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In a recent paper De Ghellinck and Vial [1]
proposed a projective algorithm to solve a system
of linear homogeneous equations: find x € R"
satisfying:

Ax =0
(P1) ex=n
x=0,

where A € R™*", x € R" and e is the row vector of
ones. Let L be the length of the input as defined in
[2]. Their main algorithm, which is a variant of the
projective algorithm [3] and will be called #,, takes
e > 0 as part of the input and delivers in time
polynomial in m, n, L, and log 1/¢, one of the
following:

(i) an exact solution of P1,
(ii) a proof that P1 has no solution,

(iii) an e-approximate solution, i.e., an x satisfying

la;x| < e Vi (1)
ex =n 2)
x=0. 3)

Their algorithm is based on the perturbation
lemma of Gacs—Lovasz [4].

Lemma: For ¢ > 0 sufficiently small, the system
ax=<b, Vi 4
has a solution if and only if the system

ax <b,+e Vi )
has a solution.
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In order to determine an exact solution, more
precisely a basic feasible solution (bfs), of P1, they
call the algorithm s, n times. At each iteration they
attempt to fix a variable x; to zero.

It is interesting to note that the De Ghellinck—
Vial algorithm for finding an exact solution to a
system of linear homogeneous equations is exactly
Hachiyan’s algorithm [2, 5] for finding an exact
solution to a system of linear inequalities. Recall
that Hachiyan solved the decision problem
(Is S = {x : Ax = b} # (J, a yes or no question), in
proving LP € . Since Hachiyan did not have
Gacs—Lovasz’s Perturbation Lemma, he used the
ellipsoidal algorithm as a subroutine to find an exact
solution of a system of linear equations. Similarly,
De Ghellinck—Vial used their main algorithm to
find an exact solution of a system of homogeneous
linear equations.

Earlier, we presented [6] an interpretation of the
perturbation lemma within the simplex algorithm
framework. Given x satisfying {x : a,x = b, + ¢ Vi},
one finds a bfs ¥ of it in at most n simplex pivots (see
also [7]). Basis or hyperplanes defining X will give a
bfs £ of the unperturbed system (4). Actually, this
idea is first used by Maurras et al. [8], to find an
exact solution from an e-approximate solution for
totally unimodular systems.

As usual we assume that A is an integral matrix.
Consequently there exists a positive integer
q = 0(2") satisfying:

A
(i) For every basis B of [?]
we have
|(B_1)i,j| =q, |det B| = ¢ (6)
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and
(B, #0=>|(BN)l=1/g.  (7)
(it) For any basic solution x of
Ax=0,ex=n,
we have
|xj] =g and X; #0=> |x;| = 1/q. (8)

Given & > 0 and X € R" satisfying (1-3), let us
transform (1-3) to

ax+tu;=c¢ i=1.m (9)

—ax+v,=¢ i=1..m (10)
ex =n (11)
z=(x,u,v)=0. (12)
Let us rewrite (9—12) compactly as
Az=b 220 (13)

with bT = (ee, ee,n) € R*™*! and e is an m-vector
of ones. Clearly, Ju € R™, v € R™ such that
z = (x,u,v) is a solution of (13).

Lemma: Given a solution z of (13) there exists a
polynomial algorithm, say s{,, which finds a basis B
of A and a basic feasible solution Z such that
25 = (%,9,0)5 = (B)'b.

This result is, in fact, a constructive proof of the
fundamental theorem of linear programming and
goes back to Dantzig [9]. The algorithm ¥, can be
viewed as a simplex-type algorithm or a projection
algorithm. For a formal proof of this result see
reference [7]. s, requires, in general, dim
z = 2m+ n pivots. However, for ¢ sufficiently small
it requires n pivots.

_Let b" = (0,0,n) and define a basic solution of
Az = b by

2= (%4, = (B)'b, (14)

and, of course, Z; = 0, where N is the set of all
non-basic variables. Then we have:

1
Theorem: For ¢ < —
2mq

X is a basic feasible solution of P1.

Proof: 1t suffices to show that Z is a basic feasible
solution of Az = b and & = ? = 0. It is easy to see
that £ or Z satisfies the equation ex = n. Clearly for j
non-basic Z; = 2, = 0. For j basic, it suffices to
show that
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lfj—fjl < 1/q,, (15)

where g, is [det B|. This follows since if 2, < 0, then
%, < — 1/q,, by integrality of A, b and definition of
q,- But, this contradicts (15) since z = 0. Let B}
denote the matrix obtained from B by replacing j’th

column with b—b. By Cramer’s rule,
o; = (det B)(Z;—2,) = det B} . (16)

Then, by expanding B} along jth column, and using
(6) we have

laj| =2meg<1 17)

by definition of e. Clearly (17) implies (15) via (6).
Thus 2 is a basic feasible solution of Az = b.

We need to show that for basic u; (similarlyAfor v))
it; = 0. Since Z is a basic feasible solution of Az = b,
we have u; =0, 9; = 0. But, in every solution of
Az =b, u+v;=0, (by adding (9) and (10)),
which implies 4; = 9; = 0. This completes the proof
of the theorem.

Thus it suffices to call &, once with ¢ < 1/2mgq,
followed by a call to s{,, to obtain an exact solution
of P1.

REFERENCES

[1] G. De Ghellinck and J. -PH. Vial, “An Extension of
Karmarkar’s Algorithm for Solving a System of
Linear Homogeneous Equations on the Simplex”,
Mathematical Programming, 39 (1987), p. 79.

[2] L. G. Hachiyan, “Polynomial Algorithms in Linear
Programming”, U.S.S.R. Computational Mathemat-
ics and Mathematical Physics, 20 (1980), p. 191.

[3] N. Karmarkar, “A New Polynomial Algorithm for
Linear Programming”, Combinatorica, 4 (1984),
p. 373.

[4] P. Gécs and L. Lovasz, “Khachiyan’s Algorithm for
Linear Programming”, Mathematical Programming
Study, 14 (1981), p. 61.

[5] L. G. Hachiyan, “On Exact Solution of Systems of
Linear Inequalities and lp Problems”, U.S.S.R.
Computational ~ Mathematics and  Mathematical
Physics, 22 (1982), p. 999.

[6] M. Akgil, Topics in Relaxation and Ellipsoidal
Methods. London: Pitman, 1984; Research Notes in
Mathematics, vol. 97.

[71 M. Akgil, “An Algorithmic Proof of the Polyhedral
Decomposition Theorem”, Naval Research Log.
Quarterly, 35 (1988), p. 463.

[8] J. F. Maurras, K. Truemper, and M. Akgiil, “Poly-
nomial Algorithms for a Class of Linear Programs”,
Mathematical Programming, 21 (1981), p. 121.

[9] G. B. Dantzig, Linear Programming and Extensions.
Princeton University Press, 1963.

Paper Received 11 November 1989; Revised 1 May 1990.

October 1990



