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S. Al Humaidan and A. Azzam 

ON MIXED BOUNDARY VALUE PROBLEMS FOR ELLIPTIC EQUATIONS 

IN DOMAINS WITH CORNERS 


1. INTRODUCTION 

In a simply connected bounded domain 0 e [R2, 

we consider a mixed boundary value problem for the 
equation 

Lu = ai/x)uXiXj +	ai(x)uXi + a(x)u = f(x) , (1) 

au a2u 
where x = Xv X2' 	Ux = -;- , UX'X = -;---;- and we use 

, uX j 'J uXjuXj 

the summation convention. General boundary value 
problems for the uniformly elliptic equation (1) in 
smooth domains, is thoroughly investigated; see [1]. 
We state here a known result which we shall need 
later on. Consider the function u(x) that satisfies (1) 
in O. On 00, the boundary of 0, the function u 
satisfies the additional mixed condition 

au 
a(s)u + f3(s) av = a(s) <f>(s) + f3(s)l/J(s) (2) 

where :: is the outward normal derivative of u. It is 

known from [1], that if the coefficients and the right 
hand side of (1) belong to Cm+a(ll), 00 can be rep
resented by Cm+2+a functions and if a(s) and 
<f>(s)E Cm+2+a(aO) while f3(s) and l/J(s) E Cm +1+a ( (0) 
then 

(3) 

If 00 contains corners, then (3) may not be true, and 
in this case, uE Cm+2+a(01)' where 0 1 ell is any 
region with positive distances from the corner points. 
To investigate the smoothness of the Dirichlet problem 
for Equation (1) in domains with corners, a method 
was introduced in [2]. Let us assume, for simplicity, 
that there is a single corner point at 0 with interior 
angle, 'Y, 0<'Y<21T. We transform ai/O)uX;Xi' the 
principal part of (1) at 0, to the Laplacian. In doing so, 
the new angle formed at the corner point, is given by 

[all (0) a22(0) -	 ai2(0)]1/2
tan w = ,::..,..;;.~~=-:..-"--~....:.....;..=--

a22(0) cot 'Y - aI2 (0) 

The regularity properties of the solution depend, 
among other factors, on the value of this angle. The 
method used in [2] was then modified to study the 
Dirichlet and mixed boundary value problems for 
elliptic equations, as well as initial-Dirichlet and 
initial-Mixed boundary value problems for parabolic 
equations. These problems were considered in plane 
domains with corners as well as in n-dimensional 
domains with edges, see [2-9] and the references 

mentioned there. We state here one result that will 
be needed in proving the main result of this paper. 

Theorem 1 [6]. Consider the domain 0 with a single 
corner point on the boundary, located at O. Let fl 
and f2 be Cm+2+a-curves that form at 0 the corner of 
interior angle 'Y, 0 < 'Y < 21T. Consider the mixed 
boundary value problem 

Lu fin 0 	 (4) 

u = 0 on fl 	 (5a) 

au o on f 2 • (5b)av 

If the coefficients of (4) and its right hand side 
belong to Cm+a(ll) then 

UECp(ll) 	 (6) 

f3 = min{m+2+a, 1T/(2w)-E}2:2 (7) 

b" II akf(O)O.
E> IS ar Itranly sma . If moreover!:l k !:l k = 0, 

uXI 1 uX2 2 

k=0,1, .... ,[(3]-2, f3>2, then 

lul:$MrP. 

From this theorem, it follows that if w is small 
enough such that 

1T/(2w»m+2+a, (8) 

then the solution will be as smooth as in the case of a 
smooth boundary. In this paper, we shall show that, 
there are other "exceptional" angles, that will allow 
the solution to belong to Cm+2+a(ll). This result is a 
generalization of the following result that concerns 
the Poisson equation in a straight sector. 

Theorem 2 [10] . Consider the sector Oro {(r, 8), 
r<ro , 0<8<w}. In Oro consider the bounded solu
tion u of the mixed problem 

4u = f in Oro 	 (9) 

u <f> on fl = {(r,8), r< ro , 8 = O} (lOa) 

au 
av = l/J on f2 	 {(r,8), r< ro ' 8 w} (lOb) 

If fECm+a(ll,), <f>ECm +2+a([t), and l/JECm+1+a([2), 
and if w= 1T/(2q) , q = 2,3, .... then uE Cm +2+ a(fl,), 
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where r1 <ro, provided that at the corner, the com· 
patibility conditions imposed by (9) - (10) are 
satisfied. 

We extend this result for problem (4)-(5) as 
follows. 

Theorem 3. Let u be a bounded solution of (4)-(5). 
Let the assumptions of Theorem 1 be satisfied. 
If 00 = 'Tr/(2q), q = 2,3,.... then u E Cm+2+aCO), 
provided the compatibility conditions imposed by 
(4) (5) are satisfied at the corner point. 

The plan of proving this theorem is as follows. We 
first consider the problem in a special setting, we 
prove the required result there, and then show that 
problem (4) - (5) in 0 can be transformed to the 
special setting by a "smooth" invertible transforma
tion. 

The Problem in a Special Setting 

Consider the sector 0'0 {(r, e), r<ro' o<e<oo}. 
In 0'0 we consider the mixed problem 

Lu = / in 0'0 (11) 

u = 0 on e= 0, r < r0 (12a) 

iJu o on e 00, r<ro (12b)
iJv 

where 

Lu ai/x)ux;Xj+ai(x)uX;+a(x)u, 

is unifonnly elliptic. From Theorem 1, it follows that if 
aji' ai' a, and/belong to Cm+a(O,J, then UEC~(O,) 
where r1 <ro and J3 min{m+2+a, 'Tr/(2oo)-e}, 
I:: > 0 is arbitrarily small. We are now interested in 
the case when 'Tr/(2oo):5m+2+a, in which case 
UEC1T/(2IU)-e(O,). We would like to improve this last 
smoothness result when 'Tr/(2oo) = q, q 2,3, ..... 

We now state and prove a result analogous to that 
of Theorem 3, but in a special setting. 

Theorem 4. Let u be a bounded solution of (11)
(12) in_O,o and assume that aji' aj, a, and/belong to 
Cm+a(O,J and assume that: 

(13) 

where 8jj is the Kronecker _delta. If 00 = 'Tr/(2q), 
q 2,3, .... then u E Cm+2+a(O,J, provided that the 
compatibility conditions at 0, imposed by (11) and 
(12) are satisfied. 

To prove this result, we need two lemmas in which 
more properties of solutions of (11)-(12) will be 
established. 

Lemma 1. Let u(x) be a bounded solution of (11)
(12) in O2'0 where aii , ai' a, and / belong to Cp +a 

there, and 

Dk/lx=o = 0, k O,l, .... ,p, (14) 

where p:5 m and Dk/ is any partial derivative of / of 
order k. If for some A, A:5p+2+a we have 

lu(x) I$Mr\ r<2ro (15) 

then in 0'0 we have 

IDku(x)I:5Krx-k; r<ro' k = 1,2, .... ,p+2 . (16) 

Proof. In the proof we use a method introduced in 
[5]. In O2'0 consider the domains 

We denote by r ~ and r: the straight parts of the 
boundary of 0 ~ with e = 0 and e 00 respectively. 

Consider the transformation: 

Xi = 1/2n Yi' i = 1,2 . (17) 

This transformation maps On and O~ to 0 0 and O~ 
respectively. In O~, the function U(y) = u(1/2ny); 
Y = Yl' Y2, satisfies the uniformly elliptic equation: 

Aij(y) UYiYi + 2-nAi(Y) Uy ; +2-2nA(y) U = 2-2nF(y) , 

where Aij(Y) = aij(1/2ny) and similarly Ai' A, and 
F may be defined in terms of au a, and /. The func
tion U satisfies the boundary conditions: 

U 0 on r~ 

iJU 
iJv = 0 on r: . 

In 0 0 and 0 ~ we apply the Schauder inequality to 
get: 

We now estimate the right hand side of this inequal
ity. It is clear that: 

IIUII~~ = Ilull~~$M1r\ (see (15». 

Since F(y) = /(1/2ny), then D; F = (1/2n)k D:/ and 
it follows from (14) that 
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IDff(x) I= IDff(x) - Dff(O)lsKpra 

IDr'f(x) IoS ['I DPf(t)IdtoSKp41+· 

and generally 

ID:f(x)lsKkrp-k+a, k = O,I, ... ,p (19) 

Thus in O~ we have 

ID;F(y) I 1(1/2n)k D;f(x)\, k = O,I, ... ,p. (20) 

If P(r1,a1) and Q(rh a2) are any two points in O~ 
and their images are Po(r~,al) and Qo(r~,a2)' then 
d(Po, Qo) = 2nd(P, Q) and 

Dff F(Po) - Dff F(Qo) 
[d(Po, Qo)]a 

= (1/2n)p+a Dff(P) - Dff(Q) (21)
[d(p,Q)]a . 

Thus from (20), (21), and from 

IIFII~t = L
p 

IID;Fllo+Ha(D:F),
k""o 

where H~(g) is the Holder coefficient of g of 
exponent a in 0, it follows that 

IIFII~la s C2(1/2n)p+allfll~~a 

s C3(1/2n)p+a. 

Thus, noting that ASp +2+a, we get from (18) 

II UII~~2+a S C4[Ml r 
A+2- 2n Ko(1/2ny+a] 

S Cs(1/2n)A. 

Since 

ID;U(y)ISIIUII~+2+a, k s p+2 

and 

D;U(y) = (1/2nl D;u(x) 

then 

(1/2n)k ID;u(x)\sCs(1/2n)A. 

Thus 

\D;u(x) Is Cs(I/2n)A-k 

or equivalently 

A k\D;u(x)\ sK r - . D 

This proves the lemma. 

In the next lemma we are going to show that the 
singularity of the solutions of (11) - (12) is of pole
type; multiplying the solution by O(rlA-) functions, 
removes "some" of its singularities at O. 

Lemma 2. Let u(x) be a bounded solution of the 
mixed problem 

Lu = f(x) in Oro (see (11» 

u = $(r) on r~: a= 0, r<ro 

iJu 
iJv = lJI(r) on r;: a = w, r<ro, 

where aij , ao a, and f belong to Cm+aCO,), 
$E Cm+2+a(rD and lJIE Cm+1+a(rD. Assume also 
that for some integer p, 0s p s m we have 

d k 

dr k $(r)lr=o = 0, k = 0, 1, .... ,p+2 

dk 

dr k lJI(r)\r=o = 0, k = 0,1, .... ,p+1 

Dkf(x)lx=o = 0, k = O,l, .... ,p. 

Assume that uECP+2- (n,) and IDp+2 U (x)lsM.!-\E 

where 0< E s 1. Then for any function hex) E CIA-(O,), 
E S f.L s 1 with h(O) = 0, we have 

h(x)DP+2u(x)E CIA-O (n,) 

where 

f.L-E ifp<m 
{f.Lo = min(a, f.L- E) if p = m 

Proof Consider any two points P(r1' (1) and 
Q(r2 ,a2) in 0'0 and suppose that Osr2 sr1sro ' If 
r2s 1/2r1 , then d(P, Q) 2:: 1f2r1 and: 

Ih(P) DP+2 U (p) - h(Q) DP+2U (Q)1 

[d(P, Q)]lA-o 


M2 ri ri E + M2 r~ rit< ~~~--~~~ 
- (1f2r1)lA-o 

sM. (20) 

To prove an inequality of the form (20) for the case 
when r2> 1f2r1, we first prove that in this case 

IDp+2 U (p) - Dp+2 U (Q)1 -IA -E 

[d(P, Q)]lA-o S Mr (21)o. 

• 4:' 2r1 2Consider the translormatlon Xi =- Yi' i = 1, ,. 
ro 

This transformation maps 0 0 and O~ to 0 1 and 0i 
respectively, where: 
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0 0 {(r,O): r1/2::sr::sr1, O::SO::Soo} 

O~ {(r,O): rd4::sr::s2r1, O::SO::Soo} 

0 1 = {(r, 0): 1/4ro::Sp::Sl/2ro, O::SO::Soo} 

0i = {(r, 0): VsrO::Sp::sro , O::SO::Soo} , 

ro . (2r1 )and p;;:: -2 r. In Oi, the functIon V(y) = u - y
ro 

satisfies the elliptic equation 
r1 

2r1)Bi/Y) VyiYi + ( -;:: Bj(y) VYi 

+ e:.')' 8(y) V = e:.')'F(y) 

and also satisfies the boundary conditions 

v = <Po 

oV 2r1 ~ 
- = - 01'0 on f 2: O::s p::s2r1, 0;;:: 00ov r 'Y 

o 

In Oland 0 i, Schauder's inequality yields 

11V11~t2+., :s: C[IIVII ~, + (2:',)' IIFII~i., 

+ lI<f>oll~b., + e:.' )1I"'oll~~l+.')' (22) 
As in the proof of Lemma 1, we get 

IIVII~i = Ilull~~::sM5rf+2-E 

and 

IIFII~l~o::S M6 rf+a 

and similarly we can prove that 

II<t>oll!~2+~o::S M7rf+2+~o 

,1. 111\ <M p+l+~o
11 'Yo p+1+~o - 8r 1 • 

Thus (22) gives 

II VllOl < C [r P+2- E + rP+2+~o]
p+2+~o - 0 1 1 

E< C r p +2- 1 1 • 

We now return to the x-coordinates. We first note 
that 

S. Al Humaidan and A. Azzam 

where by H~(W) we denote the Holder coefficient 
of exponent J.L of the function W in O. Thus 

and 

and finally we get in the case when r2 > V2r1 

Ih(P) Df+2 U(p) - h(Q) Df+2u(Q)1 

[d(P, Q)]~o 


< Ih(P)IIDf+2U(p) - Df+2U(Q)1 

- [d(P, Q)]~o 


+ IDP+2U(Q)I{lh(P)-h(Q)1 }fJ.o/fJ. 

x [d(P, Q)]fJ. 


x Ih(P)-h(Q)11-(~o/~) 

since J.Lo::SJ.L-E and V2r1<r2<r1. 

Thus h Df+2UE c~o(ii,J. This concludes the proof 
of the lemma. 

Proof of Theorem 4 

We first consider the case when 11'/(200) ;;:: q = 2. 
Thus it follows from Theorem 1 that u E C2- (O' ).E 

We shall prove that uE Cm +2+a(O,J. Consider the 
function v = u - uo ' where 

The function satisfies the conditions Uo 

on f 1 : 6 0 

ouo = O(r) on f 2 : 6 = 00 ov 
and 

~uo /(0). 

Thus 

+ a(x)uo 

= /(0) +g(x), where g(O) = O. 

Thus v is a solution of the mixed problem 

October 1991 The Arabian Journal for Science and Engineering, Volume 16, Number 4A. 479 



S. Al Humaidan and A. Azzam 

Lv = F1(x) (23) 

V = 0 on f1 (24a) 

dV 

dV = O(r) on f 2 , (24b) 


where 

F1 (x) = I(x) - 1(0) - g(x), F1 (0) = O. 

Thus it follows from [6], that vE C2- E (0, ) and that 
Ivl:5Mr2-E in 0'0' Applying Lemma 1, owe get 

IDkvl:5Mr2- E-k, k = 1,2. 

We rewrite (23) in the form 

~v =11 (x) = F1 (x) - [ajj(x) - &ij] VX;Xj 

- aj(x) vX;- a (x) v. (25) 

To prove that v E Ck+2+a(0,J, it follows 
from Theorem 2 that, it is sufficient to show 
that I1ECk+a(0,J, k:5m. It is clear that 
F1-a(x)v-a j(x)vx;ECa(0,J. It remains to show 
that [aj/x)-&jj]vx;xjECa' This we do in two steps. 
It is clear that hj/x)=aj/x)-&jjECa and hj/O) =0. 
Thus applying ~mma 2, we get hjj(x)Vx;xjECa-E(O,J. 
Thus 11 E Ca-E(~J and from Theorem 2, it follows 
that vE C2+a - E(0,J. Substituting v in the right hand 
side of (25), we can show, as before, that now 
11 E Ca(O,J which gives vE C2+a(0,J. Thus 
u E C2+a (fi,J. 

We now use mathematical induction to complete 
the proof of the theorem when q = 2. Assume that 
u has been proved to belong to Cp+a(O,J; 
2:5p:5m+l, IDkul:5Mrp+a-k, k=O,I, .... ,p+l. Let 
u = Tp(x) +Rp(x), where Tp is the Mclaurin expan
sion of u up to and including powers of degree p and 
Rp is the remainder. The remainder Rp(x) belongs to 
Cp+a and IDkRp(x)I:5Morp+a-k, k=O,I, .... ,p+l. 
The function Rp satisfies in 0'0 an equation of the 
form (11) which can be written as 

d2R 
~Rp = Ip = Fp-1- [aj/x) - &jj] -;--!

uXjuXj 

where 

Dk.t;,(x)lx=o=O, k=0,1, .... ,p-2 

and 

with 

D: <Pp = 0, k = 0, 1, .... ,p 

D!$p=O, k=O,I, .... ,p-l. 

As before to prove that Rp E Cp+1+a, it is required 
d2Rp

to show that [aj/x) - &jj] --ECp-1+a' The other 
dXjdXj 

terms of Ip belong to Cp-1+a' Since ajjE Cp-1+a then it 
2 

remains to show that DP-1[a jj -&jj] d Rp E Ca. 
dXjdXj 

This is equivalent to showing that 
[ajj(x) -&jj] DP+1 RpECa. This follows from Lemma 2 
since IDP+1Rp(x)I:5Mra-1 and hij=aj/x)-&jjEC1, 
hjj(O) = o. ~us Ip E Cp-1+a and Theorem 2 gives 
RpECp+1+a(O,J. Thus uECp+1+a, P = 2,3, .... ,m+1. 
Theorem 4 is proved for the case q = 2. If q>2, then 
it follows from Theorem 1 that uE Cq-E(O,J, where 
E > 0 is arbitrarily small. As in the previous case, we 
can show first that u E ~q+a(O,J, then step by step we 
can reach uE Cm+2+a(O,J. The theorem is proved. 

We now prove Theorem 3. 

Prool 01 Theorem 3. Without loss of generality, we 
assume that the corner point is located at the origin 
x = 0 and we also assume that the two curves that 
form at 0 the corner of angle 'Y, are X2= gl(X1) 
and Xl = g2(X2) where gj(X j) E Cm +2+a and 
g2(0) = gl (0) = gaO) = O. To transform the equation 

d2
U 

a .. (O) -_. = 0 to canonical form, we use the 
IJ dXjdXj 

transformation 

where 

<Xll = all (0) - 2g~(0)a12(0) +g~\0)a22(0) 

<X12 = a22(0)g~(0) - a12(0) 

<X22 = a22 (0) 

A = [au (0)a22(0) - ai2(0)j1/2. 
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The domain N will be transformed to a domain G 
bounded by two straight segments r1 and r2 and a 
curve joining them. The new angle w will be given 

A 
by 	 tan w -. In G, the transformed function 

<l12 

v(y) = u(x) will satisfy an elliptic equation of the 
form (11) and will satisfy boundary conditions of the 
form (12), with all the conditions of Theorem 4 being 
satisfied. Thus, it can be proved that uE Cm+2+a(OrJ 
where Oro eGis a sector with vertex at 0 and radius 
'0> O. Noting that the transformation used is of 
class Cm +2+a and its Jacobian at 0 has the value 
-1/A, we conclude that uECm +2+a (N), where 
N {(x: xEO, Ixl<U1}, U1<&' This proves the 
theorem. 
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