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ABSTRACT 

The issue of stablity of solutions to nonlinear wave equations has been addressed by 
many authors. Thus, many results concerning energy decay have been established. Here 
in this paper, we consider the following nonlinearly damped wave equation: 

utt - ilu + a(1 + I ut I m-2)ut + bu I u I p-2 = 0, 

a, b > 0, in a bounded domain, and show, for arbitrary initial data, that the energy of the 
solution decays exponentially if 2 ~ m ~ p. 
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DECAY OF THE SOLUTION ENERGY FOR A NONLINEARLY DAMPED 
WAVE EQUATION 

1 INTRODUCTION 

In [1] Nakao considered the following initial boundary value problem: 

Utt Llu + p(Ut) + f(u) 0, x E n, t>O 

U(x, t) = 0, x E an, t :2:: 0 (1.1) 

U(x, 0) = uo(x), Ut(x,O) = UI (x), x E n, 

where p(v) = Ivl t1v, /3 > -1, f(u) bululo ,a, b > 0, and n is a a bounded domain of R n (n :2:: 1), with a 
smooth boundary an. He showed that (1.1) has a unique global weak solution if 0 ~ a :::; 2j(n 2), n :2:: 3 and 
a global unique strong solution if a > 2j(n - 2), n :2:: 3; (of course if n = 1 or 2 then there is no restriction on 
a). In addition to global existence the issue of the decay rate was addressed. In both cases, it has been shown 
that the energy of the solution decays algebraically if /3 > 0 and it decays exponentially if /3 = O. This improves 
an earlier result by the same author [2], where he studied the problem in an abstract setting and established a 
theorem concerning the decay of the solution energy only for the case a ~ 2j(n - 2), n :2:: 3. Later on, in a joint 
work with Ono [3], this result has been extended to the Cauchy problem: 

Utt - Llu + ,X2(x)u + p(ut) + f(u) 0, x ERn, t> 0 (1.2) 

u(x, 0) = uo(x), Ut(x,O) = UI(X), x ERn, 

where p(Ut) behaves like IUtlt1ut and f(u) behaves like -bulula, In this case the authors required that the initial 
data be small enough in HI x £2 norm and of compact support. 

Pucci and Serrin [4] discussed the stability of the following problem: 

Utt - Llu + Q(x, t, u, Ut) + f(x, u) = 0, x E n, t> 0 

u(x, t) 0, x E an , t :2:: 0 (1.3) 

u(x, 0) = uo(x), Ut(x, 0) = UI(X), 

and proved that the energy of the solution is a Liaponov function. Although they did not discuss the issue 
of the decay rate, they did show that in general the energy goes to zero as t approaches infinity. They also 
considered an important special case of (1.3), which occurs when Q(x, t, u, Ut) = a(t)taut and f(x, u) = V(x)u, 
and showed that the behavior of the solutions depends crucially on the parameter a. If lal :::; 1 then the rest field 
is asymptotically stable. On the other hand, when a < -lor a > 1 there are solutions that do not approach 
zero or approach nonzero functions ¢(x) as t -+ 00. 

Concerning nonexistence in (1.1), it is well known that, if p(Ut) == 0 then the source term f(u) = -bululp-2 
causes finite time blow up of solutions with negative initial energy (see [5-8]). The interaction between the 
damping and the source terms has been first considered by Levine [7, 8] in the linear damping case (p( Ut) = aUt). 
He showed that solutions with negative initial energy blow up in finite time. Recently Georgiev and Todorova 
[9] extended Levine's result to the nonlinear damping case, In their work, the authors introduced a different 
method and determined suitable relations between a and /3, for which there is global existence or alternatively 
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finite time blow up. Precisely, they showed that solutions with negative energy continue to exist globally 'in 
time' if f3 ~ Q and blow up in finite time if f3 < Q and the initial energy is sufficiently negative. 

This result has been lately generalized to an abstract setting and to unbounded domains by Levine and Serrin 
[10] and Levine, Park, and Serrin [11] (See also [12]). In these papers, the authors showed that no solution with 
negative energy can be extended on [0, 00), if f3 < Q. This generalization allowed them also to apply their 
result to quasilinear situations. Vitillaro [13] combined the arguments in [9] and [10] to extend these results to 
situations where the damping is nonlinear and the solution has positive initial energy. It is also worth mentioning 
that the blow up result of [9] has been improved by Messaoudi [14], where the condition of sufficiently negative 
has been weakened to negative only. 

In this paper we are concerned with the following initial boundary value problem: 

x E n, t>o 

U(x, t) = 0, x E an , t ~ ° (1.4) 

U(x,O) = uo(x), Ut(x,O) = Ul(X), x E n, 

where a, b > 0, m, p > 2, and n is a a bounded domain of lRn (n ~ 1), with a smooth boundary an. We first 
state an existence theorem, which is known as a standard one (see [15-19]). 

Theorem 1. Suppose that m > 2, p> 2, such that 

n-1 
p~2n_2' n~3 

and let (uo, Ul) E HJ (n) x L2 (n) be given. Then the problem {l.4} has a unique global solution 

U E C ([0, 00); HJ(n)), Ut E C ([0, 00); L2(n)) n Lm (n x (0, 00)). 

(1.5) 

(1.6) 

Remark 1.1. This theorem can be also established by repeating the argument of [9]. However we do not need 
the condition p ~ m , imposed by the authors, due to the difference in the two problems. 

2 MAIN RESULT 

In this section we show that the solution energy, defined by: 

E(t) (2.1) 

decays exponentially if 2 ~ m ~ p. For this purpose we prepare some material we need. Precisely we know, from 
Poincare's inequality and Sobolev embedding theorems, that there exists a constant f3 depending on n only such 
that: 

(2.2) 

Theorem 2. Suppose that 2 ~ m ~ p, with p satisfying {l.S}. Then there exist positive constants K and Q 

such that any solution of {1.4} in the class {1.6} satisfies 

(2.3) 
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Proof. We multiply Equation (1.4) by Ut and integrate over n to get: 

E'(t) = -a [In lu.(x, t)12dx + In lu.(x, t)lmdx] (2.4) 

for any regular solution of (1.4). This identity remains valid for solutions (1.6) by a simple density argument. 

Inspired by the idea of [20] and [21], we define: 

H(t) := E(t) + e In UUt(x, t)dx, 

for e to be specified later. By using the Schwarz inequality and (2.2), we have: 

IH(t) - E(t)1 ::; e(l + (32)E(t). 

We differentiate (2.5) and use equation (1.4) and (2.1) to obtain: 

By using: 

-ae In u.u(x, t)dx - ae In lu.lm-2u•u(x, t)dx - eb In lu(x, t)IPdx 

= -a In lu,(x, t)12dx - a In lu.(x, t)lmdx + ~e In u~(x, t)dx - ~e In IVu(x, t)1 2dx 

-ae r Utu(x, t)dx ae r IUtlm-2Utu(x, t)dx - b(l - !)e r Iu(x, t)IPdx eE(t). in in p in 

~ -a In lu,(x, t)12dx - a In lu.(x, t)lmdx + ~e In u~(x, t)dx 

-~e In IVu(x, t)1 2dx ae In u,u(x, t)dx - ae In lu.lm-2u•u(x, t)dx - eE(t). 

inequality (2.7) takes then the form 

-~e In IVu(x, t)12dx - ae In IUtlm-2Utu(x, t)dx - eE(t). 

We then exploit Young's inequality: 

XY ::; 6X r + c(6)YS, X, Y, ~ 0, 6, c(6) > 0, l/r + 1/8= 1, 

with r = m and 8 = m/(m - 1) to get: 

I In IUtlm-2Utu(x, t)dxl ::; 61 lull::! + c(6)IIU t I I::!, \:16> O. 
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Therefor~ .(2.8) becomes: 

H'(t) :::; -a In IUt(x,t)12dx - a In IUt(x,t)lmdx + (~+ a2(3)c In u~(x,t)dx 
-~c In IVu(x, t)1 2dx + ac [81Iull: + c(8)llutll:] - cE(t), \:18 > 0, 

which yields: 
1 

H'(t) $ -cE(t) - 4cllVull~ + ac8l1ull: 

- [a - (~ + a2(3)c] In u~(x, t)dx a [1 - cc(.5)lllutll:::, 

Up to this point, we distinguish two cases: 

(1) Iluli m $ 1. In this case we have Ilull: $ lIull~; hence: 

1 1 
411Vull~ - a8l1ull: ~ 4"Vul~ - a811ull~ ~ 0, 

if 8 $ 81 = 1/4af32 (f3 is the constant appearing in (2.2)). 

(2) lIulim ~ 1. In this case we have Ilull: $ Ilullfn $ f3Pllull~. This implies that: 

\:18> O. 

~ E (t) - aollull::: ~ :p lIulI~ - aol lui I::: ~ C~ -aO{3P ) II ull~ ~ 0, 

Salim A. Messaoudi 

(2.9) 

(2.10) 

(2.11) 

if 8 $ 82 b/2apf3P. Therefore by taking 8 ::; min {8b 82 } and combining (2.9)-(2.11), we arrive at: 

H' (t) :::; -~E(t) - a [1 - cc(.5)lllutll::: - [a - (~ + a2(3)c] In u~(x, t)dx. (2.12) 

By selecting c $ min{l/ c(8), a/( ~ + a2 f3)}, estimate (2.12) yields: 

H'(t) $ -~E(t). (2.13) 

We then combine (2.6) and (2.13) to get: 

H'(t) $ _ c (1 + c~l + f32)) H(t). (2.14) 

A simple integration of (2.14) then gives: 

H(t) $ H(O)e- at
, \:It ~ 0, (2.15) 

where a = c (1 + c(l + f32)) /2. Again by combining (2.6), (2.15) and choosing c so small that 1- c(l + f32) > 0, 
we obtain: 

E( ) < 1 H( ) < H(O) at 
t - 1-c(1+f32) t - 1-c(1+f32)e- , \:It ~ O. (2.16) 

Therefore (2.3) is established. 

Remark 3.1 The case m = 2 is a direct result of Nakao [2]. It can also be established by either repeating the 
same argument and using Schwarz' inequality instead of Young's inequality or using the argument in [22] based 
on a lemma by Komornik [23]. 
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