ON THE EXACT SOLUTION OF A SYSTEM OF LINEAR HOMOGENEOUS EQUATIONS via A PROJECTIVE ALGORITHM

Mustafa Akgül
Department of Industrial Engineering
Bilkent University
P.O.B. 8, Maltepe 06572 Ankara, Turkey

In a recent paper De Ghellinck and Vial [1] proposed a projective algorithm to solve a system of linear homogeneous equations: find $x \in \Re^{n}$ satisfying:

$$
\begin{align*}
& A x=0 \\
& e x=n \tag{P1}\\
& x \geq 0
\end{align*}
$$

where $A \in \Re^{m \times n}, x \in \Re^{n}$ and e is the row vector of ones. Let L be the length of the input as defined in [2]. Their main algorithm, which is a variant of the projective algorithm [3] and will be called \mathscr{A}_{1}, takes $\varepsilon>0$ as part of the input and delivers in time polynomial in m, n, L, and $\log 1 / \varepsilon$, one of the following:
(i) an exact solution of $P 1$,
(ii) a proof that $P 1$ has no solution,
(iii) an ε-approximate solution, i.e., an x satisfying

$$
\begin{gather*}
\left|a_{i} x\right|<\varepsilon \forall i \tag{1}\\
e x=n \tag{2}\\
x \geq 0 . \tag{3}
\end{gather*}
$$

Their algorithm is based on the perturbation lemma of Gács-Lovász [4].

Lemma: For $\varepsilon>0$ sufficiently small, the system

$$
\begin{equation*}
a_{i} x \leq b_{i}, \forall i \tag{4}
\end{equation*}
$$

has a solution if and only if the system

$$
\begin{equation*}
a_{i} x<b_{i}+\varepsilon, \forall i \tag{5}
\end{equation*}
$$

has a solution.

In order to determine an exact solution, more precisely a basic feasible solution (bfs), of $P 1$, they call the algorithm $\mathscr{A}_{1} n$ times. At each iteration they attempt to fix a variable x_{j} to zero.

It is interesting to note that the De GhellinckVial algorithm for finding an exact solution to a system of linear homogeneous equations is exactly Hachiyan's algorithm [2,5] for finding an exact solution to a system of linear inequalities. Recall that Hachiyan solved the decision problem (Is $S=\{x: A x \leq b\} \neq \varnothing$, a yes or no question), in proving $L P \in \mathscr{P}$. Since Hachiyan did not have Gács-Lovász's Perturbation Lemma, he used the ellipsoidal algorithm as a subroutine to find an exact solution of a system of linear equations. Similarly, De Ghellinck-Vial used their main algorithm to find an exact solution of a system of homogeneous linear equations.

Earlier, we presented [6] an interpretation of the perturbation lemma within the simplex algorithm framework. Given \bar{x} satisfying $\left\{x: a_{i} x \leq b_{i}+\varepsilon \forall i\right\}$, one finds a bfs \tilde{x} of it in at most n simplex pivots (see also [7]). Basis or hyperplanes defining \tilde{x} will give a bfs \hat{x} of the unperturbed system (4). Actually, this idea is first used by Maurras et al. [8], to find an exact solution from an ε-approximate solution for totally unimodular systems.

As usual we assume that A is an integral matrix. Consequently there exists a positive integer $q=O\left(2^{L}\right)$ satisfying:
(i) For every basis B of $\left[\frac{A}{e}\right]$ we have

$$
\begin{equation*}
\left|\left(B^{-1}\right)_{i, j}\right| \leq q, \quad|\operatorname{det} B| \leq q \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B^{-1}\right)_{i, j} \neq 0 \Rightarrow\left|\left(B^{-1}\right)_{i, j}\right| \geq 1 / q . \tag{7}
\end{equation*}
$$

(ii) For any basic solution \bar{x} of

$$
A x=0, e x=n,
$$

we have

$$
\begin{equation*}
\left|\bar{x}_{j}\right| \leq q \text { and } \bar{x}_{j} \neq 0 \Rightarrow\left|\bar{x}_{j}\right| \geq 1 / q . \tag{8}
\end{equation*}
$$

Given $\varepsilon>0$ and $\bar{x} \in \mathscr{R}^{n}$ satisfying (1-3), let us transform (1-3) to

$$
\begin{array}{cc}
a_{i} x+u_{i}=\varepsilon & i=1 \ldots m \\
-a_{i} x+v_{i}=\varepsilon & i=1 \ldots m \\
e x=n & \\
z=(x, u, v) \geq 0 \tag{12}
\end{array}
$$

Let us rewrite (9-12) compactly as

$$
\begin{equation*}
\tilde{A} z=\tilde{b}, \quad z \geq 0 \tag{13}
\end{equation*}
$$

with $\tilde{b}^{T}=(\varepsilon \bar{e}, \varepsilon \bar{e}, n) \in \mathscr{R}^{2 m+1}$ and \bar{e} is an m-vector of ones. Clearly, $\exists \bar{u} \in \Re^{m}, \bar{v} \in \Re^{m}$ such that $\bar{z}=(\bar{x}, \bar{u}, \bar{v})$ is a solution of (13).
Lemma: Given a solution \bar{z} of (13) there exists a polynomial algorithm, say \mathscr{A}_{2}, which finds a basis \tilde{B} of \tilde{A} and a basic feasible solution \tilde{z} such that $\tilde{z}_{\tilde{B}}=(\tilde{x}, \tilde{v}, \tilde{v})_{\tilde{B}}=(\tilde{B})^{-1} \tilde{b}$.

This result is, in fact, a constructive proof of the fundamental theorem of linear programming and goes back to Dantzig [9]. The algorithm \mathscr{A}_{2} can be viewed as a simplex-type algorithm or a projection algorithm. For a formal proof of this result see reference [7]. \mathscr{A}_{2} requires, in general, dim $z=2 m+n$ pivots. However, for ε sufficiently small it requires n pivots.
Let $b^{T}=(0,0, n)$ and define a basic solution of $\tilde{A} z=b$ by

$$
\begin{equation*}
\hat{z}=(\hat{x}, \hat{u}, \hat{v})=(\tilde{B})^{-1} b, \tag{14}
\end{equation*}
$$

and, of course, $\hat{z}_{\bar{N}}=0$, where \bar{N} is the set of all non-basic variables. Then we have:
Theorem: For $\varepsilon<\frac{1}{2 m q}$, \hat{x} is a basic feasible solution of $P 1$.

Proof: It suffices to show that \hat{z} is a basic feasible solution of $\tilde{A} z=b$ and $\hat{u}=\hat{v}=0$. It is easy to see that \hat{x} or \hat{z} satisfies the equation $e x=n$. Clearly for j non-basic $\tilde{z}_{j}=\hat{z}_{j}=0$. For j basic, it suffices to show that

$$
\begin{equation*}
\left|\hat{z}_{j}-\tilde{z}_{j}\right|<1 / q_{\mathrm{o}} \tag{15}
\end{equation*}
$$

where q_{0} is \mid det $B \mid$. This follows since if $\hat{z}_{j}<0$, then $\hat{z}_{j} \leq-1 / q_{0}$, by integrality of \hat{A}, b and definition of q_{0}. But, this contradicts (15) since $\tilde{z}_{j} \geq 0$. Let B_{j}^{*} denote the matrix obtained from B by replacing j 'th column with $\tilde{b}-b$. By Cramer's rule,

$$
\begin{equation*}
\alpha_{j} \equiv(\operatorname{det} B)\left(\tilde{z}_{j}-\hat{z}_{j}\right)=\operatorname{det} B_{j}^{*} . \tag{16}
\end{equation*}
$$

Then, by expanding B_{j}^{*} along j th column, and using (6) we have

$$
\begin{equation*}
\left|\alpha_{j}\right| \leq 2 m \varepsilon q<1 \tag{17}
\end{equation*}
$$

by definition of ε. Clearly (17) implies (15) via (6). Thus \hat{z} is a basic feasible solution of $\tilde{A} z=b$.

We need to show that for basic u_{j} (similarly for v_{j}) $\hat{u}_{j}=0$. Since \hat{z} is a basic feasible solution of $\hat{A} z=b$, we have $u_{j} \geq 0, \hat{v}_{j} \geq 0$. But, in every solution of $\tilde{A} z=b, \quad u_{j}+v_{j}=0$, (by adding (9) and (10)), which implies $\hat{u}_{j}=\hat{v}_{j}=0$. This completes the proof of the theorem.

Thus it suffices to call \mathscr{A}_{1} once with $\varepsilon<1 / 2 m q$, followed by a call to \mathscr{A}_{2}, to obtain an exact solution of $P 1$.

REFERENCES

[1] G. De Ghellinck and J. -PH. Vial, "An Extension of Karmarkar's Algorithm for Solving a System of Linear Homogeneous Equations on the Simplex", Mathematical Programming, 39 (1987), p. 79.
[2] L. G. Hachiyan, "Polynomial Algorithms in Linear Programming", U.S.S.R. Computational Mathematics and Mathematical Physics, 20 (1980), p. 191.
[3] N. Karmarkar, "A New Polynomial Algorithm for Linear Programming", Combinatorica, 4 (1984), p. 373.
[4] P. Gács and L. Lovász, "Khachiyan's Algorithm for Linear Programming", Mathematical Programming Study, 14 (1981), p. 61.
[5] L. G. Hachiyan, "On Exact Solution of Systems of Linear Inequalities and lp Problems", U.S.S.R. Computational Mathematics and Mathematical Physics, 22 (1982), p. 999.
[6] M. Akgül, Topics in Relaxation and Ellipsoidal Methods. London: Pitman, 1984; Research Notes in Mathematics, vol. 97.
[7] M. Akgül, "An Algorithmic Proof of the Polyhedral Decomposition Theorem", Naval Research Log. Quarterly, 35 (1988), p. 463.
[8] J. F. Maurras, K. Truemper, and M. Akgül, "Polynomial Algorithms for a Class of Linear Programs", Mathematical Programming, 21 (1981), p. 121.
[9] G. B. Dantzig, Linear Programming and Extensions. Princeton University Press, 1963.

Paper Received 11 November 1989; Revised 1 May 1990.

