
SOME SIMILARITY SOLUTIONS OF EQUATIONS 
GOVERNING THE STEADY PLANE FLOW ON AN INVISCID 

COMPRESSIBLE FLUID OF FINITE ELECTRICAL 
CONDUCTIVITY IN THE PRESENCE OF A TRANSVERSE 

MAGNETIC FIELD VIA ONE-PARAMETER GROUP 

ABSTRACT 

Rana Khalid Naeem* and Waseem Ahmed Khan 

Department of Mathematics 
University of Karachi 

Karachi, Pakistan 

Using one parameter group of transformations, some exact solutions of 
equations governing the steady plane flow of an inviscid compressible fluid of 
electrical conductivity (j in the presence of a transverse magnetic field, are 
determined. 

"'Address for correspondence: 
A-221 Sector ll-A 
North Karachi 
Karachi 75850 
Pakistan 

October 1994 The Arabian Journal/or Science and Engineering, Volume 19, Number 4A. 725 



726 

R. K. Naeem and W. A. Khan 

SOME SIMILARITY SOLUTIONS OF EQUATIONS GOVERNING THE 
STEADY PLANE FLOW ON AN INVISCID COMPRESSIBLE FLUID OF 

FINITE ELECTRICAL CONDUCTIVITY IN THE PRESENCE OF A 
TRANSVERSE MAGNETIC FIELD VIA ONE-PARAMETER GROUP 

1. INTRODUCTION 

Recently N aeem [1] applied one parameter group of transformations to det.ermine some exact solutions of 
flow equations of an incompressible fluid of variable viscosity. In the present work, we extend N aeem's approach 
to determine some exact solutions of equations governing the motion of an inviscid compressible fluid of finite 
electrical conductivity (J' in the presence of a transverse magnetic field. In Section 2, we consider the flow 
equations and transform them into a new system of equations using one parameter group of t.ransformations. In 
Section 3, we determine some exact solutions of new system of equations for an arbit.rary state equation. 

2. FLOW EQUATIONS 

The steady flow of a compressible, inviscid, electrically conducting fluid of finite electrical conductivity 0' is 
governed by [2] 

V· (pv) = 0 

p(v· V)v + Vp = J.L(V x H) x H 

1 
V x (v x H) + -V2H = 0 

J.LO' 

V·H = 0 

v·VS = 0 

p = p(p,S) (1) 

where in v denotes the velocity, H the magnetic field, p the density of the fluid, S the entropy, p the pressure, 
and I' the constant magnetic permeability of the fluid. 

For plane transverse flows in the (x, y) plane, we have H = (0,0, H) and 8/8z = O. For such flows system (1) 
becomes 

(pu)x + (pv)y = 0 

1 
(ttH)x + (vH)" = _V2 H 

1'0' 

ttSx + {}S" = 0 

p = p(p,S) 
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wherein 

p (3) 

Equation (2.1) implies the existence of a streamfunction 1/J such that 

(4) 

The system of equations (1), employing (4), transforms to the following system of partial differential equations 

p~ = 8 [R,,1/J~1/JfJ + R1/J~1/JfJfJ - R~1/J~ R1/JfJ1/JfJd 

P" = 8 [Re,pe,p" + R,p",pee - ~,pi - R,pe,pel1] 

H~~ + HfJfJ + J1D [R1/JfJH~ R1/J~HfJ + (R~1/JfJ - R,,1/J~) H] = 0 

in the variables e = x + y, 1] = x y. In system (5), the function R is given by 

R=!. 
p 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(6) 

Once a solution of system (5) is determined, the pressure p and density p are determined from Equations (3) and 
(6), respectively. We now transform the system of partial differential equations (5) into a new system of ordinary 
differential equations using one parameter group of transformations. We give here only the one parameter group 
r1 and its variants that are used to obtain exact solutions of system (5). For details of one parameter group 
theory reader is referred to references [1, 3-4]. 

If r 1 is a group consisting of a set of transformation defined by 

with parameter Cl ¥- 0, then the invariants of r 1 for system (5) are 

provided 

In the above 

,p = 1]>'1 A(8), R = 1]>'2 B(8), P = 1]>'3C(8), S = 1]>'. D(8), 

H = 1]>'5 E( 8), 8 = f 
1] 

r j 
A4 = -, As =-. 

n n 

(7) 

(8.1) 

(8.2) 
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The system (5), using invariants (7) of r ll transforms to the following system of ordinary differential equations 

(9.2) 

(9.4) 

for the five unknown functions A, B, C, D, Eof O. In the next section, we determine the solutions of the system (9). 

3. SOLUTIONS 

Using (9.1) in (9.2), we get 

A3C 8 [B (A1AA" + A' 2 AfOAA' + A1 02 AA" + 82 A,2) + B' (A1AA' - AfOA2 + A102 AA')] . (10) 

Equations (10) and (9.1) imply that 

(Y + 8M) B" + [X + OL + (Y + OM)' A3M] B' + [(X + OL)' - A3L] B = 0 (11.1) 

wherein 

L = -AfAA' + A10AA" + 8A,2 

M -AfA2 + A18AA' 

X = A1AA" + A,2 

Y A1AA'. 

Integration of (9.1) and (9.4) yields 

C 8 f [B {-AfAA' + A18AA" + OA'2} + B' {-AfA2 + A18AA'}] dO + d1 

D (0) = A1A),6(O), A6 = A4/A1' 

where A1 and d1 are arbitrary constants. 
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In Equations (12.1-12.2), the functions A(O) and B(O) are determined from Equations (9.3) and (11.1) using 
particular methods for determining the solutions of linear differential equations of second order. We know from 
theory of ordinary differential equations that the first integral of 

91 (0) Z" (0) + 92 (0) Z' (0) + 93 (0) Z (0) = 94 (0) (13.1) 

is 

91 Z' + [92 - 9~] Z f 94 (O)dO + Constant (13.2) 

provided 

93 - 9; + 9~ = 0 (exactness condition). (13.3) 

We now employ (13.1-13.2) to determine the solutions of Equations (9.3) and (11.1). 

Equation (11.1), employing (13.3), give 

A3 (L - M') o. 

This leads us to the following two cases: 

Case I. A3 = 0, L - M' :I O. 

Case II. A3:1 0, L - M' = O. 

We study the two cases. 

Case I. When A3 = 0, the first integral of (11.1) is 

(Y +OM)B' +(X +OL)B C1 • (14) 

Assuming Y + OM :I 0 , the solution of Equation (14) is 

(15) 

where 
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F (8) = J x + 8L d8 
I Y+8M 

and C I and C2 are arbitrary constants. In Equation (15), the function A(8), on which FI(8) depends, is arbitrary. 

If Y +8M = 0, then 

B(8) (16) 

where C3 is an arbitrary constant. 

We now solve Equation (9.3) for A3 = 0. Equation (9.3), utilizing (13.3), give 

This equation holds VO provided 

AS (As + 1) = 0, A2 + Al + As = ° or As (As + 1) = 0, A' = 0. 

We treat the above two cases separately. 

Case a. As{As + 1) = 0, Al + A2 + As = 0. The choice As = -1 fails to satisfy (8.2) and is therefore discarded. 
For choice As == 0, the solutions of Equation (9.3) is 

(17) 

where 

and C4 and Cs are arbitrary constants. In Equation (17) the functions A(8) and B(8) are given by (15) or (16). 
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Case b. A5(A5 + 1) = ° and A' = ° give 

where al is an arbitrary constant. 

The solutions of (9.3) for A5 = 0, -1, respectively, are 

{ f ( -1 MC1 f In OdO) / 2 2 } 
X Cg exp 2p,ual C7 tan 0 + 2al 1 + 02 (1 + 0 ) dO + CIO 

where C6 , C7, Cs, Cg, CIO are arbitrary constants. 

Utilizing A(O) = al in Equation (14), we find 

For C1 = 0, 

E=! 
-[C6]/[2p,U l C7] + Cs exp(2Mal C7tan- 10), 

C4 [8( +2p,2u2a~G1) + 802 + 16p,ual C70]![32p,ual C7(1 + p,2u2a~C?)] 

+ClO(l + (2) exp( -2MalC7tan-l0), 

Case II. A3 i= 0, L M' = 0, give 

This is satisfied VO provided 

Al = 1 or Al i= 1, OA' = AlA or Al = 1, OA' = A. 

Let us consider these cases separately. 

A5 = ° 

A5 = -1 
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Case a. Al = 1. In this case, for Y + OM # 0, the solution of (11.1) is same as given by Equation (15). When 
Y + OM # 0, the Equation (9.3) is exact provided A5 = 0, and its solution is 

where 

and C 12 , C13 are arbitrary constants. 

When Y + OM = 0, the function A(O), B(O), and E(O) are given by 

A(O) 

B(O) 

E(O) 

Case b. Al # 1, OA' = AlA. In this case 

wherein 

1 
w=-o 

and C 14 , C 15 , C 16 are arbitrary constants. The indefinite integral in the above expression for B(O) can easily be 
evaluated using Tables of indefinite integrals [5] for given (4A1 - 2). The function E(O) can easily be obtained 
from Equation (9.3) using above expressions for A(O) and B(O). 

Case c. When Al = 1, then 
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wherein C17 , C18 are arbitrary constants. In this case, the solution of (9.3) for A5 = 0, is 

(18) 

provided 

C18 i- 0, 

In above 

w = tan- l B. 

The indefinite integral in above can easily be evaluated using reference [5] for given P,(J'C17 /C14 . When C18 ° 
and C18 0, j.t(J'C17 2C14 , the function E( 0), respectively, is 

(19) 

E 

When A5 I- 0, the Equation (9.3) is exact provided 

C18 = 0,A5 
Jl(J'C17 _ 1. 

C14 

The first integral of (9.3) is 

(
2 - Jl(J'C17 ) BE = C19 

C14 1+ 

which gives 
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E={ 

wherein G19, G20, G2l are arbitrary constants. 

4. CONCLUSIONS 

Some exact solutions of equations governing the steady plane flow of an inviscid compressible fluid of finite 
electrical conductivity in the presence of a transverse magnetic field are determined via one parameter group of 
transformations for an arbitrary state equation. 
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