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ABSTRACT 

Successive higher order equations of plate bending are presented, based on the 
Reissner formulation of the plate problem. The effect of transverse shear and 
transverse normal stress is included, and the equations are formulated in terms of 
the transverse displacement as the single unknown variable. A certain pattern is 
observed in the resulting equations of successive higher order theories, enabling one 
to write down equations of each succeeding theory by inspection. The equations 
lend themselves readily to a Navier type solution, enabling one to solve simply 
supported plate problems with different loading conditions. 
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1. INTRODUCTION 

Reissner [1, 2] formulated a theory of plate bending 
in terms of two variables, the transverse displacement 
wand a stress function t/J, with the governing equa­
tions of the system being of the sixth order as opposed 
to the fourth-order system of the classical plate bend­
ing problem. Reissner's formulation included the effect 
of the transverse shear and the transverse normal 
str~ss on the deformation of the plate. 

Speare and Kemp [3] presented a simplified 
Reissner theory, describing the governing equations 
solely in terms of the transverse displacement w, citing 
such a need in order to make Reissner's formulation 
more attractive both from a computational and a 
physical point of view. 

In this paper, an alternative approach to formulat­
ing the Reissner problem in terms of w alone is 
presented and the Speare-Kemp equations are shown 
to be a special case of the more general formulation. 

NOTATION 

Eh 3 

D 
12(1 ­ v2) 

flexural rigidity of plate 

E Young's modulus 
h plate thickness 
Mx, My bending moments per unit length 
Mxy twisting moment per unit length 
q distributed load per unit area 
Qx, Qy shear forces per unit length 
w transverse displacement 
x,y,z orthogonal coordinates 

2a2 a )n 
( ax2+ ay2 

v Poisson's ratio 

a x' a y' normal components of stressaz 

'T xy, 'T xz, 'Tyz shear components of stress 

2. THEORETICAL PRELIMINARIES 

Reissner [1, 2] formulated the equations describing 
plate behavior, inclusive of transverse shear and trans­
verse normal stress effects, by initially assuming a 
linear variation of bending stresses over the thickness 

of the plate: 

(1) 

(2) 

Mxy Z 
(3)'Txy= - h2j6 hj2 

and on the subsequent use of Equations (1) through 
(3) in the differential equations of equilibrium obtained 
for the remaining stress components: 

(4)ru =22;3 [1-(h~JJ 
(5)rY"=22/J[I-(h~JJ 

-3q [ Z l( Z)3 2J (6)aZ =-4- - hj2 +3 hj2 +3 

Invoking the use of a variational theorem, and making 
use of Equations (1) through (6), Reissner arrived at 
the following relationships between the intrinsic 
variables: 

M = D(a¢y va¢x) 6v(1 + v) 
y ay + ax + 5Eh 

D 
q (11 ) 

Mxy= 
D(1- v)(a¢x a¢y).

2 ay + ax ' (12) 

where: 

,J,. __ aw 12(1 + v) 
(13)If-'x- ax + 5Eh Qx 

,J,. = _ aw 12(1 + v) Q (14)If-'y ay + 5Eh y. 
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Reissner then proceeded to demonstrate that the sys­
tem as described by Equations (7) through (14) is of 
sixth order, as opposed to the fourth-order system of 
classical plate theory. The solution to the above sys­
tem was formulated by Reissner in terms of two 
variables-the transverse displacement wand a stress 
function 1/1. 

As remarked by Speare and Kemp [3J, the two­
variable formulation leads to considerable mathema­
tical complexity, thereby restricting the use of Reissner's 
theory. 

In the next section, Reissner's theory is approxi­
mated in terms of a single variable wand the Speare 
and Kemp formulation of the Reissner problem shown 
to be a special case of the general solution. 

3. APPROXIMATE SOLUTION TO 
REISSNER'S EQUATIONS 

Consider the following classical thin plate equations 
equivalent to the Reissner set as given by (7) through 
(14): 

q=Db.2w (15)

3we a 
3w) (16)Qx= -D 8x3 +8x8 2 


3w 
y


3

Q =-De-+--a w) (17)
y 8y3 8x28y 

e2w VJ
2w) (18)Mx= -D 8x2 + 8y2 


2
 
(J W VJ

2w) (19)M y= -D 8y2 + 8x2 

82w 
(20)M xy =D(l-v) 8x8y' 

Inasmuch as it is the presence of the terms .1Qx and 
.1Qy in Equations (8) and (9) that serve to increase the 
order of Reissner's system, it is postulated that one 
may use Equations (15) through (17) to approximate 
b.Qx, b.Qy, and q (together with its derivatives) as 
functions of w. 

Operating on Equation (15) by .1, one obtains 

.1q=D.13w (21) 

Similarly, operating on Equations (16) and (17) by .1, 
and after simplification yields: 

8S
W 28sw 8sw ) 

(22).1Qx= -D( 8xs + 8x38y2 + 8x8y4 

8sw 28sw 8Sw) 
(23)b.Qy = - D 8x48y + 8x28l + 8ys . 

On substituting Equations (21) through (23) in (7) 
through (9), one obtains: 

( 

(24) 

(25) 

(26) 

The moment expressions may be obtained by using 
Equations (15) through (17) to approximate q, Qx and 
Qy in (10) through (12). This yields on simplification: 

2 28 w V82W) h D 
Mx= -D( 8x2 + 8y2 10(1-v) 

84W 284w V84w] 
[ (2 - v) 8x4 + 8x28y2 + 8y4 (27) 

2 28 w V82W) h D 
M y= -D( 8y2 + 8x2 -10(1-v) 

It is interesting to note that Equations (24) through 
(29) have been derived by Speare and Kemp [3J in an 

alternative fashion. Equations (24) through (29) repre­

sent a sixth-order approximation (in terms of W alone) 

to the Reissner set (7) through (12). 


To obtain the next higher order theory, one uses 

Equations (24) through (26) to approximate .1q, 8qj8x, 

8qj8y, .1Qx and .1Qy in Equations (7) through (9). This 

yields new relationships between q, Qx and Qy on one 

hand and the transverse displacement, w, on the other. 

The moment-displacement equations are obtained by 

substitution of Equations (24) through (26) in (10) 

through (12). The resulting set of equations may be 

expressed as: 


2
2 (2-v) 2 3 [(2-V)h ]2 4 


.1 w+ 10(1 _ v) h .1 W + 10(1 _ v) b. W = qjD (30) 
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(34) 

(35) 

The set of Equations (30) through (35) represents an eighth-order approximation to the 
original system of equations as given by (7) through (14). This approximation contains terms of the order of h4. 

Operating in a similar fashion, one 0 btains the hO approximation to Reissner's set and given by: 

~2W+ (2-v) h2~3W+[(2-V)h2J2 ~4W +[(2-V)h
2J3 ~5w=i (36)

10(1- v) 10(1- v) 10(1- v) D 

(37) 

(38) 

(39) 
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The set of Equations (36) through (41) represent a 
tenth-order approximation to the original Reissner 
system as given by Equations (7) through (14). 

Higher-order plate theories may be derived in a 
similar fashion. 

There is a very interesting pattern that emerges in 
each of the equations relating Qx, Qy, M x, My, and Mxy 
to the transverse displacement w as the order of 
accuracy of the approximation is increased. 

Pursuing this in detail for one of the force­
displacement relations, say Qx versus w, a general form 
of Equation (37) may be expressed as: 

(42) 

The coefficients al ,","" an+2 ,n in Equation (42) may 
be readily generated for each value of n as in Table 1. 

Table 1. Coefficients for Various Cases of Equation (42) 

Case Coefficients 

n=l a l ,l=l; a 2,1=2, a3 ,1=1 

n=2 a l ,2 = al ,l ; a 2,2 = al ,l + a 2,1; a3 ,2 = a 2,l +a3 ,1; 

a4,2 =a3,1 

n=3 a l ,3 =al ,2; a2,3 =a l ,2 +a2 ,2; a3 ,3 =a2 ,2 +a3,2; 

a4,3 = a3,2 + a4,2; a s ,3 = a4,2 

The Table 1 may be readily extended to include 
higher values of n. 

The same type of relationships exist for Equations 
(38) through (41) which may be obvious now by 
inspection. 

(40) 

(41) 

The pattern for the governing differential equation is 
readily recognized to be 

Kn-2 ,1nw +Kn- 3 ,1n-l w +Kn - 4 ,1n-2w + . . . =qjD 

(43). 

(2 - v)h2 

where K and n=3, 4, 5, and 
10(1- v) 

4. ALTERNATIVE DERIVATION 

Some insight into the nature of the approximation 
technique described in Section 3 may be gained by 
noting that an exact form for ,1q may be obtained by 
operating on Equation (7) by ,1 and rearranging to 
yield 

(44) 

Inasmuch as ,1q is not explicitly a function of w in 
Equation (44), one cannot make use of it directly in 
order to obtain the Reissner plate theory in terms of w 
alone. 

An initial value for ,1q in terms of w alone may be 
obtained by assuming in Equation (44) that 

,12q=0. (45) 

On substituting Equation (45) in Equation (44), one 
obtains 

(46) 

which when substituted into Equation (7) yields the 
governing differential equation for the sixth-order 
system 

(47) 

To obtain a better approximation, one now uses 
Equation (46) to generate 

(48) 

which when substituted in Equation (44) yields a new 
,1q in terms of w alone as 

The Arabian Journal for Science and Engineering, Volume 5, Number 2. 79 



M. H. Baluch and G. Z. Voyiadjis 

I1.q = DI1. 3 W + KDI1.4 w. (49) 

The substitution of Equation (49) into Equation (7) 
yields the eighth-order differential equation 

DI1.2w=q-K(Dt1,,3W +KDI1.4 w). (50) 

The tenth-order equation may now be obtained by 
using Equation (49) to obtain a new t1,,2q approxi­
mation. Thus each successive higher order approxi­
mation may be viewed as corresponding to a more 
refined value for I1.q. 

It must be emphasized that the approximate govern­
ing differential equations do not violate equilibrium. 
This may be shown by using equations for transverse 
shears, say (25) and (26), in the transverse force 
equilibrium equation 

aQx aQ)' 
ax + ay +q=O 

to obtain the sixth-order equation (24) or (47). Thus, 
approximations for I1.q on one hand and the transverse 
shears on the other, must constitute a consistent set. 

5. APPLICATION TO PLATE PROBLEMS 

Assuming a simply supported rectangular plate of 
dimensions a x b subjected to a uniformly distributed 
load q = qo, and following a Navier [4J type approach, 
one expands qo in a double Fourier series as 

CfJ rf) • mnx . nny
qo=I Iamnsm - - sm- (51) 

m=ln=l a b 
where 

16qo 
amn=-z­ (52) 

n mn 

Regardless of the order of theory to be used, a solution 
for w may be assumed in the form 

~ x. . mnx . nny 
w = L.. I w sm - - sm - (53) 

m= 1 n= 1 mn a b 

The assumed form of Equation (53) satisfies the fol­
lowing boundary conditions: 

for x = 0 and x = a; (54) 

for y =0 and y =b. (55) 

Wmn in Equation (53) may be determined by substitut­
ing Equations (53) and (51) in any of the governing 
differential equations. Assuming a square plate a = b, 
and taking only one term of the series expansion, one 
obtains for the maximum detlection (x = a12, y = b12) 
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(56)Wmax 

where the tenth-order system has been used in evaluat­
ing Wmax ' Using v=O and hla=0.3, the maximum 
transverse deflection from the tenth-order system 
becomes 

(57) 

where the term in parenthesis represents the Navier 
one-term solution for Wmax in thin-plate theory. This 
value is very close to the one reported by Salerno and 
Goldberg [5J, using Reissner's formulation in terms of 
two variables. 

It is of interest to note that the maximum transverse 
displacment using the sixth-order system is given by 

(58) 

which is very close to the value reported by Speare 
and Kemp [3J using their finite difference approach to 
the sixth-order problem. Speare and Kemp [3J attri­
buted the over estimation of w to the numerical analysis 
technique rather than from simplification of the Reissner 
system to the sixth-order system in w. However, results 
derived above clearly indicate that theories of order 
higher than six in w alone are needed to accurately 
describe the Reissner equations. 

CONCLUSIONS 

The higher order plate theories in ware found to 
lend themselves readily to solutions of the Navier type, 
enabling one to solve simply supported plate problems 
in which the effects of transverse shear and transverse 
normal stress are included. 
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