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ABSTRACT 

Alexandroff spaces are the topological spaces in which each element is contained in a 
smallest open set or equivalently the spaces where arbitrary intersections of open sets are 
open. In this paper we introduce and study two weaker concepts of Alexandroff spaces, 
namely generalized Alexandroff and semi-Alexandroff spaces. In TI12-spaces the concepts 
of Alexandroff and g-Alexandroff spaces coincide, while the class of semi-Alexandroff 
spaces is properly placed between the classes ofAlexandroff and P'-spaces. 
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ON SOME WEAKER FORMS OF ALEXANDROFF SPACES 

1. INTRODUCTION 

In digital topology, many problems are directly or indirectly connected with the classes of locally finite and 
Alexandroff spaces. A topological space (X, r) is called locally finite if each element x of X is contained in a 
finite open set and a finite closed set. It is called AlexandrotJ [1] if arbitrary intersections of open sets are open. 
Clearly all finite topological spaces are locally finite and all locally finite topological spaces are Alexandroff. 

The major building block of the digital n-space is the digital line or the so called Khalimsky line [2]-[4]. 
This Alexandroff space is the set of the integers, Z, equipped with the topology IC, generated by 
(}J( = {{2n - 1, 2n, 2n + 1}: n E Z}. The Khalimsky line has higher separation than To, in fact it is T~ [5]. 
Spaces in which non-closed singletons are regular open are called T~ in [5]. " 

" 
In this paper, we consider a weaker form of Alexandroff spaces called generalized Alexandroff, which in 

Ti-spaces, even in Tt-spaces, coincides with A lexan droff. We define a topological space (X, r) to be generalized 
AlexandrotJif arbitrary intersections of open sets are generalized open. A subset A of a topological space (X, r) 
is called generalized open [6] (= g-open) if its interior contains every closed subset of A. It is called generalized 
closed (= g-closed) if its closure is included in every open superset of A [6]. Clearly, complements of g-closed 
sets are g-open. Also in [6], Levine introduced the concept of Tl. -spaces as the spaces where every generalized 

2 

closed (= g-closed) set is closed or equivalently these are the spaces whose non-closed singletons are isolated. 

We also investigate a class of spaces called semi-Alexandroff, which is properly placed between the classes 
of Alexandroff and pI-spaces. Recall that a PI-space [7] is a topological space whose non-empty Go-sets have 
non-empty interiors. As mentioned in [8], it is not difficult to see that a topological space (X, r) is a PI-space 
if and only if arbitrary countable intersections of open sets are semi-open. A semi-open set is a set which lies 
between an open set and its closure. Complements of semi-open sets are called semi-closed. 

2. GENERALIZED ALEXANDROFF SPACES 

Definition 1 A topological space (X, r) is called generalized AlexandrotJ (= g-Alexandroff) if any intersection 
of open sets is g-open. A point x E X is an A-point (= Alexandroff point) if x has a minimal (necessarily open) 
neighborhood. Let us also define a g-neighborhood of x to be any g-open set containing x. 

Remark 2.1 The spaces where every point has a minimal generalized open neighborhood are precisely the 
Alexandroff spaces (since if a space has a minimal g-open neighborhood then this neighborhood has to be open, 
because the interior of each neighborhood is clearly g-open). 

Theorem 2.2 For a topological space (X, r) the following conditions are equivalent: 

(1) X is g-Alexandroff. 

(2) Intersections of g-open sets are g-open. 

(3) Unions of closed sets are g-closed. 

(4) Unions of g-closed sets are g-closed. 
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Proof It is clear that (2) implies (1). Now suppose that (1) holds. Let {Ai: i E I} be a collection of g-open sets 
and let A be its intersection. We have to show that A is g-open. So let F ~ X be closed and F ~ A. Then 
F ~ Ai and so F ~ intAi for each i E I. If B = niElintAi" then B is g-open by (1) and so F ~ intB. Since 
intB ~ intA we are done, i.e. A is g-open. 

The equivalences (1) <=> (3) and (2) <=> (4) are obvious. 0 

Theorem 2.3 (1) The property g-Alexandroff is a topological property. 

(2) Every Alexandroff space is g-Alexandroff. 0 

Proof. (1) Let I: (X, r) --+ (Y, it) be a homeomorphism, let X be g-Alexandroff and let {Vi: i E I} be a collection 
of closed sets in Y. By assumption U =UiEll- 1(Vi) is g-closed in X. Set V =UiEI(Vi). By Theorem 3.6 from 
[6] (I is ,both closed and continuous), V =I(U) is g-closed. Hence Y is g-Alexandroff. 

(2) is obvious, since open sets are g-open. 0 

We have the following lemma which gives us many g-Alexandroff spaces. 

Lemma 2.4 If a topological space X has a point p whose only neighborhood is X itself, then X is g-Alexandroff. 

Proof. First observe that p has to be in every non-empty closed set. Let {Ot: i E I} be a collection of open sets 
and let 0 be its intersection. Let F ~ X be closed with F ~ O. If F =0, then F ~ intO. If F ::p 0, then p E F 
and p E Oi for each i E I. Hence Ot. =X for each i E I and so 0 =X and F ~ intO. 0 

The following example shows that not every g-Alexandroff space is Alexandroff. 

Example 2.5 Let X be the real line with the following topology: the non-trivial open sets are the intervals 
(-t, t), where kEN, N being the set of all positive integers. By Lemma 2.4, it follows that X is g-Alexandroff 
(i.e. the only neighborhood of 2 is X itself). Clearly {O} is an intersection of open sets but not open. Hence X 
is not Alexandroff. 

Theorem 2.6 For a g-Alexandroff space (X, r) the following conditions are valid and equivalent to each other: 

(1) Each point x E X has a minimal g-neighborhood. 

(2) Each closed singleton is an A-point. 

Proof. It is easy to see that in g-Alexandroff spaces condition (1) is valid, since in g-Alexandroff spaces any 
intersection of g-open sets is g-open according to Theorem 2.2. 

Now suppose that (1) holds and let {x} be closed. Let U be the minimal g-neighborhood of x. Since U is 
g-open, then we have x E intU, therefore U is a minimal neighborhood of x, i.e. x is an A-point. Conversely, 
suppose that (2) holds and let x EX. If {x} is not closed, then {x} is a minimal g-neighborhood of x. 
If {x} is closed, then x is an A-point and therefore has a minimal neighborhood, which is necessarily a minimal 
g-neighborhood. 0 
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There are, however, spaces in which each point has a minimal g-neighborhood but which fail to be 
g-Alexandroff as the following example shows. 

Example 2.7 Let X be an infinite set and let {An: n E N} be a partition of X where each An is infinite. For 
each cofinite subset M S; N let OM = UnEMAn. Then {0,x} U {OM: M S; N cofinite} is a topology on X. 
Since An =X \ 0N\{n}' then each An is closed. On the other hand, An =nm~nON\{m}' so each An is also an 
intersection of open sets. If x EX, then {x} is clearly not closed, hence {x} is a minimal g-neighborhood of x. 
However, X is not g-Alexandroff, since each An is closed but not g-open. 

Theorem 2.8 A Tl-space is g-Alexandroff if and only if it is A lexandroff. 0 
:I 

Proof A topological space (X, r) is Tl if and only if the collection of all g-open sets in X coincides with r [6]. 0 
:I 

Thus as a corollary of Theorem 2.8 above, in the notation of Theorem 2.7 and Theorem 2.8 from [9], we 
have that all g-Alexandroff Tl-spaces are locally path-connected, first countable, orthocompact, and that in 

:I 

g-Alexandroff Ti -spaces the concepts of path-connectedness, connectedness, and chain-connectedness coincide. 

Recall that a topological space (X, r) is called submaximal if every dense subset of X is open or equivalently 
if every subset of X is locally closed (= intersection of an open and a closed set). Note that a submaximal space 
is hereditarily irresolvable, where a space is said to be irresolvable if any two dense subsets have non-empty 
intersection. 

Theorem 2.9 (1) [10] A submaximal space is Tl. 
:I 

(2) If a space (X, r) is Tl and g-Alexandroff, then it is sub maximal and Alexandroff. 
:I 

Proof To prove (2), first observe that (X, r) is Alexandroff by Theorem 2.8. Let D S; X be dense. Then 
D =X \ UXiD{X}. Since (X,r) is Tl, then {x} is closed for each x ¢ D and therefore UXiD{X} is g-closed by 

:I 

Theorem 2.2. Thus D is g-open and therefore open, since (X, r) is Tl, i.e. (X, r) is sub maximal. 0 
:I 

Corollary 2.10 A Tl g-Alexandroff space is hereditarily irresolvable. 0:I _ 

Recall that a space (X, r) is called a partition space if every open subset is closed. (X, r) is an Ro-space if 
{x} S; U for each open neighborhood U of x. 

Theorem 2.11 For a space (X, r) the following conditions are equivalent: 

(1) (X, r) is Ro and g-Alexandroff. 

(2) (X, r) is a partition space. 

Proof It is clear that (2) => (1). 

Now suppose that (1) holds and let U S; X be open. Then U =UXEU{x} and therefore U is also g-closed, 
hence closed. Thus (1) => (2). 0 

Since a Tl partition space is discrete, then we have: 

Corollary 2.12 A space (X, r) is Tl and g-Alexandroff if and only if it is discrete. 0 
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Remark 2.13 The Tl condition in the theorem above cannot be reduced to T! as the digital line shows. 
4 

Theorem 2.14 Closed subsets of g-Alexandroff spaces are g-Alexandroff. 

Proof. Let (X, r) be g-Alexandroff and let A f; X be closed. Let {~: i E I} be a collection of open sets in 
(A, riA) and let V be its intersection. For each i E I there is a r-open set Oi with ~ = A n 01.. Now let 
F ~ A be closed in (A, riA) with F ~ V. Then F is also closed in (X, r) and F ~ n{Oi: i E I}, hence 
F ~ int(n{Oi:i E I}). Since Anint(n{Oi:i E I}) is open in (A,rIA) and contained in V, we have F f; intA(V), 
i.e. (A, riA) is g-Alexandroff. 0 

Our next example shows that g-Alexandroff spaces need not be hereditarily g-Alexandroff. 

Example 2.15 Now consider the set X of all reals with the topology generated by the empty set, X and all 
intervals (-11k, 11k) as well as (1- 11k, 1+ 11k). This space clearly satisfies the requirements of Lemma 2.4 
(e.g. the only neighborhood of 2 is X) and therefore is g-Alexandroff. Now consider the subspace Y = [0,1). 
Then {OJ is an intersection of open sets in Y and also closed in Y! Clearly {OJ is not open in Y therefore Y is 
not g-Alexandroff. 

Clearly every Alexandroff space is hereditarily g-Alexandroff. It is easily checked that the space from Exam­
ple 2.5 is hereditarily g-Alexandroff (but not Alexandroff). 

A GO-continuum is a connected GO-compact space (= every cover by g-open sets has a finite subcover [11]). 
Sets that can be represented as the intersection of a g-closed and a g-open set are called in [12] generalized locally 
closed. We refer to a feebly-Tt -space as to a space where the union of any two disjoint g-~pen sets is g-open. 

Theorem 2.16 Every subset of a g-Alexandroff feebly-Tl. GO-continuum (X, r) is generalized locally closed. 
2 

Proof. Let A f; X. Set A = Al U A2, with Al n A2 = 0 such that every singleton of Al is closed in X and 
every singleton of A2 is g-open in X (note that non-closed singletons must be g-open). Clearly Al is g-closed, 
since X is g-Alexandroff. We need to show that A2 is g-open. Let F be closed (in X) with F f; A2. Since X 
is GO-compact, then F is GO-compact [11, Proposition 8]. Note that F = U:r;EP{X}, where each {x} is g-open. 
By the GO-compactness of F, it follows that F is finite. Since X is feebly-T.l, then F is g-open and moreover 
clopen, since it is also closed. Due to the connectedness of X it follows that F 

2 =0 or F =X. If F =0, then A2 
is trivially g-open. If F =X, then each point of X is g-open, hence X is finite (due to its GO-compactness) and 
also each one of its subsets is g-open (X is feebly-T.l). In particular each set is generalized locally closed. 0 

2 

Recall that a function f: (X, r) ~ (Y,O') is called g-c1osed (resp. g-open) [13] if the image of every closed set 
of X is g-closed (resp. g-open) in Y. 

Theorem 2.17 Let f: (X, r) ~ (Y,O') be a surjective continuous g-closed function. If X is Alexandroff, then Y 
is g-Alexandroff. 

Proof. Let {Bi: i E I} be a collection of closed subsets of Y. Set B = UiEI Bi. Since f is continuous and since 
X is Alexandroff, then A = f-l(B) =UiEI f-l(Bd is closed in X. Since f is onto and g-closed, then B = f(A) 
is g-closed in Y. Thus Y is g-Alexandroff. 0 
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A bijection I: (X, T) -+ (Y,O') is called a g~homeomorphism (= generalized homeomorphism) [14] if 1 is both 
g-continuous and g~open. Note that for a bijective and g~continuous function I: (X, T) -+ (Y,O'), the statements 
of 1 being g-open and being g-closed are equivalent [14]. The kernel of a set A, denot.ed by At. [15], is the 
intersection of all open supersets of A. A subset A of a topological space (X, T) is called a A-set [15] if A =At. 
and a A~set [16] if A = L n F, where L is a A-set and F is closed. A function I: (X, T) -+ (Y,O') is called 
g~continuou8 [11] if 1- 1(V) is g-closed in (X, T) for every closed set V of (Y, 0') and A-continuous [16] if 1- 1(V) 
is A·closed in (X, T) for every closed set V of (Y, 0' ). 

The following lemma is from [16]: 

Lemma 2.18 [16]. A function I: (X, T) -+ (Y,O') is continuous if and only if it is g-continuous and 
A-continuous. 0 

As a corollary of Theorem 2.17, in the notion of the above given lemma, we have the following result: 

Corollary 2.19 If (X, T) is Alexandroff, I: (X, T) -+ (Y,O') is both A-continuous and g-homeomorphism, then 
(Y, 0') is g-Alexandroff. 0 

A function I: (X, T) -+ (Y, 0') is called gc-irresolute [11] if for every g-closed set V of Y its inverse image 
1-1(V) is g~closed in X. Recall that a bijection I: (X, T) -+ (Y,O') is said to be a gc-homeomorphism [14] if 1 is 
gc~irresolute and its inverse 1-1 is also gc-irresolute. 

Theorem 2.20 Let I: (X, T) -+ (Y,O') be gc-homeomorphism. IfX is g-Alexandroff, then Y is also g-Alexandroff, 
i.e. the property g-Alexandroff is gc-topological property. 

Proof. Let {Vi: i E I} be a collection of g-closed subsets of Y and let V = UiEIVi. Since 1 is gc-irresolute and 
since X is g-Alexandroff, then in the notion of Theorem 2.2 U =1- 1(V) =UiEII- 1(Vi) is g-closed in X. Since 
1 is onto and since 1- 1 is gc-irresolute, then V =I(U) is g-closed in Y. Therefore, according to Theorem 2.2 Y 
is g-Alexandroff. 0 

It is well-known that finite union of g-closed sets is g-closed [6]. The following lemma is an improvement of 
that result and it enables us to prove a result on topological sums of g-Alexandroff spaces. 

Lemma 2.21 Let (Ai)iEI be a locally finite family of g-closed sets. Then A = UiEIAi is g-closed as well. 0 

Theorem 2.22 Let (Xi)iEI be a family of topological spaces. For the topological sum X = LiEI Xi the 
following conditions are equivalent: 

(1) X is a g-Alexandroff space. 

(2) Each Xi is a g-Alexandroff space. 

Proof. (1) => (2) follows from Theorem 2.14. 

(2) => (1) Let (Vat)atEA be a collection of closed subsets of X. Set V =UatEA Vat. For each i E I and for each 
Q E A, let V(i,at) =Xi n Vat. Moreover, each V(i,at) is closed in Xi,. Now for each i E I, the set Wi =UatEA V(i,at) 
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is g-closed in Xi, since Xi is g-Alexandroff. By Theorem 2.6 from [6], each Wi is g-closed in X. Note that 
V =UiEI Wi and that (Wi)iEI is a locally finite (in fact discrete) family of sets. By Lemma 2.21, V is g-closed 
in X. Thus X is a g-Alexandroff space. 0 

It is clear that an arbitrary product of g-Alexandroff spaces fails to be g-Alexandroff (take e.g. an infinite 
product of discrete spaces). We have however, not been able to answer the following: 

Question 1. Is the product of two g-Alexandroff spaces necessarily g-Alexandroff? 

3. SEMI-ALEXANDROFF SPACES 

Definition 2 A topological space (X, r) is called semi-AlexandrofJ if any intersection of open sets is semi-open. 

Remark 3.1 An Alexandroff space need not necessarily satisfy the condition "Arbitrary intersections of semi­
open sets are semi-open". Topological spaces satisfying' that condition must be extremally disconnected 
(= ED = open sets have open closures) [17, see Theorem 3] but one easily finds an Alexandroff space that 
fails to be ED, for example the either-or topology [18, Example 17]. 

Theorem 3.2 (1) The property "semi-Alexandroft''' is a topological property. 

(2) Every Alexandroff space is semi-Alexandroff. 

(3) A topological space is semi-Alexandroff if and only if each A-set is semi-open. 0 

We first state a lemma, which allows us to find semi-Alexandroff spaces: 

Lemma 3.3 If a space (X, r) contains a point p such that {p} is open and generic (i.e. it is dense as a subset), 
then (X, r) is semi-Alexandroff. 

Proof. Let {OJ: i E I} be a collection of open sets and let 0 be its intersection. Suppose that 0 is not semi-open, 
i. e. 0 1:. intO. Then there exists x E 0 and an open set V containing x with V n intO 0. Since {p} is open 
and dense, then we have p E V and p E 0, for each i E I, hence also p E intO, a contradiction. Thus 0 is 
semi-open. 0 

We now provide an example showing that not every semi-Alexandroff space is Alexandroff. 

Example 3.4 Let X be the real line with the topology r = {0,X, {OJ} U {G ~ X:O E G and X \ G is finite}. 
Clearly {OJ is open and dense in (X, r) and so (X, r) is semi-Alexandroff by Lemma 3.3. On the other hand, 
the intersection of all open sets X \ {x}, where x is'irrational, is not open. Thus (X, r) is not Alexandroff. 

Example 3.5 With the help of the example above, we have that even closed subsets of semi-Alexandroff spaces 
need not be semi-Alexandroff. Consider the closed subspace X \ {OJ. What we have is an infinite set with the 
cofinite topology. Such spaces are not semi-Alexandroff. 
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Theorem 3.6 For a topological space (X, T) the following conditions are equivalent: 

(1) X is Tl and semi-Alexandroff. 

(2) X is discrete. 

Proof (I):::} (2) For each x E X and each y f:. x, there exists an open set Uy containing x such that y ¢ Uy 
(X is Tl). Since X is semi-Alexandroff and since {x} =ny¢,zUy, then {x} is semi-open and hence open, since a 
singleton is semi-open if and only if it is open. Thus X is discrete. 

(2) :::} (1) is obvious. 0 

Recall that a topological space (X, T) is called open hereditary irresolvable [19] if each open subset of X is 
irresolvable and quasi-maximal [19] if every dense set with non-empty interior has dense interior. A subset A ~ X 
is said to be simply-open [20] if A = U UN, where U is open and N is nowhere dense (a set S is nowhere dense 

if intS =0). In [19], Chattopadhyay and Roy called A a o-set if intA ~ intA. It is easily observed that a set A 
is simply-open if and only if it is a o-set. The following lemma gives us a characterization of simply-open sets, 
which will be used in the proof of a result on semi-Alexandroff spaces. 

Lemma 3.7 [21]. For a subset A of a space X the following conditions are equivalent: 

(1) A is a simply-open set. 

(2) A is the intersection of a semi-open and a semi-closed set. 0 

Lemma 3.8 [19, in Theorem 2.2]. For a topological space X the following conditions are equivalent: 

(1) Every subset of X is simply-open. 

(2) X is open hereditary irresolvable and quasi-maximaL 0 

Theorem 3.9 Let (X,;) be TJ. and semi-Alexandroff. Then X is open hereditary irresolvable and quasi­
:I) 

maximal. 

Proof According to Lemma 3.8 above, we need to show that every subset of X is simply-open. Let A ~ X. Set 
A =Al U A2 (with Al n A2 =0), where each point of Al is closed in X and each point of A2 is open in X (this 
is possible, since X is Tl.)' Since X is semi-Alexandroff, then Al is semi-closed and moreover A2 is (semi-)open. 

:I) 

In the notion of Lemma 3.7 above, each subset of X is the complement of a simply-open set, i. e. each subset of 
X is simply-open. 0 

A bijection I: (X, T) -+ (Y, 0") is called a semihomeomorphism [22] if both I and 1-1 preserve semi-open 
sets, i. e. if I is presemiopen and irresolute. Any property transmitted by semihomeomorphisms is called 
semitopological [22]. Every homeomorphism a semihomeomorphi~m but not conversely. On the other hand, not 
every topological property is semitopologicaL 

Question 2. Is the property semi-Alexandroff semitopological? 

Theorem 3.10 Every semi-Alexandroff space is a P'-space. 0 
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The next example shows that not every PI-space is semi-Alexandroff. 

Example 3.11 Let X be the real line where the non-trivial open sets are all sets containing the zero point and 
having countable complements. Clearly this is a P-space and hence a P'-space. The intersection of all open sets 
of the form X \ {x}, for x i= 0, is not semi-open. This shows that X is not semi-Alexandroff. 

Recall that a topological space (X, r) is called nodec [23] if all nowhere dense sets are closed. 

Theorem 3.12 For an ED, nodec space the following conditions are equivalent: 

(1) X is semi-Alexandroff. 

(2) X is Alexandroff. 

Proof. In extremally disconnected, nodec spaces the collection of all semi-open sets coincides with the original 
topology. 0 

Also, following the proof of Theorem 2.8 in [9] we obtain that every semi-Alexandroff space is semi-orthocompact, 
semi-first countable, and semi-locally connected. 

Recall that a function f: (X, r) -+ (Y,O') is called semi-closed [24] if the image of every closed set of X is 
semi-closed in Y. The proof of the next theorem is very similar to the one of Theorem 2.17 and hence omitted. 

Theorem 3.13 Let f: (X, r) -+ (Y,O') be a surjective continuous semi-closed function. If X is Alexandroff, then 
Y is semi-Alexandroff. 0 

A subset A of a topological space (X, r) is called interior-closed (= ie-set) [25] if intA is closed in A. A 
function f: (X, r) -+ (Y,O') is called ie-continuous [25] if the inverse image under f of each open set of Y is an 
ie-set in X. 

The following decomposition of continuity is due to Ganster and Reilly: 

Lemma 3.14 [25J. A function f: (X, r) -+ (Y, 0') is continuous if and only if it is semi-continuous and ic­
continuous. 0 

As a consequence of Theorem 3.13, due to the Lemma above, we have the following corollary: 

Corollary 3.15 If (X, r) is Alexandroff, f: (X, r) -+ (Y,O') is ie-continuous and a semihomeomorphism, then 
(Y,O') is semi-Alexandroff. 0 

Theorem 3.16 Every PI-space (X, r), whose A-sets are G6 is semi-Alexandroff. 

Proof. Since the A-sets of X are G6 and since X is pI-space, then G6-sets are semi-open. From Theorem 3.2 
(3), since each A-set is open, it follows that the space is semi-Alexandroff. 0 

The proof of the following result is easy and left to the reader. 
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Theorem 3.17 Let X be semi-Alexandroff and let f: X --+ Y be open, continuous and onto. Then Y is semi­
Alexandroff. 0 

Corollary 3.18 Let (Xi,Ti)iEI be a collection of topological spaces and let X = TItEIXi' If X IS semI­
Alexandroff, then each Xi is also semi-Alexandroff. 0 

An arbitrary product of Alexandroff spaces fails to be semi-Alexandroff in general. If we take an infinite 
product of discrete spaces, then the resulting space is TI and not discrete, hence not semi-Alexandroff by 
Theorem 3.6. We do, however, have the following result: 

Theorem 3.19 If X and Yare semi-Alexandroff, then X x Y is semi-Alexandroff. 

Proof. Let {Wi: i E I} be a collection of open sets in X x Y and let W be its intersection. Suppose that 
W is not semi-open. Then there exists (x, y) E Wand open sets U ~ X, V ~ Y with (x, y) E U x V and 
(U x V)nintW =0. For each i E I there exist open sets Oi ~ X, Rt ~ Y such that (x,y) E 0, x Ri ~ Wi. Since 
X and Yare semi-Alexandroff, then there exist non-empty open sets G ~ X and H ~ Y with G ~ Un (niEIOd 
and H ~ V n (niEI Rt). Clearly G x H ~ (U x V) n intW, a contradiction. Thus X x Y is semi-Alexandroff. 0 
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