulation runs of the disk
drum model in PAWS were conducted. Each simu
lation run took a considerable amount of job execu
tion time. Simulation run times as much as five to six
hours of VAX-11/780 time were experienced even
when the current model run on the VAX system
while no other users were sharing it. The PAWS
software package configuration used in simulation
runs required approximately four megabytes of
virtual main memory, and our VAX system could

October 1990 The Arabian Journal for Science and Engineering, Volume 15, Number 4A. 573

M. U. Caglayan

supply at most only around 1.2 megabytes of real
memory if the package was run alone in the system.
Unacceptably long run times were experienced due
to excessive paging activity because of the small real
memory.

A related problem was experienced while the
PAWS package was being configured to run the
model. Because of the structure of the PAWS
package, it is possible that the package will simply
abort a simulation run which has already taken a
considerable amount of time, due to overflows in
PAWS internal tables. Such overflows happen to
show up one by one and especially towards the end
of the simulation run. Each abort results in the
update of one or more PAWS configuration param
eters, then the compilation and linking of all package
modules to recreate a new package with more
capacity, which are themselves quite long jobs, runs
on the VAX system. The PAWS package was
re-configured about twenty times during the last six
months, resulting in the loss of considerable machine
time and human effort.

The selection of the model simulation time very
much affects the resulting package run time. The
actual simulation time is restricted to 240000 ms, or
four minutes. It seems there is no necessity to
simulate the model tor a duration equivalent to
approximate the SAMIS daily up time, perhaps
8 hours, during which a reasonable load is handled.
Since the simulation runs are made by using roughly
the peak system load, actual short simulation times
will be acceptable as long as it is demonstrated that
there is no accumulation of unprocessed transactions
left in the model when the simulation time is over.
All simulation runs carried out satisfied this last
criteria.

System modeling scenarios consisted of an exami
nation of the effects of main memory size, drum
channel bandwidth, drum access time, disk channel
bandwidth, and disk access time on response time
distribution, CPU utilization, memory utilization,
and drum-disk utilizations.

Simulation runs with different input transaction
rates and different mean CPU times were conducted.
The results obtained for a set of assumptions imply
that the SAMIS Online System, as modeled, is
capable of handling the expected peak load well,
in fact, with an average response time and standard
deviation less than 0.5 seconds, or 500 milliseconds,
with reasonable utilization of all hardware resources.

574 The Arabian Journal for Science and Engineering, Volume 15,

This looked quite good compared with what is
actually happening in the SAMIS Online System.
The response time increases very rapidly with
increase in the transaction rate. High transaction
rates are expected to result when incoming transac
tions create a number of transactions in other trans
action categories. This action was called transaction
dependency.

The disk-drum model was not capable of repre
senting the fine details of the transactions of the
application software and its components. Therefore,
an additional data-driven model was constructed to
represent the finer details and to extract more reli
able and precise performance measures. Most of the
work done to construct the disk-drum model was
also used in the data-driven model; therefore the
effort spent on developing the disk-drum model
was not wasted at all.

In the data-driven model, only the data regarding
the complete specification of the Citizen Registry
subsystem were extracted and incorporated into the
model. Most of the effort was spent on designing and
coding the central component of the data driven
model, called the user node. The information
extracted included properties of all SAMIS Online
System files, the task structure of SAMIS Online
System functions, properties of all system and appli
cation tasks, and task-file relationships.

Because of the excessive time required to extract
data for the remaining subsystems, only the correct
ness of the data-driven model was verified without
actually creating any performance evaluation statis
tics. Some hypothetical results obtained by projecting
the Citizen Registry subsystem load into full transac
tion load are documented in [5] to understand the
behavior of the model, but these results do not
represent the actual system performance.

After the task and file information data of the
remaining subsystems are extracted from the SAMIS
Online System documentation and built into the
model, it would be possible to have meaningful per
formance statistics about the modeled system.

ACKNOWLEDGEMENTS

The author would like to thank Dr. A. N. Sagr,
Director General of National Information Center,
Ministry of Interior for enabling and supporting the
performance modeling and evaluation task of the
project, and Dr. M. I. AI-Suwaiyel, Dean, College
of Computer Science and Engineering, KFUPM,

Number 4A. October 1990

Dhahran for heading both tasks of the project.
Many thanks are also due to Dr. E. T. Upchurch for
initiating the disk-drum model, P. J. Parmar of
CSC for his cooperation in providing information
and documentation on SAMIS computer network,
and K. W. AI-Dhaher for his effort to complete
many simulation runs.

The work described in this paper has been carried
out while the author was with the Information and
Computer Science Department, King Fahd University
of Petroleum and Minerals, Dhahran, Saudi Arabia,
and has been fully supported by National Informa
tion Center, Ministry of Interior, Riyadh, Saudi
Arabia, through Saudi Arabian National Center for
Science and Technology.

REFERENCES

[1] 	 M. I. AI-Suwaiyel, S. S. Hyder, and M. U. Caglayan,
"SAMIS Computer Network: Evaluation and
Enhancements", Progress Report I, Computer and
Information Science Department, King Fahd University
of Petroleum and Minerals, Dhahran, Saudi Arabia,
September 1985.

[2] 	 M. I. AI-Suwaiyel, S. S. Hyder, and M. U. Caglayan,
"SAMIS Computer Network: Evaluation and
Enhancements", Progress Report II, Computer and

M. U. (;aglayan

Information Science Department, King Fahd University
of Petroleum and Minerals, Dhahran, Saudi Arabia,
April 1986.

[3] 	 M. I. AI-Suwaiyel, S. S. Hyder, and M. U. Caglayan,
"SAMIS Computer Network: Evaluation and
Enhancements", Progress Report III, Computer and
Information Science Department, King Fahd University
of Petroleum and Minerals, Dhahran, Saudi Arabia,
September 1986.

{4] 	 M. I. AI-Suwaiyel, S. S. Hyder, and M. U. Caglayan,
"SAMIS Computer Network: Evaluation and
Enhancements", Final Report, Computer and
Information Science Department, King Fahd University
of Petroleum and Minerals, Dhahran, .Saudi Arabia,
December 1986.

[5] 	 K. W. AI-Dhaher, "Performance Modeling of a
Computer System: Saudi Arabian Ministry of Interior
Online System", M.S. Thesis, Computer and Infor
mation Science Department, King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia,
June 1987.

[6] 	 An Introduction to PAWS. Austin, Texas: Informa
tion Research Associates, 1984.

[7] 	 PAWS 2.0 Users Manual. Austin., Texas: Information
Research Associates, 1984.

[8] 	 C. H. Sauer and K. M. Chandy, Computer Systems
Performance Modeling. Englewood Cliffs, NJ.:
Prentice-Hall, 1981.

Paper Received 13 July 1988; Revised 11 March 1990.

October 1990 	 The Arabian Journal for Science and Engineering, Volume 15, Number 4A. 575

