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This paper concerns the mixed problem for linear elliptic equations in a plane
domain () with corners. Conditions, sufficient for the solutions to be of class
C,ii2+4(82) are given, m=0, 0<a<1.
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ON MIXED BOUNDARY VALUE PROBLEMS FOR ELLIPTIC EQUATIONS
IN DOMAINS WITH CORNERS

1. INTRODUCTION

In a simply connected bounded domain QCR?,
we consider a mixed boundary value problem for the
equation

Lu=a;(x)u,,, ta(x)u, +a@u=fx), (1)

u _ du
ax; Min = ox,0x;
the summation convention. General boundary value
problems for the uniformly elliptic equation (1) in
smooth domains, is thoroughly investigated; see [1].
We state here a known result which we shall need
later on. Consider the function u(x) that satisfies (1)
in 1. On 989, the boundary of ), the function u
satisfies the additional mixed condition

where x = x,x,, U, = and we use

a()u+B() 3 = a(s)b() +BEUE) ()

ou . .. .
where ™ is the outward normal derivative of u. It is

known from [1], that if the coefficients and the right
hand side of (1) belong to C,,,.({2), €} can be rep-
resented by C,,,,, functions and if «(s) and
&(5)E C,124,(302) while B(s) and Y(5)EC,,.,+4(30)
then _

UE Cpinealf) . 3)

If 3() contains corners, then (3) may not be true, and
in this case, u€C,,,..(Q,), where Q,CQ is any
region with positive distances from the corner points.
To investigate the smoothness of the Dirichlet problem
for Equation (1) in domains with corners, a method
was introduced in [2]. Let us assume, for simplicity,
that there is a single corner point at 0 with interior
angle, vy, 0<y<2w. We transform 4,(0)u,, , the
principal part of (1) at 0, to the Laplacian. In doing so,
the new angle formed at the corner point, is given by

[,1(0) a5, (0) — a%,(0)]?
ay(0)coty — a,(0)

The regularity properties of the solution depend,
among other factors, on the value of this angle. The
method used in [2] was then modified to study the
Dirichlet and mixed boundary value problems for
elliptic equations, as well as initial—Dirichlet and
initial—Mixed boundary value problems for parabolic
equations. These problems were considered in plane
domains with corners as well as in n-dimensional
domains with edges, see [2—9] and the references

tanw =
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mentioned there. We state here one result that will
be needed in proving the main result of this paper.

Theorem 1 [6]. Consider the domain () with a single
corner point on the boundary, located at 0. Let T,
and I', be C,,,,,-curves that form at 0 the corner of
interior angle vy, 0<y<2w. Consider the mixed
boundary value problem

Lu=fin Q 4)
u=0onT, (Sa)
du

Fi 0 on T,. (5b)

If the coefficients of (4) and its right hand side
belong to C,,,.(Q) then

ueCy(Q) (©6)

B=min{m+2+a, 7/Qw)—¢e}=2 @)

. . 3*£(0)
> o . — s -
£>0 is arbitrarily small. If moreover 3%k, a6k, 0,

k=0,1,....,[B]-2, B>2, then

lu|=Mr®? .

From this theorem, it follows that if o is small
enough such that

m/Qu)>m+2+a, 8)

then the solution will be as smooth as in the case of a
smooth boundary. In this paper, we shall show that,
there are other “exceptional” angles, that will allow
the solution to belong to C,,.,,.(2). This result is a
generalization of the following result that concerns
the Poisson equation in a straight sector.

Theorem 2 [10]. Consider the sector 2, = {(r,0),
r<r,, 0<0<w}. In §, consider the bounded solu-
tion u of the mixed problem

Au=fin Q, ®
u=d¢ onl,={r0), r<r,, 8=0} (10a)

%% =y on I, = {(r,0), r<r,, 8 =0} (108)

If fecm+u(ﬁru)a ¢ecm+2+q(fl)9 and ¢ecm+1+a£_f‘2)>
and if o =m/(2q), g=2,3,.... then uE€C,,,,,,(%,),
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where r, <r,, provided that at the corner, the com-
patibility conditions imposed by (9)—(10) are
satisfied.

We extend this result for problem (4)-(5) as
follows.

Theorem 3. Let u be a bounded solution of (4)—(5).
Let the assumptions of Theorem 1 be satisfied.
If w=m/(2q), q=2,3,.... then u€C,,,,.(Q),
provided the compatibility conditions imposed by
(4)—(5) are satisfied at the corner point.

The plan of proving this theorem is as follows. We
first consider the problem in a special setting, we
prove the required result there, and then show that
problem (4)—(5) in  can be transformed to the
special setting by a “smooth” invertible transforma-
tion.

The Problem in a Special Setting

Consider the sector ), ={(r,0), r<r,, 0<8<w}.
In Q, we consider the mixed problem

Lu=fin Q, 1y

u=0o0n0=0, r<r, (12a)

ou

7 = 0Oon 6=0, r<r, (12b)
where

Lu=a;(x)u,,+a,x)u, +ax)u,

is uniformly elliptic. From Theorem 1, it follows that if
a;, a;, a, and f belong to C,.,(£2, ), then uECB(!_),l)
where r,<r, and B =min{m+2+a, 7/Qw)—¢},
£>0 is arbitrarily small. We are now interested in
the case when 7/(2w)=m+2+a, in which case
UE C/04y-(£2,,). We would like to improve this last
smoothness result when #/(2w)=gq, ¢ =2,3,.... .

We now state and prove a result analogous to that
of Theorem 3, but in a special setting.

Theorem 4. Let u be a bounded solution of (11)—
(12) in Q, and assume that a;;, a;, a, and f belong to
Cria(£2,) and assume that:

a;(0)=3%; i,j=1,2, (13)

where d; is the Kronecker delta. If w =w/(2q),
q=2,3,.... then u€C,,,,,.(,), provided that the
compatibility conditions at 0, imposed by (11) and
(12) are satisfied.
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To prove this result, we need two lemmas in which
more properties of solutions of (11)~—(12) will be
established.

Lemma 1. Let u(x) be a bounded solution of (11)—
(12) in Q,, where a;;, a;, a, and f belong to C,,,
there, and

DMflyeo=0, k=01,op, (14

where p<m and D*f is any partial derivative of f of
order k. If for some A\, A<p+2+a we have

lu()|=Mr, r<or, (15)

then in {}, we have
|D*u(x)|=Kr*™% r<r, k=1,2,....,p+2 . (16)
Proof. In the proof we use a method introduced in

[5]. In Q,, consider the domains

0,={(,0): g =7 =22,

Q,=Q,.,UuQ,UQ,,,; n=1,2,....

0=0=<w}

We denote by I';, and I', the straight parts of the
boundary of €}, with 6 =0 and 6 = o respectively.

Consider the transformation:
x=1/2"y, i=12. 17

This transformation maps (1, and 1, to {1, and (1]
respectively. In €}/, the function U(y) = u(1/2"y);
¥ = y1,¥,, satisfies the uniformly elliptic equation:
A;(0U,, +27"A,() U, +27"A(y) U = 27F(y),
where A;(y) =a;;(1/2"y) and similarly A;, A, and
F may be defined in terms of a;, a, and f. The func-
tion U satisfies the boundary conditions:

U=0onT]
au
—=0onTY.
av

In 2, and Q, we apply the Schauder inequality to
get:

10175210 = CUIUNS +272 | F 7% (18)

ptal-

We now estimate the right hand side of this inequal-
ity. It is clear that:

U135 = llullg=M,r*, (see (15)).

Since F(y) = f(1/2"y), then D}F = (1/2")*Dff and
it follows from (14) that
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|D2f()| = |DEf(x) - DEFO)| < K,r®
| D f(x)] < in Drf(r)|de=K,_,r'"*

and generally
|IDif(x)| =K, P7**, k=0,1,...,p 19
Thus in Q] we have
|DyF(y)| = |(1/2")* Dif(x)|, k=0,1,...,p. (20)

If P(r,,6,) and Q(r,,0,) are any two points in ),
and their images are P,(r{,0,) and Q.(r},0,), then
d(P,, Q,) = 2"d(P, Q) and
DJF(P,) - DJF(Q.)
[d(P,, 0"

DIf(P) - D?f(Q)
[dp, o -

Thus from (20), (21), and from

— (1/2n)p+u

eay)

P
IFIp%. = 2 IDyFllo+ H(D{F) ,
where H2(g) is the Holder coefficient of g of
exponent « in £, it follows that
IFI75. = (/2= f
= Cy(1/27)P*e.
Thus, noting that A=p+2+a, we get from (18)
[UI22ve = CalMir* +272" Ko (1/27)P*°
= Cs(1/2MM

Q5
pta

Since

IDy UM |=IUNp22va, k=p+2

and

DjU(y) = (1/2")* Dfu(x)
then

(1/2")* | Dfu(x)| = Cs(1/2")".
Thus

[Dfu(x)|=Cs(1/2")*
or equivalently
|DFu(x)|<K r**. O

This proves the lemma.
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In the next lemma we are going to show that the
singularity of the solutions of (11)—(12) is of pole-
type; multiplying the solution by O(r*) functions,
removes “some” of its singularities at 0.

Lemma 2. Let u(x) be a bounded solution of the
mixed problem

Lu = f(x) in , (see (11))

u=¢(ryonTi: 0=0, r<r,

ou

rrole Y(r)on T} 6=o0, r<r,,

where a;, a;, a, and f belong to C,,,,,u(ﬁ,u),
$€C, 2. and $EC, 1;,(';). Assume also
that for some integer p, 0=p=m we have

k

d

gr—k¢(r)1,=o=0, k=0,1,...,p+2
dk

VOl -e=0, k=01,..,p+1
D*f(x)|;-0=0, k=0,1,....,p.

Assume that u€C,,, ,(Q,) and |D"*?u(x)|=Mr",
where 0<e =< 1. Then for any function h(x) € C,(2,),
e=p=1 with h(0) =0, we have

h(x)D?**u(x)€C, (Q,)
where

e if p<m
o = min(a,p—¢) if p=m
Proof. Consider any two points P(r,6,) and
Q(r,,8,) in Q, and suppose that O=r,<r,<r,. If
r,<r,, then d(P,Q)="r, and:

|h(P) DP"*u(P) — h(Q) D*"*u(Q)|

[d(P, O)]*
Myrir® + Myryr;®
B (Yar)*
=M. (20)

To prove an inequality of the form (20) for the case
when r,>V2r;, we first prove that in this case

|D?**u(P) — D""*u(Q)|
[d(P, O)]*

. 2r .
Consider the transformation x;= 7—1}’.-, i=1,2,.

o

This transformation maps , and Q, to {}; and €]
respectively, where:

< Mr (1)
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Q, = {(r,0): n/2=<r=r,, 0s6<w}
Q! ={(r,0): r,/d=r=2r, 0=0=<w}
Q, = {(r,0): Var,=p='er,, 0s0=w}

Q] = {(r,0): Yer,=p=r,, 0=b=<0},

2
and p = 2rT r. In ©}, the function V(y) = u(% y)
1 o

satisfies the elliptic equation

2r
Bl}(y) )’n)'; (—r—l) Bl(y) V:v;

2r\? 2r\?
+(2) Bowv - (%)
and also satisfies the boundary conditions

V=1d,

v 2
Ezﬁ% on F2 0=p=2r,0=0

on I,:0=<p=<2r, 6=0

In O, and )], Schauder’s inequality yields

2r
Wiz =c vz + (22) beigi.

1, + (210l )- 22

As in the proof of Lemma 1, we get

VIS = flull S =Mrt
and
IFIIg:, =Mri*e

and similarly we can prove that

”¢o”p+2+u°"‘M’7r{)+2+Mo

”‘l’onp+1+%—M8rf+”#o.
Thus (22) gives
"V“P‘F2+p‘° - C [rp+2 s+rP+2+uu]
< C,ri*?e,

We now return to the x-coordinates. We first note
that

2\ e +2 Q
(38Y " Iprul = 1pp VI VI,

o

and that

2\ gy Q 2
() nrw = HEOVISIVIE,,
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where by Hi(W) we denote the Holder coefficient
of exponent . of the function W in ). Thus

2 —
|DI*?ul=cyri
and
H(DIPuy=csri*,
and finally we get in the case when r,>12r,

|h(P) D2*?u(P) — h(Q) DI"*u(Q)|
[d(P, Q)]*

_ |h(P)||D?"*u(P) - D?"*u(Q)|
= [, o)

— ol B
+1D; ”“‘Q”{lhg()a g()%)l}

x [h(P)~h(Q)|""

< Mort. csr* S 4yt My(rt + rg)lwol/e
= Mll ’
since Ro=p—e and Vor,<r,<r,.
Thus h D?**ueC, (Q,). This concludes the proof
of the lemma.
Proof of Theorem 4

We first consider the case when w/(2w) = q = 2.
Thus it follows from Theorem 1 that u€ C,_ e(Q,u)
We shall prove that u€C,,,,,.(Q, ). Consider the
function v =u—u,, where

u, = 2f(0)x,(x, +2x,).
The function u, satisfies the conditions
u, =0

du,
E

onl;:0=0

=

and

Au, = f(0).
Thus

2

o‘u
Lu, = Au,+[a;(x)-38,] ox, ax

+ a(x)u,
= f(0)+g(x), where g(0)=0.

Thus v is a solution of the mixed problem

The Arabian Journal for Science and Engineering, Volume 16, Number 4A.
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Lv = F,(x) (23)
v=0onT, (24a)
av

pei 0(r) on T, (24b)

where

Fi(x)=f(x)-f(0)-g(x), F,(0)=0.
Thus it follows from [6], that vE C,_.(Q,) and that
|v|=Mr** in Q,. Applying Lemma 1, we get

|Dtv|=Mr e k=12,

We rewrite (23) in the form

Av=fi(x) = Fi(x)— [aij(x) - 8:‘;’] Vi,
—a,(x)v,,—a(x)v. (25)

To prove that VvEC.,,,,(,), it follows
from Theorem 2 that, it is sufficient to show
that fi€C,..(Q,), k=m. It is clear that
Fi—a(x)v—a,(x)v, €C,(Q,). It remains to show
that [a;;(x)—3;]v,,,, €C,. This we do in two steps.
It is clear that h;(x)=a,(x)—8,EC, and h;(0) =0.
Thus applying Lemma 2, we get h;(x)v,, ECu ().
Thus f,EC, (Q ) and from Theorem 2 it follows
that ve C2+a .(©1,). Substituting v in the right hand
side of (25), we can show, as before, that now
fi€ Cu(ﬁ,o) which gives v€E CZM((_),O). Thus
u€ C2+u(ﬁlo)'

We now use mathematical induction to complete
the proof of the theorem when ¢ =2. Assume that
u has been proved to belong to CPM((_),O);
2<p=m+1, |Du|=Mr?** % k=0,1,....,p+1. Let
u=T,(x)+R,(x), where T, is the Mclaurin expan-
sion of u up to and including powers of degree p and
R, is the remainder. The remainder R,(x) belongs to
C,.. and |D'R,(x)|=M,r"**™*, k=0,1,..,p+1.

The function R, satisfies in (), an equation of the

form (11) which can be written as

AR,=f,= 1~ [a,x) - 8,,]

ax; ax

dR
- a;(x) a—x': - a(x)R,
where
Dkf;w(x)’xzo = 0, k= O,l,....,p—2

and

The Arabian Journal for Science and Engineering, Volume 16, Number 4A.

Rpll“: = d)p

;Rplfzzq‘p
with
D:d)p:(), k=0,1,..,p
D£¢p=0, k=0,1,....,p—1.

As before to prove that R,€C,.,,,, it is required
2

d°R,
to show that [a;(x)—3;] —*ecC

ax,ax, oo The other
terms of f, belong to C,_.,. Smce a;€C,_y,, then it
. o°R,
i h h P, -3,
remains to show that D”7[a; 6”16 ox, € C,.

This is equivalent  to showing  that
[a;;(x)=8,] D**'R,EC,. This follows from Lemma 2
since |DP*'R, (x)|<Mr""1 and h; = a;(x)—3,EC,
h;(0)=0. Thus f,€C,_,,, and Theorem 2 gives
R eC +1+(,(.Q ). Thus u€C,, 4, p=2,3,....,m+1.
Theorem 4 is proved for the case g = 2. If g>2, then
it follows from Theorem 1 that u€ C,_,(f, ), where
£>0 is arbitrarily small. As in the previous case, we
can show first that u € C, +,,l(.(_) ), then step by step we
can reach u€ C,,,HH,(Q ). The theorem is proved.

We now prove Theorem 3.

Proof of Theorem 3. Without loss of generality, we
assume that the corner point is located at the origin
x=0 and we also assume that the two curves that
form at O the corner of angle vy, are x,=g,(x;)
and x,=g,(x,) where g(x)EC,.2,, and
8.(0) = g,(0) = g1(0) = 0. To transform the equation

2

a;(0) o 0 to canonical form, we use the
(YA

transformation

Y = A;\/a—n {lar[x;—g2(x2)] + oy [x,— g1 (x)]}

Y. = %ﬂ [x1—g2(x2)]

where
oy = ay,(0) —2g3(0)a,(0) + 852(0)‘122(0)
ay, = a,,(0)g;(0) — ay,(0)
oy = a,(0)

= [a,,(0)ay,(0) — a},(0)] 2,

>
|
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The domain N will be transformed to a domain G
bounded by two straight segments I'; and I, and a
curve joining them. The new angle w will be given

A

by tanw a
v(y) = u(x) will satisfy an elliptic equation of the
form (11) and will satisfy boundary conditions of the
form (12), with all the conditions of Theorem 4 being
satisfied. Thus, it can be proved that u€C,,,,,,({,)
where (), C G is a sector with vertex at 0 and radius
r,>0. Noting that the transformation used is of
class C,,,,, and its Jacobian at 0 has_the value
-1/A, we conclude that u€C,,,,,(N), where
N={(x: x€Q, |x|<o,}, 0,<8. This proves the
theorem.

In G, the transformed function
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