ON MIXED BOUNDARY VALUE PROBLEMS FOR ELLIPTIC EQUATIONS IN DOMAINS WITH CORNERS

S. Al Humaidan
Department of Mathematics
King Saud University
Riyadh, Saudi Arabia
and
A. Azzam*
Department of Mathematics
Kuwait University
Kuwait

Abstract

This paper concerns the mixed problem for linear elliptic equations in a plane domain Ω with corners. Conditions, sufficient for the solutions to be of class $C_{m+2+\alpha}(\bar{\Omega})$ are given, $m \geq 0,0<\alpha<1$.

[^0]
ON MIXED BOUNDARY VALUE PROBLEMS FOR ELLIPTIC EQUATIONS IN DOMAINS WITH CORNERS

1. INTRODUCTION

In a simply connected bounded domain $\Omega \subset \mathbb{R}^{2}$, we consider a mixed boundary value problem for the equation

$$
\begin{equation*}
L u=a_{i j}(x) u_{x_{i} x_{i}}+a_{i}(x) u_{x_{i}}+a(x) u=f(x) \tag{1}
\end{equation*}
$$

where $x=x_{1}, x_{2}, u_{x_{i}}=\frac{\partial u}{\partial x_{i}}, u_{x_{i} x_{j}}=\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$ and we use the summation convention. General boundary value problems for the uniformly elliptic equation (1) in smooth domains, is thoroughly investigated; see [1]. We state here a known result which we shall need later on. Consider the function $u(x)$ that satisfies (1) in Ω. On $\partial \Omega$, the boundary of Ω, the function u satisfies the additional mixed condition

$$
\begin{equation*}
\alpha(s) u+\beta(s) \frac{\partial u}{\partial v}=\alpha(s) \phi(s)+\beta(s) \psi(s) \tag{2}
\end{equation*}
$$

where $\frac{\partial u}{\partial \nu}$ is the outward normal derivative of u. It is known from [1], that if the coefficients and the right hand side of (1) belong to $C_{m+\alpha}(\bar{\Omega}), \partial \Omega$ can be represented by $C_{m+2+\alpha}$ functions and if $\alpha(s)$ and $\phi(s) \in C_{m+2+\alpha}(\partial \Omega)$ while $\beta(s)$ and $\psi(s) \in C_{m+1+\alpha}(\partial \Omega)$ then

$$
\begin{equation*}
u \in C_{m+2+\alpha}(\bar{\Omega}) \tag{3}
\end{equation*}
$$

If $\partial \Omega$ contains corners, then (3) may not be true, and in this case, $u \in C_{m+2+\alpha}\left(\Omega_{1}\right)$, where $\Omega_{1} \subset \bar{\Omega}$ is any region with positive distances from the corner points. To investigate the smoothness of the Dirichlet problem for Equation (1) in domains with corners, a method was introduced in [2]. Let us assume, for simplicity, that there is a single corner point at 0 with interior angle, $\gamma, 0<\gamma<2 \pi$. We transform $a_{i j}(0) u_{x_{i} x_{j}}$, the principal part of (1) at 0 , to the Laplacian. In doing so, the new angle formed at the corner point, is given by

$$
\tan \omega=\frac{\left[a_{11}(0) a_{22}(0)-a_{12}^{2}(0)\right]^{1 / 2}}{a_{22}(0) \cot \gamma-a_{12}(0)} .
$$

The regularity properties of the solution depend, among other factors, on the value of this angle. The method used in [2] was then modified to study the Dirichlet and mixed boundary value problems for elliptic equations, as well as initial-Dirichlet and initial-Mixed boundary value problems for parabolic equations. These problems were considered in plane domains with corners as well as in n-dimensional domains with edges, see [2-9] and the references
mentioned there. We state here one result that will be needed in proving the main result of this paper.

Theorem 1 [6]. Consider the domain Ω with a single corner point on the boundary, located at 0 . Let Γ_{1} and Γ_{2} be $C_{m+2+\alpha}$-curves that form at 0 the corner of interior angle $\gamma, 0<\gamma<2 \pi$. Consider the mixed boundary value problem

$$
\begin{gather*}
L u=f \text { in } \Omega \tag{4}\\
u=0 \text { on } \Gamma_{1} \tag{5a}\\
\frac{\partial u}{\partial v}=0 \text { on } \Gamma_{2} . \tag{5b}
\end{gather*}
$$

If the coefficients of (4) and its right hand side belong to $C_{m+\alpha}(\bar{\Omega})$ then

$$
\begin{gather*}
u \in C_{\beta}(\bar{\Omega}) \tag{6}\\
\beta=\min \{m+2+\alpha, \pi /(2 \omega)-\varepsilon\} \geq 2 \tag{7}
\end{gather*}
$$

$\varepsilon>0$ is arbitrarily small. If moreover $\frac{\partial^{k} f(0)}{\partial x_{1} k_{1} \partial x_{2} k_{2}}=0$, $k=0,1, \ldots,[\beta]-2, \beta>2$, then

$$
|u| \leq M r^{\beta} .
$$

From this theorem, it follows that if ω is small enough such that

$$
\begin{equation*}
\pi /(2 \omega)>m+2+\alpha \tag{8}
\end{equation*}
$$

then the solution will be as smooth as in the case of a smooth boundary. In this paper, we shall show that, there are other "exceptional" angles, that will allow the solution to belong to $C_{m+2+\alpha}(\bar{\Omega})$. This result is a generalization of the following result that concerns the Poisson equation in a straight sector.

Theorem 2 [10]. Consider the sector $\Omega_{r_{0}}=\{(r, \theta)$, $\left.r<r_{0}, 0<\theta<\omega\right\}$. In $\Omega_{r_{0}}$ consider the bounded solution u of the mixed problem

$$
\begin{align*}
& \Delta u=f \text { in } \Omega_{r_{0}} \tag{9}\\
& u=\phi \text { on } \Gamma_{1}=\left\{(r, \theta), r<r_{0}, \theta=0\right\} \tag{10a}\\
& \frac{\partial u}{\partial v}=\psi \text { on } \Gamma_{2}=\left\{(r, \theta), r<r_{0}, \theta=\omega\right\} \tag{10b}
\end{align*}
$$

If $f \in C_{m+\alpha}\left(\bar{\Omega}_{r_{r}}\right), \phi \in C_{m+2+\alpha}\left(\bar{\Gamma}_{1}\right)$, and $\psi \in C_{m+1+\alpha}\left(\bar{\Gamma}_{2}\right)$, and if $\omega=\pi /(2 q), q=2,3, \ldots$. then $u \in C_{m+2+\alpha}\left(\bar{\Omega}_{r_{1}}\right)$,
where $r_{1}<r_{0}$, provided that at the corner, the compatibility conditions imposed by (9)-(10) are satisfied.

We extend this result for problem (4)-(5) as follows.

Theorem 3. Let u be a bounded solution of (4)-(5). Let the assumptions of Theorem 1 be satisfied. If $\omega=\pi /(2 q), \quad q=2,3, \ldots$ then $u \in C_{m+2+\alpha}(\bar{\Omega})$, provided the compatibility conditions imposed by (4)-(5) are satisfied at the corner point.

The plan of proving this theorem is as follows. We first consider the problem in a special setting, we prove the required result there, and then show that problem (4)-(5) in Ω can be transformed to the special setting by a "smooth" invertible transformation.

The Problem in a Special Setting

Consider the sector $\Omega_{r_{0}}=\left\{(r, \theta), r<r_{o}, 0<\theta<\omega\right\}$. In $\Omega_{r_{0}}$ we consider the mixed problem

$$
\begin{align*}
& L u=f \text { in } \Omega_{r_{0}} \tag{11}\\
& u=0 \text { on } \theta=0, r<r_{\mathrm{o}} \tag{12a}\\
& \frac{\partial u}{\partial \nu}=0 \text { on } \theta=\omega, r<r_{\mathrm{o}} \tag{12b}
\end{align*}
$$

where

$$
L u \equiv a_{i j}(x) u_{x_{i} x_{j}}+a_{i}(x) u_{x_{i}}+a(x) u,
$$

is uniformly elliptic. From Theorem 1 , it follows that if $a_{i j}, a_{i}, a$, and f belong to $C_{m+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$, then $u \in C_{\beta}\left(\bar{\Omega}_{r_{1}}\right)$ where $r_{1}<r_{\mathrm{r}}$ and $\beta=\min \{m+2+\alpha, \pi /(2 \omega)-\varepsilon\}$, $\varepsilon>0$ is arbitrarily small. We are now interested in the case when $\pi /(2 \omega) \leq m+2+\alpha$, in which case $u \in C_{\pi /(2 \omega)-\varepsilon}\left(\bar{\Omega}_{r_{1}}\right)$. We would like to improve this last smoothness result when $\pi /(2 \omega)=q, q=2,3, \ldots$.
We now state and prove a result analogous to that of Theorem 3, but in a special setting.

Theorem 4. Let u be a bounded solution of (11)(12) in $\Omega_{r_{0}}$ and assume that $a_{i j}, a_{i}, a$, and f belong to $C_{m+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$ and assume that:

$$
\begin{equation*}
a_{i j}(0)=\delta_{i j}, i, j=1,2, \tag{13}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta. If $\omega=\pi /(2 q)$, $q=2,3, \ldots$ then $u \in C_{m+2+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$, provided that the compatibility conditions at 0 , imposed by (11) and (12) are satisfied.

To prove this result, we need two lemmas in which more properties of solutions of (11)-(12) will be established.

Lemma 1. Let $u(x)$ be a bounded solution of (11)(12) in $\Omega_{2 r_{0}}$ where $a_{i j}, a_{i}, a$, and f belong to $C_{p+\alpha}$ there, and

$$
\begin{equation*}
\left.D^{k} f\right|_{x=0}=0, \quad k=0,1, \ldots, p, \tag{14}
\end{equation*}
$$

where $p \leq m$ and $D^{k} f$ is any partial derivative of f of order k. If for some $\lambda, \lambda \leq p+2+\alpha$ we have

$$
\begin{equation*}
|u(x)| \leq M r^{\lambda}, \quad r<2 r_{\mathrm{o}} \tag{15}
\end{equation*}
$$

then in $\Omega_{r_{0}}$ we have

$$
\begin{equation*}
\left|D^{k} u(x)\right| \leq K r^{\lambda-k} ; \quad r<r_{0}, k=1,2, \ldots, p+2 \tag{16}
\end{equation*}
$$

Proof. In the proof we use a method introduced in [5]. In $\Omega_{2 r_{0}}$ consider the domains

$$
\begin{aligned}
& \Omega_{n}=\left\{(r, \theta): \frac{r_{o}}{2^{n+1}} \leq r \leq \frac{r_{o}}{2^{n}}, 0 \leq \theta \leq \omega\right\} \\
& \Omega_{n}^{\prime}=\Omega_{n-1} \cup \Omega_{n} \cup \Omega_{n+1} ; \quad n=1,2, \ldots .
\end{aligned}
$$

We denote by Γ_{n}^{\prime} and $\Gamma_{n}^{\prime \prime}$ the straight parts of the boundary of Ω_{n}^{\prime} with $\theta=0$ and $\theta=\omega$ respectively.

Consider the transformation:

$$
\begin{equation*}
x_{i}=1 / 2^{n} \quad y_{i}, \quad i=1,2 . \tag{17}
\end{equation*}
$$

This transformation maps Ω_{n} and Ω_{n}^{\prime} to Ω_{o} and $\Omega_{\mathrm{o}}^{\prime}$ respectively. In $\Omega_{\mathrm{o}}^{\prime}$, the function $U(y)=u\left(1 / 2^{n} y\right)$; $y=y_{1}, y_{2}$, satisfies the uniformly elliptic equation:

$$
A_{i j}(y) U_{y_{i} y_{j}}+2^{-n} A_{i}(y) U_{y_{i}}+2^{-2 n} A(y) U=2^{-2 n} F(y)
$$

where $A_{i j}(y)=a_{i j}\left(1 / 2^{n} y\right)$ and similarly A_{i}, A, and F may be defined in terms of a_{i}, a, and f. The function U satisfies the boundary conditions:

$$
\begin{aligned}
& U=0 \text { on } \Gamma_{o}^{\prime} \\
& \frac{\partial U}{\partial \nu}=0 \text { on } \Gamma_{\mathrm{o}}^{\prime \prime}
\end{aligned}
$$

In Ω_{o} and $\Omega_{\mathrm{o}}^{\prime}$ we apply the Schauder inequality to get:

$$
\begin{equation*}
\|U\|_{p+2+\alpha}^{\Omega_{o}} \leq C\left[\|U\|_{o}^{\Omega_{o}^{\prime}}+2^{-2 n}\|F\|_{p+\alpha}^{\Omega_{+}^{\prime}}\right] . \tag{18}
\end{equation*}
$$

We now estimate the right hand side of this inequality. It is clear that:

$$
\|U\|_{0}^{\Omega_{0}^{\prime}}=\|u\|_{0}^{\Omega_{n}^{\prime}} \leq M_{1} r^{\lambda},(\text { see }(15))
$$

Since $F(y)=f\left(1 / 2^{n} y\right)$, then $D_{y}^{k} F=\left(1 / 2^{n}\right)^{k} D_{x}^{k} f$ and it follows from (14) that

$$
\begin{aligned}
& \left|D_{x}^{p} f(x)\right|=\left|D_{x}^{p} f(x)-D_{x}^{p} f(0)\right| \leq K_{p} r^{\alpha} \\
& \left|D_{x}^{p-1} f(x)\right| \leq \int_{0}^{x}\left|D^{p} f(t)\right| \mathrm{d} t \leq K_{p-1} r^{1+\alpha}
\end{aligned}
$$

and generally

$$
\begin{equation*}
\left|D_{x}^{k} f(x)\right| \leq K_{k} r^{p-k+\alpha}, \quad k=0,1, \ldots, p \tag{19}
\end{equation*}
$$

Thus in $\Omega_{\mathrm{o}}^{\prime}$ we have

$$
\begin{equation*}
\left|D_{y}^{k} F(y)\right|=\left|\left(1 / 2^{n}\right)^{k} D_{x}^{k} f(x)\right|, \quad k=0,1, \ldots, p . \tag{20}
\end{equation*}
$$

If $P\left(r_{1}, \theta_{1}\right)$ and $Q\left(r_{2}, \theta_{2}\right)$ are any two points in Ω_{n}^{\prime} and their images are $P_{0}\left(r_{1}^{\prime}, \theta_{1}\right)$ and $Q_{0}\left(r_{2}^{\prime}, \theta_{2}\right)$, then $\mathrm{d}\left(P_{\mathrm{o}}, Q_{\mathrm{o}}\right)=2^{n} \mathrm{~d}(P, Q)$ and

$$
\begin{align*}
& \frac{D_{y}^{p} F\left(P_{\mathrm{o}}\right)-D_{y}^{p} F\left(Q_{\mathrm{o}}\right)}{\left[\mathrm{d}\left(P_{\mathrm{o}}, Q_{\mathrm{o}}\right)\right]^{\alpha}} \\
& \quad \quad=\left(1 / 2^{n}\right)^{p+\alpha} \frac{D_{x}^{p} f(P)-D_{x}^{p} f(Q)}{[\mathrm{d}(P, Q)]^{\alpha}} . \tag{21}
\end{align*}
$$

Thus from (20), (21), and from

$$
\|F\|_{p+\alpha}^{\Omega_{j}^{\prime}}=\sum_{k=0}^{p}\left\|D_{y}^{k} F\right\|_{o}+H_{\alpha}\left(D_{y}^{p} F\right),
$$

where $H_{\alpha}^{\mathrm{n}}(g)$ is the Holder coefficient of g of exponent α in Ω, it follows that

$$
\begin{aligned}
\|F\|_{p+\alpha}^{\Omega_{j}^{\prime}} & \leq C_{2}\left(1 / 2^{n}\right)^{p+\alpha}\|f\|_{p+\alpha}^{\Omega_{+\alpha}^{\prime}} \\
& \leq C_{3}\left(1 / 2^{n}\right)^{p+\alpha} .
\end{aligned}
$$

Thus, noting that $\lambda \leq p+2+\alpha$, we get from (18)

$$
\begin{aligned}
\|U\|_{p+2+\alpha}^{\Omega_{0}} & \leq C_{4}\left[M_{1} r^{\lambda}+2^{-2 n} K_{0}\left(1 / 2^{n}\right)^{p+\alpha}\right] \\
& \leq \mathrm{C}_{5}\left(1 / 2^{n}\right)^{\lambda} .
\end{aligned}
$$

Since

$$
\left|D_{y}^{k} U(y)\right| \leq\|U\|_{p+2+\alpha}^{\Omega_{o}}, \quad k \leq p+2
$$

and

$$
D_{y}^{k} U(y)=\left(1 / 2^{n}\right)^{k} D_{x}^{k} u(x)
$$

then

$$
\left(1 / 2^{n}\right)^{k}\left|D_{x}^{k} u(x)\right| \leq \mathrm{C}_{5}\left(1 / 2^{n}\right)^{\lambda} .
$$

Thus

$$
\left|D_{x}^{k} u(x)\right| \leq C_{5}\left(1 / 2^{n}\right)^{\lambda-k}
$$

or equivalently

$$
\left|D_{x}^{k} u(x)\right| \leq K r^{\lambda-k}
$$

This proves the lemma.

In the next lemma we are going to show that the singularity of the solutions of (11)-(12) is of poletype; multiplying the solution by $O\left(r^{\mu}\right)$ functions, removes "some" of its singularities at 0 .
Lemma 2. Let $u(x)$ be a bounded solution of the mixed problem

$$
\begin{aligned}
& L u=f(x) \text { in } \Omega_{r_{0}}(\text { see }(11)) \\
& u=\phi(r) \text { on } \Gamma_{1}^{\prime}: \theta=0, r<r_{0} \\
& \frac{\partial u}{\partial v}=\psi(r) \text { on } \Gamma_{2}^{\prime}: \theta=\omega, r<r_{\mathrm{o}},
\end{aligned}
$$

where $a_{i j}, a_{i}, a$, and f belong to $C_{m+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$, $\phi \in C_{m+2+\alpha}\left(\Gamma_{1}^{\prime}\right)$ and $\psi \in C_{m+1+\alpha}\left(\Gamma_{2}^{\prime}\right)$. Assume also that for some integer $p, 0 \leq p \leq m$ we have

$$
\begin{aligned}
& \left.\frac{\mathrm{d}^{k}}{\mathrm{~d} r^{k}} \phi(r)\right|_{r=0}=0, \quad k=0,1, \ldots, p+2 \\
& \left.\frac{\mathrm{~d}^{k}}{\mathrm{~d} r^{k}} \psi(r)\right|_{r=0}=0, \quad k=0,1, \ldots, p+1 \\
& \left.D^{k} f(x)\right|_{x=0}=0, \quad k=0,1, \ldots, p .
\end{aligned}
$$

Assume that $u \in C_{p+2-\varepsilon}\left(\bar{\Omega}_{r_{0}}\right)$ and $\left|D^{p+2} u(x)\right| \leq M r^{-\varepsilon}$, where $0<\varepsilon \leq 1$. Then for any function $h(x) \in C_{\mu}\left(\bar{\Omega}_{r_{0}}\right)$, $\varepsilon \leq \mu \leq 1$ with $h(0)=0$, we have

$$
h(x) D^{p+2} u(x) \in C_{\mu_{0}}\left(\bar{\Omega}_{r_{0}}\right)
$$

where

$$
\mu_{\mathrm{o}}= \begin{cases}\mu-\varepsilon & \text { if } p<m \\ \min (\alpha, \mu-\varepsilon) & \text { if } p=m\end{cases}
$$

Proof. Consider any two points $P\left(r_{1}, \theta_{1}\right)$ and $Q\left(r_{2}, \theta_{2}\right)$ in $\Omega_{r_{0}}$ and suppose that $0 \leq r_{2} \leq r_{1} \leq r_{0}$. If $r_{2} \leq 1 / 2 r_{1}$, then $\mathrm{d}(P, Q) \geq 1 / 2 r_{1}$ and:

$$
\begin{align*}
& \frac{\left|h(P) D^{p+2} u(P)-h(Q) D^{p+2} u(Q)\right|}{[\mathrm{d}(P, Q)]^{\mu_{o}}} \\
& \quad \leq \frac{M_{2} r_{1}^{\mu} r_{1}^{-\varepsilon}+M_{2} r_{2}^{\mu} r_{2}^{-\varepsilon}}{\left(1 / 2 r_{1}\right)^{\mu_{o}}} \\
& \quad \leq M . \tag{20}
\end{align*}
$$

To prove an inequality of the form (20) for the case when $r_{2}>1 / 2 r_{1}$, we first prove that in this case

$$
\begin{equation*}
\frac{\left|D^{p+2} u(P)-D^{p+2} u(Q)\right|}{[\mathrm{d}(P, Q)]^{\mu_{0}}} \leq M r^{-\mu_{0}-\varepsilon} . \tag{21}
\end{equation*}
$$

Consider the transformation $x_{i}=\frac{2 r_{1}}{r_{0}} y_{i}, i=1,2$, . This transformation maps Ω_{o} and $\Omega_{\mathrm{o}}^{\prime}$ to Ω_{1} and Ω_{1}^{\prime} respectively, where:

$$
\begin{aligned}
& \Omega_{\mathrm{o}}=\left\{(r, \theta): r_{1} / 2 \leq r \leq r_{1}, 0 \leq \theta \leq \omega\right\} \\
& \Omega_{\mathrm{o}}^{\prime}=\left\{(r, \theta): r_{1} / 4 \leq r \leq 2 r_{1}, 0 \leq \theta \leq \omega\right\} \\
& \Omega_{1}=\left\{(r, \theta): 1 / 4 r_{\mathrm{o}} \leq \rho \leq 1 / 2 r_{\mathrm{o}}, 0 \leq \theta \leq \omega\right\} \\
& \Omega_{1}^{\prime}=\left\{(r, \theta): 1 / 8 r_{\mathrm{o}} \leq \rho \leq r_{0}, 0 \leq \theta \leq \omega\right\}
\end{aligned}
$$

and $\rho=\frac{r_{0}}{2 r_{1}} r$. In Ω_{1}^{\prime}, the function $V(y)=u\left(\frac{2 r_{1}}{r_{\mathrm{o}}} y\right)$ satisfies the elliptic equation

$$
\begin{aligned}
B_{i j}(y) V_{y_{i} y_{j}}+\left(\frac{2 r_{1}}{r_{\mathrm{o}}}\right) & B_{i}(y) V_{y_{i}} \\
& +\left(\frac{2 r_{1}}{r_{\mathrm{o}}}\right)^{2} B(y) V=\left(\frac{2 r_{1}}{r_{\mathrm{o}}}\right)^{2} F(y)
\end{aligned}
$$

and also satisfies the boundary conditions

$$
\begin{array}{ll}
V=\phi_{0} & \text { on } \widetilde{\Gamma}_{1}: 0 \leq \rho \leq 2 r_{1}, \theta=0 \\
\frac{\partial V}{\partial v}=\frac{2 r_{1}}{r_{0}} \psi_{0} & \text { on } \widetilde{\Gamma}_{2}: 0 \leq \rho \leq 2 r_{1}, \theta=\omega
\end{array}
$$

In Ω_{1} and Ω_{1}^{\prime}, Schauder's inequality yields

$$
\begin{align*}
\|V\|_{p+2+\mu_{0}}^{\Omega_{1}} & \leq C\left[\|V\|_{o}^{\Omega_{1}^{\prime}}+\left(\frac{2 r_{1}}{r_{\mathrm{o}}}\right)^{2}\|F\|_{p+\mu_{0}}^{\Omega_{1}^{\prime}}\right. \\
& \left.+\left\|\phi_{\mathrm{o}}\right\|_{p+2+\mu_{0}}^{\tilde{\Gamma}_{1}}+\left(\frac{2 r_{1}}{r_{\mathrm{o}}}\right)\left\|\psi_{\mathrm{o}}\right\|_{p+1+\mu_{0}}^{\tilde{\Gamma}_{2}}\right) . \tag{22}
\end{align*}
$$

As in the proof of Lemma 1, we get

$$
\|V\|_{o}^{\Omega_{1}^{\prime}}=\|u\|_{0}^{\Omega_{0}^{\prime}} \leq M_{5} r_{1}^{p+2-\varepsilon}
$$

and

$$
\|F\|_{p+\mu_{0}}^{\Omega_{1}^{\prime}} \leq M_{6} r_{1}^{p+\alpha}
$$

and similarly we can prove that

$$
\begin{aligned}
& \left\|\phi_{\mathrm{o}}\right\|_{p+2+\mu_{\mathrm{o}}}^{\tilde{\Gamma}_{1}} \leq M_{7} r_{1}^{p+2+\mu_{\mathrm{o}}} \\
& \left\|\psi_{\mathrm{o}}\right\|_{p+1+\mu_{\mathrm{o}}}^{\tilde{\Gamma}_{2}} \leq M_{8} r_{1}^{p+1+\mu_{0}} .
\end{aligned}
$$

Thus (22) gives

$$
\begin{aligned}
\|V\|_{p+2+\mu_{0}}^{\Omega_{1}} & \leq C_{\mathrm{o}}\left[r_{1}^{p+2-\varepsilon}+r_{1}^{p+2+\mu_{\mathrm{o}}}\right] \\
& \leq \mathrm{C}_{1} r_{1}^{p+2-\varepsilon}
\end{aligned}
$$

We now return to the x-coordinates. We first note that

$$
\left(\frac{2 r_{1}}{r_{\mathrm{o}}}\right)^{p+2}\left|D_{x}^{p+2} u\right|=\left|D_{y}^{p+2} V\right| \leq\|V\|_{p+2+\mu_{\mathrm{o}}}^{\Omega_{1}}
$$

and that
$\left(\frac{2 r_{1}}{r_{0}}\right)^{p+2+\mu_{0}} H_{\mu_{0}}^{\mathrm{R}_{0}}\left(D_{x}^{p+2} u\right)=H_{\mu_{0}}^{\Omega_{1}}\left(D_{y}^{p+2} V\right) \leq\|V\|_{p}^{\Omega_{A_{1}}+\mu_{0}}$
where by $H_{\mu}^{\Omega}(W)$ we denote the Hölder coefficient of exponent μ of the function W in Ω. Thus

$$
\left|D_{x}^{p+2} u\right| \leq c_{2} r_{1}^{-\varepsilon}
$$

and

$$
H_{\mu_{\mathrm{o}}}^{\Omega_{\mathrm{o}}}\left(D_{x}^{p+2} u\right) \leq c_{3} r_{1}^{-\mu_{\mathrm{o}}-\varepsilon},
$$

and finally we get in the case when $r_{2}>1 / 2 r_{1}$

$$
\begin{aligned}
& \frac{\left|h(P) D_{x}^{p+2} u(P)-h(Q) D_{x}^{p+2} u(Q)\right|}{[\mathrm{d}(P, Q)]^{\mu_{0}}} \\
& \leq \frac{|h(P)|\left|D_{x}^{p+2} u(P)-D_{x}^{p+2} u(Q)\right|}{[\mathrm{d}(P, Q)]^{\mu_{o}}} \\
& +\left|D_{x}^{p+2} u(Q)\right|\left\{\frac{|h(P)-h(Q)|}{[d(P, Q)]^{\mu}}\right\}^{\mu_{0} / \mu} \\
& \times|h(P)-h(Q)|^{1-\left(\mu_{0} / \mu\right)} \\
& \leq M_{9} r_{1}^{\mu} \cdot c_{3} r_{1}^{-\mu_{0}-\varepsilon}+c_{2} r_{2}^{-\varepsilon} \cdot M_{10}\left(r_{1}^{\mu}+r_{2}^{\mu}\right)^{\left(\mu-\mu_{0}\right) / \mu} \\
& \leq M_{11} \text {, }
\end{aligned}
$$

since $\quad \mu_{0} \leq \mu-\varepsilon$ and $1 / 2 r_{1}<r_{2}<r_{1}$.
Thus $h D_{x}^{p+2} u \in C_{\mu_{0}}\left(\bar{\Omega}_{r_{0}}\right)$. This concludes the proof of the lemma.

Proof of Theorem 4

We first consider the case when $\pi /(2 \omega)=q=2$. Thus it follows from Theorem 1 that $u \in C_{2-\varepsilon}\left(\bar{\Omega}_{r_{0}}\right)$. We shall prove that $u \in C_{m+2+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$. Consider the function $v=u-u_{0}$, where

$$
u_{\mathrm{o}}=1 / 2 f(0) x_{2}\left(x_{2}+2 x_{1}\right)
$$

The function u_{0} satisfies the conditions

$$
\begin{aligned}
& u_{\mathrm{o}}=0 \quad \text { on } \Gamma_{1}: \theta=0 \\
& \frac{\partial u_{\mathrm{o}}}{\partial v}=0(r) \text { on } \Gamma_{2}: \theta=\omega
\end{aligned}
$$

and

$$
\Delta u_{\mathrm{o}}=f(0)
$$

Thus

$$
\begin{aligned}
L u_{\mathrm{o}}= & \Delta u_{\mathrm{o}}+\left[a_{i j}(x)-\delta_{i j}\right] \frac{\partial^{2} u_{\mathrm{o}}}{\partial x_{i} \partial x_{j}}+a_{i}(x) \frac{\partial u_{\mathrm{o}}}{\partial x_{i}} \\
& +a(x) u_{\mathrm{o}} \\
= & f(0)+g(x), \text { where } g(0)=0
\end{aligned}
$$

Thus v is a solution of the mixed problem

$$
\begin{align*}
& L v=F_{1}(x) \tag{23}\\
& v=0 \text { on } \Gamma_{1} \tag{24a}\\
& \frac{\partial v}{\partial v}=0(r) \text { on } \Gamma_{2}, \tag{24b}
\end{align*}
$$

where

$$
F_{1}(x)=f(x)-f(0)-g(x), \quad F_{1}(0)=0 .
$$

Thus it follows from [6], that $v \in C_{2-\varepsilon}\left(\bar{\Omega}_{r_{0}}\right)$ and that $|v| \leq M r^{2-\varepsilon}$ in $\bar{\Omega}_{r_{0}}$. Applying Lemma 1, we get

$$
\left|D^{k} v\right| \leq M r^{2-\varepsilon-k}, \quad k=1,2 .
$$

We rewrite (23) in the form

$$
\begin{align*}
\Delta v=f_{1}(x)= & F_{1}(x)-\left[a_{i j}(x)-\delta_{i j}\right] v_{x_{i} x_{j}} \\
& -a_{i}(x) v_{x_{i}}-a(x) v . \tag{25}
\end{align*}
$$

To prove that $v \in C_{k+2+\alpha}\left(\Omega_{r_{0}}\right)$, it follows from Theorem 2 that, it is sufficient to show that $f_{1} \in C_{k+\alpha}\left(\bar{\Omega}_{r_{0}}\right), \quad k \leq m$. It is clear that $F_{1}-a(x) v-a_{i}(x) v_{x_{i}} \in C_{\alpha}\left(\bar{\Omega}_{r_{0}}\right)$. It remains to show that $\left[a_{i j}(x)-\delta_{i j}\right] v_{x_{i} x_{j}} \in C_{\alpha}$. This we do in two steps. It is clear that $h_{i j}(x) \equiv a_{i j}(x)-\delta_{i j} \in C_{\alpha}$ and $h_{i j}(0)=0$. Thus applying Lemma 2 , we get $h_{i j}(x) v_{x_{i} x_{j}} \in C_{\alpha-\varepsilon}\left(\bar{\Omega}_{r_{0}}\right)$. Thus $f_{1} \in C_{\alpha-\varepsilon}\left(\bar{\Omega}_{r_{0}}\right)$ and from Theorem 2, it follows that $v \in C_{2+\alpha-\varepsilon}\left(\bar{\Omega}_{r_{0}}\right)$. Substituting v in the right hand side of (25), we can show, as before, that now $f_{1} \in C_{\alpha}\left(\bar{\Omega}_{r_{0}}\right)$ which gives $v \in C_{2+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$. Thus $u \in C_{2+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$.

We now use mathematical induction to complete the proof of the theorem when $q=2$. Assume that u has been proved to belong to $C_{p+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$; $2 \leq p \leq m+1,\left|D^{k} u\right| \leq M r^{p+\alpha-k}, k=0,1, \ldots ., p+1$. Let $u=T_{p}(x)+R_{p}(x)$, where T_{p} is the Mclaurin expansion of u up to and including powers of degree p and R_{p} is the remainder. The remainder $R_{p}(x)$ belongs to $C_{p+\alpha}$ and $\left|D^{k} R_{p}(x)\right| \leq M_{\mathrm{o}} r^{p+\alpha-k}, \quad k=0,1, \ldots, p+1$. The function R_{p} satisfies in $\Omega_{r_{0}}$ an equation of the form (11) which can be written as

$$
\begin{aligned}
\Delta R_{p}=f_{p}= & F_{p-1}-\left[a_{i j}(x)-\delta_{i j} \frac{\partial^{2} R_{p}}{\partial x_{i} \partial x_{j}}\right. \\
& -a_{i}(x) \frac{\partial R_{p}}{\partial x_{i}}-a(x) R_{p}
\end{aligned}
$$

where

$$
\left.D^{k} f_{p}(x)\right|_{x=\mathrm{o}}=0, \quad k=0,1, \ldots ., p-2
$$

and

$$
\begin{aligned}
& \left.R_{p}\right|_{\Gamma_{1}}=\phi_{p} \\
& \left.\frac{\partial}{\partial \nu} R_{p}\right|_{r_{2}}=\psi_{p}
\end{aligned}
$$

with

$$
\begin{array}{ll}
D_{o}^{k} \phi_{p}=0, & k=0,1, \ldots, p \\
D_{\omega}^{k} \psi_{p}=0, & k=0,1, \ldots, p-1 .
\end{array}
$$

As before to prove that $R_{p} \in C_{p+1+\alpha}$, it is required to show that $\left[a_{i j}(x)-\delta_{i j}\right] \frac{\partial^{2} R_{p}}{\partial x_{i} \partial x_{j}} \in C_{p-1+\alpha}$. The other terms of f_{p} belong to $C_{p-1+\alpha}$. Since $a_{i j} \in C_{p-1+\alpha}$ then it remains to show that $D^{p-1}\left[a_{i j}-\delta_{i j}\right] \frac{\partial^{2} R_{p}}{\partial x_{i} \partial x_{j}} \in C_{\alpha}$. This is equivalent to showing that $\left[a_{i j}(x)-\delta_{i j}\right] D^{p+1} R_{p} \in C_{\alpha}$. This follows from Lemma 2 since $\left|D^{p+1} R_{p}(x)\right| \leq M r^{\alpha-1}$ and $h_{i j}=a_{i j}(x)-\delta_{i j} \in C_{1}$, $h_{i j}(0)=0$. Thus $f_{p} \in C_{p-1+\alpha}$ and Theorem 2 gives $R_{p} \in C_{p+1+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$. Thus $u \in C_{p+1+\alpha}, p=2,3, \ldots, m+1$. Theorem 4 is proved for the case $q=2$. If $q>2$, then it follows from Theorem 1 that $u \in C_{q-\varepsilon}\left(\bar{\Omega}_{r_{0}}\right)$, where $\varepsilon>0$ is arbitrarily small. As in the previous case, we can show first that $u \in C_{q+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$, then step by step we can reach $u \in C_{m+2+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$. The theorem is proved.

We now prove Theorem 3.
Proof of Theorem 3. Without loss of generality, we assume that the corner point is located at the origin $x=0$ and we also assume that the two curves that form at 0 the corner of angle γ, are $x_{2}=g_{1}\left(x_{1}\right)$ and $\quad x_{1}=g_{2}\left(x_{2}\right) \quad$ where $\quad g_{i}\left(x_{i}\right) \in C_{m+2+\alpha} \quad$ and $g_{2}(0)=g_{1}(0)=g_{1}^{\prime}(0)=0$. To transform the equation $a_{i j}(0) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=0$ to canonical form, we use the transformation

$$
\begin{aligned}
& y_{1}=\frac{1}{\Lambda \sqrt{\alpha_{11}}}\left\{\left[\alpha_{12}\left[x_{1}-g_{2}\left(x_{2}\right)\right]+\alpha_{11}\left[x_{2}-g_{1}\left(x_{1}\right)\right]\right\}\right. \\
& y_{2}=\frac{1}{\sqrt{\alpha_{11}}}\left[x_{1}-g_{2}\left(x_{2}\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\alpha_{11} & =a_{11}(0)-2 g_{2}^{\prime}(0) a_{12}(0)+g_{2}^{\prime}(0) a_{22}(0) \\
\alpha_{12} & =a_{22}(0) g_{2}^{\prime}(0)-a_{12}(0) \\
\alpha_{22} & =a_{22}(0) \\
\Lambda & =\left[a_{11}(0) a_{22}(0)-a_{12}^{2}(0)\right]^{1 / 2} .
\end{aligned}
$$

The domain N will be transformed to a domain G bounded by two straight segments Γ_{1} and Γ_{2} and a curve joining them. The new angle ω will be given by $\tan \omega=\frac{\Lambda}{\alpha_{12}}$. In G, the transformed function $v(y)=u(x)$ will satisfy an elliptic equation of the form (11) and will satisfy boundary conditions of the form (12), with all the conditions of Theorem 4 being satisfied. Thus, it can be proved that $u \in C_{m+2+\alpha}\left(\bar{\Omega}_{r_{0}}\right)$ where $\Omega_{r_{0}} \subset G$ is a sector with vertex at 0 and radius $r_{\mathrm{o}}>0$. Noting that the transformation used is of class C_{m+2+a} and its Jacobian at 0 has the value $-1 / \Lambda$, we conclude that $u \in C_{m+2+a}(\bar{N})$, where $N=\left\{\left(x: x \in \Omega,|x|<\sigma_{1}\right\}, \sigma_{1}<\delta\right.$. This proves the theorem.

REFERENCES

[1] S. Agmon, A. Douglis, and L. Nirenberg, "Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Condition", Comm. Pure Appl. Math., N12 (1959), p. 623.
[2] A. Azzam, "On the First Boundary Value Problem for Elliptic Equations in Regions Corners", Arabian Journal for Science and Engineering, 4 (1979), p. 129.
[3] A. Azzam, "Smoothness Properties of Bounded Solutions of Dirichlet Problem for Elliptic Equations
in Regions with Corners on the Boundary", Canadian Math. Bull., 23(2) (1980), p. 213.
[4] A. Azzam, "On Differentiability Properties of Solutions of Elliptic Differential Equations", Journal of Mathematical Analysis and Applications, 75(2) (1980), p. 431.
[5] A. Azzam, "Schauder's Estimations of the Solution of Dirichlet's Problem of Second Order Elliptic Equations in Sectionally Smooth Domains", Bull. Moscow Univ. Math., 5 (1981), p. 29.
[6] A. Azzam, "Smoothness Properties of Solutions of Mixed Boundary Value Problems in Sectionally Smooth n-Dimensional Domains", Annal. Polon. Math., XL (1981), p. 81.
[7] A. Azzam, "On Mixed Boundary Value Problems for Parabolic Equations in Singular Domains", Osaka J. Math., 22 (1985), p. 691.
[8] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Boston: Pitman, 1985.
[9] V. A. Kondratev and O. A. Oleinik, "Boundary Value Problems for Partial Differential Equations in Nonsmooth Domains", Uspekh Mat. Nauk, 38(2) (1985), p. 3.
[10] E. A. Volkov, "Differential Properties of Solutions of Boundary Value Problems for the Laplace Equation on Polygons", Trudy Mat. Inst. Steklov, 77 (1965), p. 113.

Paper Received 16 August 1989; Revised 12 May 1991.

[^0]: *Address for correspondence:
 Nasr City \# 7
 P.O. Box 4062

 Cairo 11727
 Egypt

