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ABSTRACT

In this paper, we consider the L(f) spaces and characterize their compact subsets.
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RESULTS ON L(f) SPACES

INTRODUCTION

Let f be a real valued function defined on [0, o)
having the following properties:

(1) f(x)=0 if and only if x=0.
(2) f is increasing.
(3) fx+y) =f(x)+f(y) for all x, ye[0, o).

4) lim f(x)=0.
x-»0 +

Such an f is called a modulus; it is clear that a
modulus is a continuous function on [0, c0). The space
L(f) consists of all real sequences (x,)=X satisfying
2 f(x,))<oo, this sum being denoted by |X],.
We will show that (L(f), | |,) is a complete metric
space. The [? spaces 0<p<1 are special cases of L(f)
spaces with f(x)=x?.

Let C={f:f is a modulus} and H=the set of all
finite sequences; e, denotes the sequence which is 0
everywhere except for the nth component where it is 1,
and E={e,:n=1,2,3,...}. In this paper we prove that
L(f) is a topological vector space and characterize the
compact subsets of L(f), a result which could be
considered as an extension of the one given in
Reference [1]. We will also show that there exists no

feC such that L(f)=H andmo IP2H.
p>

RESULTS

Lemma 1. Let feC, then (L(f), | |,) is a com-
plete metric space.

Proof. Let X, Y, Z be elements of L(f), X =(x,),
Y=, Z=(z,).
(1) If |X| ; =0=Z f(|x,l) then f{|x,])=0 so x,=0 for all
n.
Now if X =0 then x,=0 for all n hence f(x,)=0 for
all nso |X|,=0.
@) X =Y, =Zf(x, = yu)=Zf(yn—x,) =Y = X .
Q) XYl =Zf(Ixy = yu) SZf (X, — 2z + 20— yal)
SEfUxn—zaD)+ Sz — yul)
=|X—-Z|,+|Y-Z|,.

A proof of the completeness is given in Reference [2],
p. 10.
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Lemma 2. Let f and g be elements of C, if there
exists €>0 such that f(x)<g(x) for all xe[0,¢e) then
Lg s L(f).

Proof. Let X=(x,)el(g), since L{g)cl' see
Reference [2], then x,—0 so there exists N such that
|x,l€e[0,€) for all n=N, hence f{|x,))<gllx,|) for all
n=N.

o« N—1 @
Now Y fUx.)E Y flxaD+2 gllx.))
1 1 N
N—-1
< Y flx)+1X],<o0; so XeL(f).
1

Corollary. If feC, pe(0, 1) and there exists €>0
such that f(x) < x? for all xe[0,€) then [P< L(f).

Proof. Apply lemma 2 with g(x)=x?.

Lemma 3. If geC, and f is a real-valued function
and there exists € >0 such that f(x)=g(x)+x for all
xe[0,€) then feC and L(f)=L(g).

Proof. The fact that feC is obvious. Now since
f(x) =z g(x) for all xe[0,¢) then L(f)<= L{g) by lemma 2.
Let X =(x,)e L(g) then Xel* so
Zf (Ix,) =Zg(lx, )+ ZIx,| < co.

Lemma 4. Let feC and X =(x,)e L(f); if (a,) is a
sequence of real numbers such that g,—0, then
la,X|;—0.

Proof. We may assume that |q,[<1. Since f is
increasing so f(la,x,|) < f(x,)), but Zf(|x,]) <0, so by
the bounded convergence theorem

Eim > fax,)= 3 :im Nawx,)=0
- g1 n=1 -
because f is continuous at O.
Now lim |gX|,=lim ) f(aX,)
k-0 k

20 p=1

=2 :im Sllax,)=0.
n=1 0
Theorem 1. L(f) with the metric topology is a
topological vector space over R.
Proof. 1t is clear the L(f) is a vector space over R.

Let T:-L(f)xL(f)»L(f) be defined by



T(X, Y)=X+Y and L:L(f)x R—L(f) be defined by
L(X,r)=rX.

We want to show that T and L are continuous. Let
A and B be ﬁxed elements of L(f). Let € >0 be given
and let 6=3e. Now if |[A—X|,<6 and |[B-Y|,<é
then

|[A+B—(X+Y)|,S|A—-X|;+|B-Y|,<20=e.
So T is continuous.

Next, let 4=(a,), r be fixed elements of L(f) and R
respectively. Since |; 4|, —0 by lemma 4, then there
exists N such that [;A4| <% for all n=N. Let
M=[|r]]J+1 where [|r|]] is the greatest integer in |r].
Also let

. e 1

0 =min {1, I N}'

Let X =(x,)e L(f), r*€R such that
| X—Al,<é and |r—r* <.

Since
* X—r A=(r*—r(X—-A)+(*—r) A+r(X—A)
we have
[r* X —rA| S|r* —r)(X — A)| ;+(r* —1)A| + [r(X — A)l

=Zf(r*=rl |x,—a,)+Zf(r* —rlla,))

+Zf(Irllx, —ayl)
Zf(0lx,—a,l)+Zf(0la,l)
*'Zjﬂr”xn_'anu

By our choice of 6 we have

[r* X —rA|,£Zf(x,—a |)+Zf( la, I)
+Zf([Ir1+1) [x,—al)

1
SIX—Alp+ig Al On]+1) 1X -4,

<SiShqr+ne

+5+5=¢€

3°3
L
3 3 3
So L is continuous.

Lemma 5. H< L(f) or all feC.

Proof. H<L(f) is trivial. Choose x;€(0, o) such
that f(x,) <3, choose x,€ (0, c0) such that x, # x; for all
j<k and f(xk)< —, this can be done because f is

continuous at O and f(0)=0. Let X =(x,) then
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Tf(xN<Z %<oo so XeL(f) and X ¢H.

Theorem 2. H g M .

p>0
Proof. By Reference [2], f\o IP is an FK space in
p>

which E is bounded (see Reference [2] for definition).
By theorem 3.2 in Reference [2] there exists fe.C such

that L(f)cﬁ P. So by lemma 5, H & L(f)cM .
p>o

(x)

Theorem 3. If feC is such that lim f— exists
x-0+
and is finite then L(f)=/"
Jx)

Proof. Assume Ilim —>=M an
x>0+ X

Let €>0 be given then there exists §>0 such that if

xe(0, 8) then If(x—x)—M[<e )

d let X=(x,)el.

|f(x)] <(e+ M)x for all xe(0, ).

Now X =(x,)el' so x,—0 hence there exists N such
that |x,|e (0, 0) for all n= N so

fUx) =€+ M)|x,| for all n=N
and this implies that

© N-1
xS+ MY x|+ 3 fllx,l) < oo
So XeL(f).

Finally since L(f) and ! are FK spaces they must have
the same topology, see Reference [4], p. 203.

Theorem 4. Let feC, K< L(f) then K is a compact
subset of L(f) if and only if

(1) K is closed and bounded and

(2) Given €>0, there exists n,=ng(€) such that
Zf(x,)) <e, for all X =(x,)eK, for all n>n, and,

(3) If p,.: L(f)—R is given by
PX)=x, for all X=(x,)e L(f),
then p(K) is compact, for all k= 1.

Proof. Suppose K< L(f) is compact, then (1) is
clear.

Since p, is continuous, then p,(K) is compact. To
prove (2), let e>0 be given, for each a=(aq)eK
consider

U(a, e/2)=%XeL(f):|X—a|f <§}
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so K=\ U(a,e/2), but K is compact, so there exists

ae K
a'=(a}), a®=(ad),..., aV=(a}), such that
N
KcU U(af, %), so if a=(a)eK
j=1

then there exists a', 1 <i< N such that
. e : €
la—dl;= 3, fla,—a;) <3
n=1

©

Since ) f(lak])< oo, for all i, there exists n, such that

n=1

®© ) €
Y f (Iai.l)<-2—.
So for ae U(a‘, %) we will have

S f(a) <Y fllar—a)+ Y f(ai)

n;

<€+6—€
272

Now taking n,= max n;, then
1<isN

Y. f(la))<e, for all aeK, for all n>n,.
n+1

Conversely. Suppose (1), (2) and (3) hold, since K is
closed and L(f) is complete, [2], it suffices to show
that K is totally bounded [3].

Let €>0 be given, then there exist n,=ny(€) such
that

Y. fllal) <€, for all ae K, for all n>n,,.
n+1

Since f is continuous at 0 and f(0)=0 we can choose
€*>0 such that f(e*)gzi. Now since pi(K) is a
Mo

compact subset of R for all k=1, so it is totally
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bounded. So for each k=1, 2, ..., n, there exists
al, a, ..., a*ep,(K) such that if
a,epi(K) then |a, —al| <e*

for some i, 1<i<n,.

Let Ko={b: b=(as, a3, ..., a;"[;», 0,0,...,0,...)

1<i, <ny, 10, En,,..., 150, <0,

If a=(a)e K, then a,ep(K), for all k>1.

Let be K, be given by

b=(dy,a%,..., am 0,0,...,0,...) where

la, —a|<e*, k=1,2,..., n,.

Now

la=bl, =3 fla—ai)+ Y flal)

ng+1

<n, f(e*)+§§e

So
K gbLJ U(b, €)

ekq

but K, is finite, so K is totally bounded.
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