THE p-QUASI-CENTER OF A BANACH ALGEBRA

D. Hussein^{*} and A. Asad

Faculty of Science University of Jordan Amman, Jordan

الخلاصة :

اعطينا في هذا البحث مثلا عن جبر باناخ A وعنصر شبه مركزي من نوع σ ولكنـة ليس شبه مركزي من نوع ρ ونتيجة لذلك حصلنا على الاشتـقاق الداخلي لجبر باناخ .

ABSTRACT

An example of a Banach algebra A and a σ -quasi central element of A which is not ρ -quasi central is given; also a result on inner derivation on A is obtained.

^{*}To whom correspondence should be addressed.

THE ρ-QUASI-CENTER OF A BANACH ALGEBRA

INTRODUCTION

The purpose of this paper is to study the ρ -quasi center of a Banach algebra. The results obtained are applied to the study of inner derivation on a Banach algebra.

Throughout the paper, all linear spaces and algebras are assumed to be defined over the field *C* of complex numbers. If *A* is a Banach algebra we shall denote the center of *A* by $Z(A) = \{a \in A : ax = xa \text{ for every } x \text{ in } A\}$. The resolvent set of an element x in *A* is $\rho_A(x) = \{\lambda \in C : (x - \lambda e)^{-1} \text{ exists}\}$. Also $C - \rho_A(x)$ is the spectrum of x and is denoted by $\sigma_A(x)$.

Lepage [1; proposition 3] proved the following result. If $a \in A$ satisfies

 $||x(\lambda-a)|| \le ||(\lambda-a)x||$ for all $x \in A$ and $\lambda \in C$,

then a lies in the center of A. (1)

From this result, Rennison [2-4] studied elements which satisfy a condition superficially very similar to (1).

In fact he called an element a of A quasi-central if, for some $k \ge 1$,

$$(||x(\lambda-a)|| \le K ||(\lambda-a)x||$$

for all $x \in A$ and $\lambda \in C$.
$$Q(K,A) = \{a \in A : ||x(\lambda-a)|| \le K ||(\lambda-a)x||$$

for all x in A and $\lambda \in C\}$ and
$$Q(A) = \bigcup_{K \ge 1} Q(K,A).$$

Similarly we define the set $Q_{\sigma}(A)$ of all σ -quasi central elements as follows:

$$Q_{\sigma}(K,A) = \{a \in A : ||x(\lambda - a)|| \le K ||(\lambda - a)x||$$

for all $x \in A$ and $\lambda \in \rho_A(a)\}$ and
$$Q_{\sigma}(A) = \bigcup_{K \ge 1} Q_{\sigma}(K,A).$$

This paper stems from these ideas. An element a of A will be called ρ -quasi central if for some $K \ge 1$,

$$\|x(\lambda-a)\| \leq K \|(\lambda-a)x\|$$

for all $x \in A$ and $\lambda \in \sigma_A(a)$

When $K \ge 1$, we shall write

$$Q_{\rho}(K,A) = \{a \in A : ||x(\lambda-a)|| \le K ||(\lambda-a)x||$$

for every $x \in A$ and $\lambda \in \sigma_A(a)\}$ and
$$Q_{\rho}(A) = \bigcup_{K \ge 1} (K,A).$$

Thus $Z(A) \subset Q(A) \subset Q_{\rho}(A).$

THE ρ-QUASI CENTRAL ELEMENT

We start by noting an elementary property of the definition of Q_{ν} .

Proposition 1.

$$Q_{\rho}(K,A) \cap Q_{\sigma}(K,A) = Q(K,A).$$

Proof:

Clearly $Q(K, A) \subset Q_p(K, A) \cap Q_\sigma(K, A)$. If $a \in Q_p(K, A) \cap Q_\sigma(K, A)$, then

$$||x(\lambda-a)|| \le K ||(\lambda-a)x||$$
 for all $x \in A$ and

 $\lambda \in \sigma_A(a) \cup \rho_A(a) = C$ and so $a \in Q(K, A)$.

Corollary: If $\sigma_A(a)$ is countable for every $a \in Q_{\sigma}(A)$, then $Q_{\sigma}(A) \subset Q_{\rho}(A)$.

Proof: Since $\sigma_A(a)$ is a countable compact set, it has zero analytic capacity [5]. Making use of [2, Theorem 3.7] we have $Q_{\sigma}(A) = Q(A)$.

Since $Q(A) \subset Q_{\rho}(A)$, it follows that $Q_{\sigma}(A) \subset Q_{\rho}(A)$.

We give an example of a complex Banach algebra and a σ -quasi central element of A which is not ρ -quasi central.

EXAMPLE

Let B be the closed unit disc in the complex plane C.

Let C(B) be the algebra of all continuous complex functions on B with the supremum norm.

Let $A = M_2(C(B))$ be the algebra of all 2×2 matrices over C(B).

For
$$X = \begin{pmatrix} f & g \\ h & k \end{pmatrix} \in A$$
, define

 $||X|| = \max\{||f|| + ||g||, ||h|| + ||k||\}.$

Choose any u and v in C(B) with $v \neq 0$ and uv = 0.

Let

$$Y = \begin{pmatrix} u & 0 \\ 0 & u \end{pmatrix}, \quad Z = \begin{pmatrix} v & -v \\ v & -v \end{pmatrix}, \quad W = \begin{pmatrix} 0 & v \\ 0 & v \end{pmatrix}$$

and

$$T = Y + Z.$$

October 1991

Then
$$TZ = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 and so T^{-1} does not exist.

This implies that $(0-T)^{-1}$ does not exist and hence $0 \in \sigma_A(T)$. Moreover,

$$WT = \begin{pmatrix} v^2 & -v^2 \\ v^2 & -v^2 \end{pmatrix} \neq 0 \text{ since } v \neq 0$$

and

$$\|WT\| = \left\| \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\| = 0 \text{ since } uv = 0.$$

Moreover,

$$\|W(0I-T)\| = \|WT\| = \left\| \begin{pmatrix} v^2 & -v^2 \\ v^2 & -v^2 \end{pmatrix} \right\|$$

> 0 = K \|(0I-T)W\| = K \|TW\|.

Hence $T \notin Q(A)$. Finally we show that $T \in Q_{\sigma}(A)$. Observe that $Z^2 = YZ = 0$. Thus for any non zero complex number λ we have

$$(\lambda I-Y)(I-\lambda^{-1}Z) = \lambda I-Z-Y = \lambda I-T.$$

Also,

$$(I-\lambda^{-1}Z)(I+\lambda^{-1}Z)=I-\lambda^{-2}Z^2=I.$$

Therefore,

$$(I - \lambda^{-1}Z)^{-1} = (I + \lambda^{-1}Z).$$

Now by computation,

 $(\lambda I - Y)^{-1}$ does not exist iff $(\lambda I - u)^2 = 0$,

and

 $(\lambda I - T)^{-1}$ does not exist iff $(\lambda I - u)^2 = 0$.

We see that $\lambda \in \sigma_A(T)$ iff $\lambda \in \sigma_A(Y)$.

Let $\lambda \in \rho_A(T)$,

$$(\lambda I - T) = (\lambda I - Y)(I - \lambda^{-1}Z)$$

since

 $0 \notin \rho_A(T) (0 \in \sigma_A(T)).$

So

$$(\lambda I - T)^{-1} (\lambda I - T) (I + \lambda^{-1} Z) (\lambda I - Y)^{-1}$$

= $(\lambda I - T)^{-1} (\lambda I - Y) (I - \lambda^{-1} Z) (I + \lambda^{-1} Z) (\lambda I - Y)^{-1}$
= $(\lambda I - T)^{-1} (\lambda I - Y) (\lambda I - Y)^{-1} = (\lambda I - T)^{-1}.$

Therefore,

$$(\lambda I - T)^{-1} = (I + \lambda^{-1}Z)(\lambda I - Y)^{-1})$$

for all $\lambda \in \rho_A(T) = \rho_A(Y)$.

Let $X = \begin{pmatrix} f & g \\ h & k \end{pmatrix} \in A$. Then

YX = XY and so $Y \in Z(A)$, the center of A.

By computation,

$$(\lambda I-T)^{-1}x(\lambda I-T)=(I+\lambda^{-1}Z)x(I-\lambda^{-1}Z).$$

Hence

$$\|(\lambda I - T)^{-1} x (\lambda I - T)\| \leq (1 + |\lambda^{-1}| \|Z\|)$$

$$\times \|x\| \left(| + \frac{\|Z\|}{|\lambda|} \right) \leq K \|X\|,$$

where $K = (1 + |\lambda^{-1}| ||Z||)^2$ and so $T \in Q_{\sigma}(A)$.

INNER DERIVATIONS

For a in a Banach algebra A, let D_a be the inner derivation corresponding to a, defined by

$$D_a x = a x - x a (x \in A).$$

Proposition 2

Let A be a Banach algebra and $a \in Q_{\rho}(K, A)$. Then,

$$||D_a T|| \leq (K+1) ||(\lambda I - L_a) T||$$

for every bounded linear operator T on A, $\lambda \in \sigma_A(a)$, and

 $L_a x = xa(x \in A).$

Proof: Let $R_a x = ax$ for every $x \in A$.

Let $a \in Q_{\rho}(K, A)$. Then for every $x \in A$ and $\lambda \in \sigma_A(a)$ we have,

$$||x(\lambda e-a)|| \le K ||(\lambda e-a)x||,$$

where e is the unit element of A, so that

$$\|x(\lambda e - a)\| = \|x\lambda - xa\| = \|\lambda x - R_a x\|$$
$$= \|\lambda e - R_a x\|$$

Similarly

 $\|(\lambda e-a)x\|=\|(\lambda e-L_a)x\|,$

so that

 $\|(\lambda e - R_a)x\| \leq K \|(\lambda e - L_a)x\|.$

Hence

$$||D_a x|| \leq (K+1) ||(\lambda e - L_a)x||.$$

Let $T: A \rightarrow A$ be any bounded linear operator on A. Then for every $x \in A$ we have

$$\|D_a Tx\| \leq (K+1) \|(\lambda I - L_a) Tx\|, \ \lambda \in \sigma_A(a).$$

This implies that

 $||D_a T||(K+1)||(\lambda I - L_a) T||.$

Proposition 3

Let $a \in Q_{\rho}(K, A)$ and $0 \in \sigma_{A}(a)$. Then for each integer *n* we have $||D_{a}^{n}|| \leq (K+1)^{n} ||a||^{n}$.

Proof: We prove this result by induction on *n*. Since $0 \in \sigma_A(a)$ we have,

$$||xa|| \leq K ||ax||$$
 and so

$$||D_a x|| \le ||ax|| + ||xa|| \le (K+1)||ax||$$

 $\le (K+1)||a||||x||$ for every x in A.

Hence,

 $||D_a|| \leq (K+1)||a||.$

Next, assume that for some integer n:

$$||D_a^n|| \leq (K+L)^n ||a||^n.$$

Then

$$\|D_a^{n+1}x\| = \|D_a^n D_a x\| \le (K+1)^n \|a\|^n \|D_a x\|$$

$$\le (K+1)^{n+1} \|a\|^{n+1} \|x\|$$

for every x in A.

This proves that

$$||D_a^{n+1}|| \leq (K+1)^{n+1} ||a||^{n+1}$$

and so by induction the proof is completed.

REFERENCES

- C. Lepage, "Sur quelques conditions entrainant la commutativité dans les algebres de Banach", C. R. Acad. Sci. Paris Ser A-B, 265 (1967), p. 235.
- J. F. Rennison, "Conditions Related to Centrality in a Banach Algebra", J. London Math. Soc., 26 (1982), p. 155.
- J. F. Rennison, "Conditions Related to Centrality in a Banach Algebra. II", J. London Math. Soc., 35 (1987), p. 499.
- [4] J. F. Rennison, "The Quasi Centre of a Banach Algebra", Math. Proc. Camb. Phil., 1988, p. 333.
- [5] M. Tsuji, Potential Theory in Modern Function Theory. Tokyo: Maruzen, 1959, p. 67.

Paper Received 13 May 1989; Revised 10 April 1990.