ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS

H. A. Al-Kharsani

Department of Mathematics
Faculty of Science
Girls' College, Dammam
Saudi Arabia

ليكـن $f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0\right)$ التحليلية علم تُرص الـوحـدة

$$
\text { U=\{z:|z|<1\} والتي تحقق الشُرط }
$$

$$
\left|\frac{\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}-1}{\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}+(1-2 \alpha)}\right|<\beta
$$

$$
\cdot f \in C_{S}(\alpha, \beta) \Leftrightarrow z f^{\prime} \in S_{s}^{*}(\alpha, \beta)
$$

 . $S_{s}^{*}(\alpha, \beta)$ و $C_{S}(\alpha, \beta) \frac{c+I}{z^{c}} \int_{0}^{2} t^{c-1} f(t) d t, c>-1$

ABSTRACT

Let $S_{s}^{*}(\alpha, \beta)$ denote the class of functions $f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0\right)$ which are analytic in the unit disc $U=\{z:|z|<1\}$ and which satisfy the inequality

$$
\left|\frac{\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}-1}{\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}+(1-2 \alpha)}\right|<\beta
$$

for $\alpha(0 \leq \alpha<1), \beta(0<\beta \leq 1)$ and for all $z \in U$. Further $f(z)$ is said to belong to the class $C_{S}(\alpha, \beta)(0 \leq \alpha<1$ and $0<\beta \leq 1)$ if and only if $z f^{\prime}(z) \in S_{S}^{*}(\alpha, \beta)$. The object of the present paper is to obtain distortion theorems, coefficient estimates, closure theorems for functions in the classes $S_{s}^{*}(\alpha, \beta)$ and $C_{S}(\alpha, \beta)$. Properties of the integral operator
$\frac{c+I}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t, c>-1$ are also studied. Finally, we present a result about a fractional integral operator.

ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS

1. INTRODUCTION

Let S_{-}denote the class of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k},\left(a_{k} \geq 0\right) \tag{1}
\end{equation*}
$$

which are analytic and univalent in the unit disc $U=\{z:|z|<1\}$. A function $f(z) \in S_{-}$is said to be in the class $S^{*}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}-1}{\frac{z f^{\prime}(z)}{f(z)}+(1-2 \alpha)}\right|<\beta \tag{2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1), \beta(0<\beta \leq 1)$ and for all $z \in U$. Further, $f(z) \in S_{-}$is said to be in the class $C^{*}(\alpha, \beta)$ if and only if $z f^{\prime}(z) \in S^{*}(\alpha, \beta)$. The classes $S^{*}(\alpha, \beta)$ and $C^{*}(\alpha, \beta)$ were studied by Gupta and Jain [1], Owa [2], and Kumar and Shukla [3]. In [4] Gupta introduced the class of close-to-convex functions of order α and type $\beta, 0 \leq \alpha<1$, defined as follows. A function $f \in S_{-}$is in $K(\alpha, \beta)$, the class of close-to-convex functions of order α and type β, if there exists a function $\phi(z) \in S_{-}$such that

$$
\left|\frac{\frac{z f^{\prime}(z)}{\phi(z)}-1}{\frac{z f^{\prime}(z)}{\phi(z)}+(1-2 \alpha)}\right|<\beta, \quad z \in U
$$

A subclass $B(\alpha, \beta)$ of $K(\alpha, \beta)$ was defined [4] as follows.
A function $f \in S_{-}$is in $B(\alpha, \beta)$, if there exists a function $\phi(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}$ in S_{-}such that
(i) $\quad \sum_{k=2}^{\infty}\left\{(1+\beta) k a_{k}-(1-\beta+2 \alpha \beta) b_{k}\right\} \leq 2 \beta(1-\alpha)$
and
(ii) $k a_{k}-b_{k} \geq 0$ for every k.

In 1959, Sakaguchi [5] defined the class of starlike functions with respect to symmetrical points as follows:
Let f be analytic in U and suppose that for every $r<1 \quad(r \rightarrow 1)$ and every ξ on $|z|=r$, the angular velocity of $f(z)$ about the point $f(-\xi)$ is positive at $z=\xi$ as z traverses the circle $|z|=r$ in the positive direction, that is

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)-f(\xi)}>0, \quad z=\xi, \quad|\xi|=r
$$

H.A.Al-Kharsani

Then f is said to be starlike with respect to symmetrical points.
In [6] Das and Singh defined the class C_{S} of univalent convex functions with respect to symmetrical points as follows:

Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad z \in U$. Then $f \in C_{S}$ if and only if

$$
\operatorname{Re} \frac{\left(z f^{\prime}\right)^{\prime}}{(f(z)-f(z))^{\prime}}>0, \quad \text { for } \quad z \in U
$$

In [7] Das and Singh defined the order of such functions as follows:
A function $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad z \in U$ is said to belong to the class $S_{S}^{*}(\alpha), \quad 0 \leq \alpha \leq \frac{1}{2} \quad$ if and only if, for $z \in U$,

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)-f(-z)}>\alpha
$$

and similarly the class $C_{S}(\alpha)$.
The aim of this paper is to introduce the concept of type for these families of functions.
Definition 1. A function f of the form (1) is in $S_{S}^{*}(\alpha, \beta)$ if and only if the inequality

$$
\left|\frac{\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}-1}{\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}+(1-2 \alpha)}\right|<\beta,
$$

holds for some $\alpha(0 \leq \alpha<1), \beta(0<\beta \leq 1)$ and for all $z \in U$.
Definition 2. A function f of the form (1) is in the class $C_{S}(\alpha, \beta)$ if and only if the inequality

$$
\left|\frac{\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}-1}{\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}+(1-2 \alpha)}\right|<\beta
$$

holds for some $\alpha(0 \leq \alpha<1), \beta(0<\beta \leq 1)$ and for all $z \in U$.
It follows immediately from definitions 1 and 2 that

$$
f(z) \in C_{S}(\alpha, \beta) \text { if and only if } z f^{\prime}(z) \in S_{S}^{*}(\alpha, \beta) .
$$

2. MAIN RESULTS

Theorem 1. A function $f=z-\sum_{k=2}^{\infty} a_{k} z^{k}, \quad a_{k} \geq 0$ is in $S_{S}^{*}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left\{(k-1)(1+\beta) a_{2 k-2}+[k(\beta+1)-(1+\alpha \beta)] a_{2 k-1}\right\} \leq \beta(1-\alpha) \tag{3}
\end{equation*}
$$

The result is sharp for the functions:

$$
\begin{equation*}
f_{\mu}(z)=z-\frac{\mu \beta(1-\alpha)}{(k-1)(1+\beta)} z^{2 k-2}-\frac{(1-\mu) \beta(1-\alpha)}{[k(1+\beta)-(1+\alpha \beta)]} z^{2 k-1} \quad(0 \leq \mu \leq 1, \quad k \geq 2) \tag{4}
\end{equation*}
$$

Proof. Let $|z|=r<1$. Noting that

$$
\left|2 z f^{\prime}(z)-f(z)+f(-z)\right|<4 \sum_{k=2}^{\infty}\left\{(k-1)\left[a_{2 k-2}+a_{2 k-1}\right]\right\} r
$$

and

$$
\begin{aligned}
& \left|2 z f^{\prime}(z)+(1-2 \alpha)(f(z)-f(-z))\right|>4 r \\
& \quad\left\{(1-\alpha)-\sum_{k=2}^{\infty}\left[(k-1) a_{2 k-2}+(k-\alpha) a_{2 k-1}\right]\right\}
\end{aligned}
$$

we see that

$$
\begin{align*}
& \left|2 z f^{\prime}(z)-(f(z)-f(-z))\right|-\beta\left|2 z f^{\prime}(z)+(1-2 \alpha)(f(z)-f(-z))\right| \\
& \quad<4 r\left[\sum_{k=2}^{\infty}\left\{(k-1)(1+\beta) a_{2 k-2}+(k(1+\beta)-(1+\alpha \beta)) a_{2 k-1}\right\}-\beta(1-\alpha)\right] \tag{5}
\end{align*}
$$

The right-hand side of (5) is non-positive by (3), so that $f(z) \in S_{S}^{*}(\alpha, \beta)$ by Definition (1).
For the second part, we assume that $f(z) \in S_{S}^{*}(\alpha, \beta)$, then

$$
\left|\frac{2 z f^{\prime}(z)-(f(z)-f(-z))}{2 z f^{\prime}(z)+(1-2 \alpha)(f(z)-f(-z))}\right|<\beta, \quad z \in U
$$

This gives that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{-4 \sum_{k=2}^{\infty}\left\{(k-1) a_{2 k-2} z^{2 k-2}+(k-1) a_{2 k-1} z^{2 k-1}\right\}}{4 z(1-\alpha)-4 \sum_{k=2}^{\infty}\left[(k-1) a_{2 k-2} z^{2 k-2}+(k-\alpha) a_{2 k-1} z^{2 k-1}\right]}\right\}<\beta \tag{6}
\end{equation*}
$$

Since $|\operatorname{Re} z| \leq|z|$ for all z. Choose values of z on the real axis so that $\left[\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}\right]$ is real. Upon clearing the denominator in (6) and letting $z \rightarrow 1$ through real values, we obtain the inequality

$$
\sum_{k=2}^{\infty}(k-1)\left(a_{2 k-2}+a_{2 k-1}\right) \leq \beta\left[(1-\alpha)-\sum_{k=2}^{\infty}\left\{(k-1) a_{2 k-2}+(k-\alpha) a_{2 k-1}\right\}\right]
$$

This on simplification gives the required coefficient inequality (3).
Corollary 1. If $f \in S_{S}^{*}(\alpha, \beta)$, then $\frac{1}{2}[f(z)-f(-z)] \in S^{*}(\alpha, \beta)$.
Proof. It can be verified by applying

$$
\sum_{k=2}^{\infty}\{(k-1)+\beta(k+1-2 \alpha)\} a_{k} \leq 2 \beta(1-\alpha)
$$

which is a necessary and sufficient condition for a function to be in $S^{*}(\alpha, \beta)$ [8].
Corollary 2. Let the function $f(z)$ defined by (1) be analytic in U. Then $f(z)$ is in $C_{S}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left\{2(k-1)^{2}(1+\beta) a_{2 k-2}+[k(\beta+1)-(1+\alpha \beta)](2 k-1) a_{2 k-1}\right\} \leq \beta(1-\alpha) \tag{7}
\end{equation*}
$$

The result is sharp.
Proof. Since

$$
z f^{\prime}(z)=z-\sum_{k=2}^{\infty} k a_{k} z^{k}
$$

by replacing a_{k} by $k a_{k}$ in Theorem 1, we immediately have Corollary 2.
Corollary 3. $S_{S}^{*}(\alpha, \beta) \subseteq B(\alpha, \beta) \subseteq K(\alpha, \beta)$.
Theorem 2 (Distortion Theorem). If $f \in S_{S}^{*}(\alpha, \beta)$, then for $|z| \leq r<1$

$$
\begin{align*}
& r-\frac{\beta(1-\alpha)}{1+\beta} r^{2} \leq|f(z)| \leq r+\frac{\beta(1-\alpha)}{1+\beta} r^{2} \tag{8}\\
& 1-\frac{2 \beta(1-\alpha)}{1+\beta} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2 \beta(1-\alpha)}{1+\beta} r \tag{9}
\end{align*}
$$

The bounds in (8) and (9) are sharp, since the equalities are attained by the function

$$
\begin{equation*}
f(z)=z-\frac{\beta(1-\alpha)}{1+\beta} z^{2}, \quad(z= \pm r) \tag{10}
\end{equation*}
$$

Proof. In view of Theorem 1, we have

$$
\sum_{k=2}^{\infty} a_{k} \leq \frac{\beta(1-\alpha)}{1+\beta} .
$$

Hence (8) follows from

$$
r-r^{2} \sum_{k=2}^{\infty} a_{k} \leq|f(z)| \leq r+r^{2} \sum_{k=2}^{\infty} a_{k} .
$$

Further, since

$$
\sum_{k=2}^{\infty} k a_{k} \leq \frac{2 \beta(1-\alpha)}{(1+\beta)}
$$

(9) follows from

$$
1-r \sum_{k=2}^{\infty} k a_{k} \leq\left|f^{\prime}(z)\right| \leq 1+r \sum_{k=2}^{\infty} k a_{k} .
$$

Corollary 4. If a function $f(z)$ defined by (1) is in the class $C_{S}(\alpha, \beta)$, then

$$
1-\frac{\beta(1-\alpha)}{1+\beta} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{\beta(1-\alpha)}{1+\beta} r .
$$

The result is sharp.
Corollary 5. Let $f \in S_{S}^{*}(\alpha, \beta)$. Then the disc $|z|<1$ is mapped onto a domain that contains the disc

$$
|\omega|<\frac{1+\alpha \beta}{1+\beta} .
$$

Let the function $f_{j}(z)$ be defined, for $j=1,2, \ldots, m$, by

$$
\begin{equation*}
f_{j}(z)=z-\sum_{k=2}^{\infty} a_{k, j} z^{k}, \quad\left(a_{k, j} \geq 0\right) \tag{11}
\end{equation*}
$$

for $z \in U$.
We shall prove the following results for the closure of functions in the classes $S_{S}^{*}(\alpha, \beta)$ and $C_{S}(\alpha, \beta)$.
Theorem 3. Let the functions $f_{j}(z)(j=1,2, \ldots, m)$ defined by (11) be in the class $S_{S}^{*}(\alpha, \beta)$. Then the functions

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}, \quad\left(b_{k}=\frac{1}{m} \sum_{j=1}^{m} a_{k, j}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
g(z)=\sum_{j=1}^{m} d_{j} f_{j}(z),\left(d_{j} \geq 0, \sum_{j=1}^{m} d_{j}=1\right) \tag{13}
\end{equation*}
$$

also belong to the class $S_{S}^{*}(\alpha, \beta)$.
Proof. Since $f_{j}(z) \in S_{S}^{*}(\alpha, \beta)$, it follows from Theorem 1 that

$$
\sum_{k=2}^{\infty}\left\{(1+\beta)(k-1) a_{2 k-2, j}+[k(1+\beta)-(1+\alpha \beta)] a_{2 k-1, j}\right\} \leq \beta(1-\alpha), \quad j=1,2, \ldots, m
$$

Therefore

$$
\begin{aligned}
& \sum_{k=2}^{\infty}\left\{(1+\beta)(k-1) b_{2 k-2}+[k(1+\beta)-(1+\alpha \beta)] b_{2 k-1}\right\} \\
&= \sum_{k=2}^{\infty}\left\{(1+\beta)(k-1)\left[\frac{1}{m} \sum_{j=1}^{m} a_{2 k-2, j}\right]+[k(1+\beta)-(1+\alpha \beta)] \times\right. \\
& {\left.\left[\frac{1}{m} \sum_{j=1}^{m} a_{2 k-1, j}\right]\right\} \leq \beta(1-\alpha) }
\end{aligned}
$$

hence by Theorem $1, h(z) \in S_{S}^{*}(\alpha, \beta)$.
Also

$$
\begin{aligned}
& \sum_{k=2}^{\infty}\left\{(1+\beta)(k-1)\left[\sum_{j=1}^{m} d_{j} a_{2 k-2, j}\right]+[k(1+\beta)-(1+\alpha \beta)] \times\right. \\
& {\left.\left[\sum_{j=1}^{m} d_{j} a_{2 k-1, j}\right]\right\}=\sum_{j=1}^{m} d_{j}\left[\sum _ { k = 2 } ^ { \infty } \left\{(1+\beta)(k-1) a_{2 k-2, j}\right.\right.} \\
&\left.\left.+(k(1+\beta)-(1+\alpha \beta)) a_{2 k-1, j}\right\}\right] \\
& \leq {\left[\sum_{j=1}^{m} d_{j}\right] \beta(1-\alpha)=\beta(1-\alpha) }
\end{aligned}
$$

which implies that $g(z) \in S_{S}^{*}(\alpha, \beta)$. Thus we have the theorem.

By using Corollary 2, we have

Theorem 4. Let the functions $f_{j}(z)$ defined by (11) be in the class $C_{S}(\alpha, \beta)$ for every $j=1,2, \ldots, m$. Then the functions $h(z)$ and $g(z)$ defined by (12) and (13) also belong to the same class $C_{s}(\alpha, \beta)$.

Theorem 5. Let the function $f_{1}(z)$ defined by (11) be in the class $S_{S}^{*}(\alpha, \beta)$ and the function $f_{2}(z)$ defined by (11) be in the class $C_{S}(\alpha, \beta)$. Then the function $k(z)$ defined by

$$
\begin{equation*}
k(z)=z-\frac{2}{3} \sum_{k=2}^{\infty}\left(a_{k, 1}+a_{k, 2}\right) z^{k} \tag{14}
\end{equation*}
$$

is in $S_{S}^{*}(\alpha, \beta)$.
Proof. Since $f_{1}(z) \in S_{S}^{*}(\alpha, \beta)$ and $f_{2}(z) \in C_{S}(\alpha, \beta)$, by using Theorem 1 and Corollary 2, we get, respectively,

$$
\sum_{k=2}^{\infty}\left\{(1+\beta)(k-1) a_{2 k-2,1}+[k(1+\beta)-(1+\alpha \beta)] a_{2 k-1,1}\right\} \leq \beta(1-\alpha)
$$

and

$$
\sum_{k=2}^{\infty}\left\{(k-1)(1+\beta) a_{2 k-2,2}+[k(1+\beta)-(1+\alpha \beta)] a_{2 k-1,2}\right\} \leq \frac{1}{2} \beta(1-\alpha) .
$$

Therefore, we have

$$
\begin{gathered}
\frac{2}{3} \sum\left\{(k-1)(1+\beta)\left(a_{2 k-2,1}+a_{2 k-2,2}\right)+[k(1+\beta)-(1+\alpha \beta)] \times\right. \\
\left.\left(a_{2 k-1,1}+a_{2 k-1,2}\right)\right\} \leq \beta(1-\alpha)
\end{gathered}
$$

which implies that $k(z) \in S_{S}^{*}(\alpha, \beta)$, and proof of Theorem 5 is thus complete.

3. INTEGRAL OPERATORS

Theorem 6. Let the function $f(z)$ defined by (1) be in the class $S_{S}^{*}(\alpha, \beta)$ and let c be a real number such that $c>-1$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{15}
\end{equation*}
$$

also belongs to the class $S_{S}^{*}(\alpha, \beta)$.
Proof. From the representation of $F(z)$, it follows that

$$
\begin{equation*}
F(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k}=\left(\frac{c+1}{c+k}\right) a_{k} . \tag{17}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \sum_{k=2}^{\infty}\left\{(k-1)(1+\beta) b_{2 k-2}+[k(1+\beta)-(1+\alpha \beta)] b_{2 k-1}\right\} \\
&=\sum_{k=2}^{\infty}\left\{(k-1)(1+\beta)\left(\frac{c+1}{c+k}\right) a_{2 k-2}+[k(1+\beta)-(1+\alpha \beta)]\right. \\
&\left.\left(\frac{c+1}{c+k}\right) a_{2 k-1}\right\} \leq \sum_{k=2}^{\infty}\left\{(k-1)(1+\beta) a_{2 k-2}\right. \\
&\left.+[k(1+\beta)-(1+\alpha \beta)] a_{2 k-1}\right\} \leq \beta(1-\alpha) . \tag{18}
\end{align*}
$$

Since $f(z) \in S_{S}^{*}(\alpha, \beta)$. Hence by Theorem $1, F(z) \in S_{S}^{*}(\alpha, \beta)$.
Theorem 7. Let c be a real number such that $c>-1$. If $F(z) \in S_{S}^{*}(\alpha, \beta)$, then the function $f(z)$ defined by (15) is univalent in $|z|<R^{*}$, where

$$
\begin{align*}
& R^{*}=\min \left(r_{1}, r_{2}\right) \\
& r_{1}=\inf _{k}\left[\frac{(1+\beta)(c+1)}{2 \beta(1-\alpha)(c+2 k-2)}\right]^{\frac{2}{2 k-3}}, \quad(k \geq 2) \\
& r_{2}=\inf _{k}\left[\frac{\{k(1+\beta)-(1+\alpha \beta)\}(c+1)}{\beta(1-\alpha)(c+2 k-1)(2 k-1)}\right]^{\frac{1}{2 k-2}} \tag{19}
\end{align*}
$$

The result is sharp.
Proof. Let $F(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, \quad\left(a_{k} \geq 0\right)$. It follows from (15) that

$$
\begin{align*}
f(z)= & \frac{z^{1-c}\left[z^{c} F(z)\right]^{\prime}}{(c+1)}(c>-1) \\
= & z-\sum_{k=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k} \\
= & z-\sum_{k=2}^{\infty} \frac{c+2 k-1}{c+1} a_{k-1} z^{2 k-1} \\
& -\sum_{k=2}^{\infty} \frac{c+2 k-2}{c+1} a_{2 k-2} z^{2 k-2} . \tag{20}
\end{align*}
$$

In order to obtain the required result it suffices to show that $\left|f^{\prime}(z)-1\right|<1$ in $|z|<R^{*}$.
Now $\left|f^{\prime}(z)-1\right|<1$ if

$$
\begin{gather*}
\sum_{k=2}^{\infty} \left\lvert\, \frac{c+2 k-1}{c+1}(2 k-1) a_{2 k-1} z^{2 k-2}+\frac{c+2 k-2}{c+1}(2 k-2) \times\right. \\
a_{k-2} z^{2 k-3} \mid<1 . \tag{21}
\end{gather*}
$$

According to Theorem 1, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left\{\frac{(k-1)(1+\beta) a_{2 k-2}+[k(1+\beta)-(1+\alpha \beta)] a_{2 k-1}}{\beta(1-\alpha)}\right\} \leq 1 \tag{22}
\end{equation*}
$$

Hence (21) will be true if

$$
\begin{align*}
& \left(\frac{c+2 k-1}{c+1}\right)(2 k-1) a_{2 k-1}|z|^{2 k-2}+\left(\frac{c+2 k-2}{c+1}\right)(2 k-2) \times \\
& a_{2 k-2}|z|^{2 k-3}<\frac{(k-1)(1+\beta)}{\beta(1-\alpha)} a_{2 k-2}+ \\
& \frac{[k(1+\beta)-(1+\alpha \beta)]}{\beta(1-\alpha)} a_{2 k-1} \\
& \text { or if } \quad|z|<R^{*}=\min \left(r_{1}, r_{2}\right), \tag{23}
\end{align*}
$$

where

$$
r_{1}=\inf _{k}\left[\frac{(1+\beta)(c+1)}{2 \beta(1-\alpha)(c+2 k-2)}\right]^{\frac{1}{2 k-3}}
$$

and

$$
r_{2}=\inf _{k}\left[\frac{\{k(1+\beta)-(1+\alpha \beta)\}(c+1)}{\beta(1-\alpha)(c+2 k-1)(2 k-1)}\right]^{\frac{1}{2 k-2}}, \quad k \geq 2
$$

Therefore $f(z)$ is univalent in $|z|<R^{*}$. Sharpness follows if we take

$$
\begin{align*}
f_{\mu}(z)= & z-\frac{\mu \beta(1-\alpha)(c+2 k-2)}{(1+\beta)(c+1)(k-1)} z^{2 k-2} \\
& -\frac{(1-\mu) \beta(1-\alpha)(c+2 k-1)}{\{k(\beta+1)-(1+\alpha \beta)\}(c+1)} z^{2 k-1}, \quad(k \geq 2, \mu=0 \text { or } 1) \tag{24}
\end{align*}
$$

Theorem 8. Let c be a real number such that $c>-1$. If $F(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0\right)$ belongs to the class $S_{S}^{*}(\alpha, \beta)$, then the function $f(z)$ defined by (15) is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r^{*}(\rho, \alpha, \beta)$, where

$$
\begin{aligned}
r^{*}(\rho, \alpha, \beta) & =\min \left(R_{1}, R_{2}\right) \\
R_{1} & =\inf _{k}\left[\frac{(k-1)(1+\beta)(c+1)(1-\rho)}{\beta(1-\alpha)(2 k-2-\rho)(c+2 k-2)}\right]^{\frac{1}{2 k-3}} \\
R_{2} & =\inf _{k}\left[\frac{\{k(1+\beta)-(1+\alpha \beta)\}(1-\rho)(c+1)}{\beta(1-\alpha)(2 k-1-\rho)(c+2 k-1)}\right]^{\frac{1}{2 k-2}} .
\end{aligned}
$$

The result is sharp.
Proof. In order to establish the required result, it suffices to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\rho \text { in }|z|<r^{*}(\rho, \alpha, \beta)
$$

Now

$$
\begin{align*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| & =\left|\frac{-\sum_{k=2}^{\infty}(k-1)\left(\frac{c+k}{c+1}\right) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k-1}}\right| \\
& \leq \frac{\sum_{k=2}^{\infty}(k-1)\left(\frac{c+k}{c+1}\right) a_{k}|z|^{k-1}}{1-\sum_{k=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k}|z|^{k-1}} \\
& <(1-\rho) \tag{25}
\end{align*}
$$

provided

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k-\rho}{1-\rho}\right)\left(\frac{c+k}{c+1}\right) a_{k}|z|^{k-1}<1 \tag{26}
\end{equation*}
$$

By using (22), the inequality (26) holds if

$$
\left(\frac{2 k-2-\rho}{1-\rho}\right)\left(\frac{c+2 k-2}{c+1}\right)|z|^{2 k-3}<\frac{(k-1)(1+\beta)}{\beta(1-\alpha)}
$$

and

$$
\left(\frac{2 k-1-\rho}{1-\rho}\right)\left(\frac{c+2 k-1}{c+1}\right)|z|^{2 k-2}<\frac{k(1+\beta)-(1+\alpha \beta)}{\beta(1-\alpha)},
$$

or if $|z|<r^{*}(\rho, \alpha, \beta)$, where

$$
\begin{aligned}
r^{*}(\rho, \alpha, \beta) & =\min \left(R_{1}, R_{2}\right) \\
R_{1} & =\inf _{k}\left[\frac{(k-1)(1+\beta)(c+1)(1-\rho)}{\beta(1-\alpha)(2 k-2-\rho)(c+2 k-2)}\right]^{\frac{1}{2 k-3}} \\
R_{2} & =\inf _{k}\left[\frac{\{k(1+\beta)-(1+\alpha \beta)\}(1-\rho)(c+1)}{\beta(1-\alpha)(2 k-1-\rho)(c+2 k-2)}\right]^{\frac{1}{2 k-2}} .
\end{aligned}
$$

Hence, $f(z) \in S_{\rho}^{*}$ in $|z|<r^{*}(\rho, \alpha, \beta)$. Sharpness follows if we take the functions $F_{\mu}(z)$ given by

$$
\begin{equation*}
F_{\mu}(z)=z-\frac{\mu \beta(1-\alpha)}{(k-1)(1+\beta)} z^{2 k-2}-\frac{(1-\mu) \beta(1-\alpha)}{k(1+\beta)-(1+\alpha \beta)} z^{2 k-1}, \quad k \geq 2, \mu=0 \text { or } 1 . \tag{27}
\end{equation*}
$$

Theorem 9. Let the function $f(z)$ be defined by (1). If $f(z) \in S_{S}^{*}(\alpha, \beta)$, then the function $F(z)$ defined by (15) belongs to $S_{S}^{*}(\rho)$ where

$$
\begin{equation*}
\rho=\frac{(c+2)+\beta[2 \alpha(c+1)-c]}{(c+2)(1+\beta)} . \tag{28}
\end{equation*}
$$

The result is sharp. Further, the converse need not be true.
Proof. Let $F(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k} \in S_{S}^{*}(\sigma)$, where b_{k} is given by (17), then by Theorem 1, it holds if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left\{\frac{2(k-1)}{(1-\sigma)} b_{2 k-2}+\frac{(2 k-1-\sigma)}{(1-\sigma)} b_{2 k-1}\right\} \leq 1 . \tag{29}
\end{equation*}
$$

Thus we have to find the largest value of σ so that the inequality (29) holds.
Now, by using (22), (29) holds if

$$
\frac{2(k-1)}{1-\sigma} b_{2 k-2} \leq \frac{(k-1)(1+\beta)}{\beta(1-\alpha)} a_{2 k-2},
$$

and

$$
\begin{equation*}
\frac{(2 k-1-\sigma)}{1-\sigma} b_{2 k-1} \leq \frac{k(1+\beta)-(1+\alpha \beta)}{\beta(1-\alpha)} a_{2 k-1}, \quad(k \geq 2) \tag{30}
\end{equation*}
$$

Or if

$$
\frac{2(c+1)}{(1-\sigma)(c+2 k-2)} \leq \frac{1+\beta}{\beta(1-\alpha)}
$$

and

$$
\begin{equation*}
\frac{(2 k-1-\sigma)(c+1)}{(1-\sigma)(c+2 k-1)} \leq \frac{k(1+\beta)-(1+\alpha \beta)}{\beta(1-\alpha)}, \quad(k \geq 2) \tag{31}
\end{equation*}
$$

which is equivalent to

$$
\sigma \leq \rho_{k}, \quad(k \geq 2)
$$

and

$$
\sigma \leq \delta_{k}, \quad(k \geq 2)
$$

where

$$
\begin{align*}
\rho_{k} & =\frac{(1+\beta)(c+2 k-2)-2(c+1) \beta(1-\alpha)}{(1+\beta)(c+2 k-2)} \\
\delta_{k} & =\frac{(c+2 k-1)[k(1+\beta)-(1+\alpha \beta)]-(2 k-1)(c+1) \beta(1-\alpha)}{(c+2 k-1)[k(1+\beta)-(1+\alpha \beta)]-(c+1) \beta(1-\alpha)} . \tag{32}
\end{align*}
$$

It is easy to verify that ρ_{k}, δ_{k} ar increasing functions of $k(k \geq 2)$. Therefore, $\rho_{2}=\inf _{k \geq 2} \rho_{k}$ and $\delta_{2}=\inf _{k \geq 2} \delta_{k}$, where

$$
\begin{aligned}
\rho_{2} & =\frac{(c+2)+\beta[2 \alpha(c+1)-c]}{(1+\beta)(c+2)} \\
\delta_{2} & =\frac{(c+3)+\beta[2 \alpha c+3-c\}}{(c+3)+\beta[c-2 \alpha+5\}}
\end{aligned}
$$

and hence

$$
\rho=\min \left(\rho_{2}, \delta_{2}\right)=\rho_{2}
$$

To show the sharpness we take the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{\beta(1-\alpha)}{1+\beta} z^{2} \tag{33}
\end{equation*}
$$

Then

$$
\begin{aligned}
\frac{z F^{\prime}(z)}{F(z)-F(-z)} & =-\frac{2 \beta(1-\alpha)(c+1)}{(c+2)(1+\beta)} z \\
& =\frac{(c+2)+\beta[2 \alpha(c+1)-c]}{(1+\beta)(c+2)}, \text { for } z=1 .
\end{aligned}
$$

Hence the result is sharp.
We now show that the converse of the theorem need not be true. To this end we consider the function

$$
\begin{equation*}
F(z)=z-\left(\frac{(1-\rho}{3-\rho}\right) z^{3} . \tag{34}
\end{equation*}
$$

Theorem 1 guarantees that $F(z) \in S_{S}^{*}(\rho)$. But the corresponding function

$$
\begin{equation*}
f(z)=z-\frac{(c+3)}{(c+1)} \frac{(1-\rho)}{(3-\rho)} z^{3} \tag{35}
\end{equation*}
$$

does not belong to $S_{S}^{*}(\alpha, \beta)$, since, for this $f(z)$ the coefficient inequality of Theorem 1 is not satisfied.

4. FRACTIONAL INTEGRAL OPERATOR

We need the following definition of fractional integral operator given by Srivastava, Saigo, and Owa [9].
Definition. Let

$$
\begin{equation*}
F(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}(1)_{k}} z^{k}, \tag{36}
\end{equation*}
$$

where

$$
(\nu)_{k}=\frac{\Gamma(\nu+k)}{\Gamma(\nu)} \begin{cases}1 & , k=0 \tag{37}\\ \nu(\nu+1) \cdots(\nu+k-1) & , k \in N=\{1,2,3, \ldots\}\end{cases}
$$

For real number $\rho>0, \delta, \eta$, and $\epsilon>\max \{0, \delta-\eta\}-1$, the fractional integral operator $I_{0, z}^{\rho, \delta, \eta}$ is defined by

$$
\begin{equation*}
I_{0, z}^{\rho, \delta, \eta} f(z)=\frac{z^{-\rho-\delta}}{\Gamma(\rho)} \int_{0}^{z}(z-t)^{\rho-1} F\left(\rho+\delta,-\eta ; \rho ; 1-\frac{t}{z}\right) f(t) d t \tag{38}
\end{equation*}
$$

where $f(z)$ is a function analytic in a simply connected region of the z-plane containing the origin, satisfying

$$
f(z)=O(|z|)^{\epsilon}, \quad z \rightarrow 0
$$

H.A.Al-Kharsani

and the multiplicity of $(z-t)^{\rho-1}=\exp ((\rho-1) \log (z-t))$ where $\log (z-t)$ is supposed to be real when $z-t>0$.
Remark. For $\delta=-\rho$, we note that

$$
I_{0, z}^{\rho,-\rho,-\eta} f(z)=D_{z}^{-\rho} f(z),
$$

where $D_{z}^{-\rho} f(z)$ is the fractional integral of order ρ of $f(z)$ which was introduced by Owa [10, 11].
In order to prove our results for the fractional operator, we have to recall here the following lemma due to Srivastava, Saigo, and Owa [9].

Lemma 1. If $\rho>0$ and $k>\delta-\eta-1$, then

$$
\begin{equation*}
I_{0, z}^{\rho, \delta, \eta} z^{k}=\frac{\Gamma(k+1) \Gamma(k-\delta+\eta+1)}{\Gamma(k-\delta+1) \Gamma(k+\rho+\eta+1)} z^{k-\delta} . \tag{39}
\end{equation*}
$$

With the aid of Lemma 1, we have
Theorem 10. Let $\rho>0, \delta<2, \rho+\eta>-2, \delta-\eta<2$, and $\delta(\rho+\eta) \leq 3 \rho$.
If $f(z) \in S_{S}^{*}(\alpha, \beta)$, then

$$
\begin{equation*}
\left|\left.\right|_{0, z} ^{\rho, \delta, \eta} f(z)\right| \geq \frac{\Gamma(2-\delta+\eta)|z|^{1-\delta}}{\Gamma(2-\delta) \Gamma(2+\rho+\eta)}\left\{1-\frac{\beta(1-\alpha)(2-\delta+\eta)}{(1+\beta)(2-\delta)(2+\rho+\eta)}|z|\right\} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|I_{0, z}^{\rho, \delta, \eta} f(z)\right| \leq \frac{\Gamma(2-\delta+\eta)|z|^{1-\delta}}{\Gamma(2-\delta) \Gamma(2+\rho+\eta)}\left\{1+\frac{\beta(1-\alpha)(2-\delta+\eta)}{(1+\beta)(2-\delta)(2+\rho+\eta)}|z|\right\} \tag{41}
\end{equation*}
$$

for $z \in U_{0}$, where

$$
U_{0}= \begin{cases}U & (\delta \leq 1) \\ U-\{0\} & (\delta>1)\end{cases}
$$

The result is sharp.
Proof. By using Lemma 1, we have

$$
\begin{align*}
I_{0, z}^{\rho, \delta, \eta} f(z)= & \frac{\Gamma(2-\delta+\eta)}{\Gamma(2-\delta) \Gamma(2+\rho+\eta)} z^{1-\delta} \\
& -\sum_{k=2}^{\infty} \frac{\Gamma(k+1) \Gamma(k-\delta+\eta+1)}{\Gamma(k-\delta+1) \Gamma(k+\rho+\eta+1)} a_{k} z^{k-\delta} \tag{42}
\end{align*}
$$

letting

$$
\begin{align*}
H(z) & =\frac{\Gamma(2-\delta) \Gamma(2+\rho+\eta)}{\Gamma(2-\delta+\eta)} z^{\delta} I_{0, z}^{\rho, \delta, \eta} f(z) \\
& =z-\sum_{k=2}^{\infty} h(k) a_{k} z^{k}, \tag{43}
\end{align*}
$$

where

$$
\begin{equation*}
h(k)=\frac{(2-\delta+\eta)_{k-1}(1)_{k}}{(2-\delta)_{k-1}(2+\rho+\eta)_{k-1}}, \quad(k \geq 2) . \tag{44}
\end{equation*}
$$

We can see that $h(k)$ is non-increasing for integers $k \geq 2$, and we have

$$
\begin{equation*}
0<h(k) \leq h(2)=\frac{2(2-\delta+\eta)}{(2-\delta)(2+\rho+\eta)} . \tag{45}
\end{equation*}
$$

Since $f(z) \in S_{S}^{*}(\alpha, \beta)$, Theorem 1 implies that

$$
\begin{equation*}
\sum_{k=2}^{\infty} a_{k} \leq \frac{\beta(1-\alpha)}{1+\beta} . \tag{46}
\end{equation*}
$$

Therefore, by using (46) and (45), we have

$$
\begin{align*}
|H(z)| & =|z|-h(2)|z|^{2} \sum_{k=2}^{\infty} a_{k} \\
& \geq|z|-\frac{\beta(1-\alpha)(2-\delta+\eta)}{(1+\beta)(2-\delta)(2+\rho+\eta)}|z|^{2} \tag{47}
\end{align*}
$$

and

$$
\begin{align*}
|H(z)| & =|z|+h(2)\left|z^{2}\right| \sum_{k=2}^{\infty} a_{k} \\
& \leq|z|+\frac{\beta(1-\alpha)(2-\delta+\eta)}{(1+\beta)(2-\delta)(2+\rho+\eta)}|z|^{2} \tag{48}
\end{align*}
$$

Sharpness follows if we take the function

$$
\begin{equation*}
f(z)=z-\frac{\beta(1-\alpha)}{(1+\beta)} z^{2} . \tag{49}
\end{equation*}
$$

Similarly, by applying Corollary 2 , to the function $f(z)$ belonging to the class $C_{S}(\alpha, \beta)$, we can derive
Theorem 11. Let $\rho>0, \delta<2, \rho+\eta>-2, \delta-\eta<2$ and $\delta(\rho+\eta) \leq 3 \rho$.

If $f(z) \in C_{S}(\alpha, \beta)$, then

$$
\begin{equation*}
\left|I_{0, z}^{\rho, \delta, \eta} f(z)\right| \geq \frac{\Gamma(2-\delta+\eta)|z|^{1-\delta}}{\Gamma(2-\delta) \Gamma(2+\rho+\eta)}\left\{1-\frac{\beta(1-\alpha)(2-\delta+\eta)}{2(1+\beta)(2-\delta)(2+\rho+\eta)}|z|\right\} \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|I_{0, z}^{\rho, \delta, \eta} f(z)\right| \leq \frac{\Gamma(2-\delta+\eta)|z|^{1-\delta}}{\Gamma(2-\delta) \Gamma(2+\rho+\eta)}\left\{1+\frac{\beta(1-\alpha)(2-\delta+\eta)}{2(1+\beta)(2-\delta)(2+\rho+\eta)}|z|\right\} \tag{51}
\end{equation*}
$$

for $z \in U_{0}$, where U_{0} is defined in Theorem 10. The equalities in (50) and (51) are attained by the function

$$
\begin{equation*}
f(z)=z-\frac{\beta(1-\alpha)}{2(1+\beta)} z^{2} \tag{52}
\end{equation*}
$$

ACKNOWLEDGMENT

The author is thankful to the referee for his helpful criticism and comments.

REFERENCES

[1] V.P. Gupta and P.K. Jain, "Certain Classes of Univalent Functions with Negative Coefficients", Bull. Austral. Math. Soc., 14 (1976), pp. 409-416.
[2] S. Owa, "On the Classes of Univalent Functions with Negative Coefficients", Math. Japon., 27:4 (1982), pp. 409416.
[3] V. Kumar and S.L. Shukla, "On Libera Integral Operator", Kyungpook Math. J., 24:1 (1984), pp. 39-43.
[4] V.P. Gupta, "Convex Class of Starlike Functions", Yokohama Math. J., 32 (1984), pp. 55-59.
[5] K. Sakaguchi, "On Certain Univalent Mapping", J. Math. Soc. Japan, 11 (1959), pp. 72-75.
[6] R. Das and P. Singh, "On Properties of Certain Subclasses of Close to Convex Functions", Ann. Univ. Mariae Curie Sklodowska, 2 (1976), pp. 15-22.
[7] R. Das and P. Singh, "On Subclass of Schlicht Mapping", J. of the Indian Math. Soc., 8 (1977), pp. 864-872.
[8] S. Owa and M.K. Aouf, "On Subclasses of Univalent Functions with Negative Coefficients", Pusan Kyongnam Math. J., 4 (1988), pp. 57-73.
[9] H.M. Srivastava, M. Saaigo, and S. Owa, "A Class of Distortion Theorems Involving Certain Operators of Fractional Calculus", J. Math. Anal. Appl., 131 (1988), pp. 412-420.
[10] S. Owa, "On the Distortion Theorems I", Kyungpook Math. J., 18 (1978), pp. 53-59.
[11] S. Owa, "Some Applications of the Fractional Calculus", in Research Notes in Math., vol. 187. Boston, London and Melbourne: Pitman, 1985, pp. 164-175.

Paper Received 18 November 1996; Revised 30 September 1997; Accepted 19 October 1997.

