SOME FORMS OF COMPACTIFICATIONS

M. E. Abd El-Monsef, A. M. Kozae, and B. M. Taher*

Department of Mathematics Faculty of Science, Tanta University Tanta, Egypt

الخلاصة :

يُهدف هذا البحث إلى تقديم أنواع قوية من التصميتات (مثل شبه تصميتات وأقوى تصميتات) وذلك باستخدام أنواع من المجموعات قريبة الفتح مثل شبه مفتوحة ، والمفتوحة مبدئياً. ودراسة خواص هذه الأنواع الجديدة من التصميتات وعلاقاتها ببعض المسلمات المنفضلة.

ABSTRACT

Using some sorts of nearly-open sets (semi-open [1], pre-open [2]), we introduce and study stronger forms of compactifications; semi-compactifications (stronglycompactifications). We discuss properties for these type, also their relations with separation axioms are investigated.

^{*}To whom correspondence should be addressed.

SOME FORMS OF COMPACTIFICATIONS

INTRODUCTION

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) always mean topological space and $f: X \to Y$ represents a function. The closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively (resp.). First recall that a set $A \subseteq X$ is semi-open [1] (resp. pre-open [2]), if $A \subseteq Cl$ -Int(A) (resp. $A \subseteq Int$ -Cl(A)). The complement of a semi-open (pre-open) set is called semi-closed [3] (pre-closed [2]). The class of all semi-open (pre-open) sets in X is denoted by $SO(X, \tau)$ ($PO(X, \tau)$). A space X is called semi-compact [4]) (strongly compact [5]) if every semi-open (pre-open) cover of X has a finite subcover. A space X is called semi-normal [6] (pre-normal [7]), if for any two disjoint closed sets F_1 and F_2 in X, there exist two disjoint semi-open (pre-open) sets containing F_1 and F_2 , respectively. A space X is called semi- T_2 [8] (pre- T_2 [9]), if for every two distinct points x, y in X there exist two disjoint semi-open (pre-open) sets in X containing x, y respectively. The filter of all sets in a topological space (X, τ) containing a non empty subset A of X is called the main filter belonging to A [10] and is denoted by $\rho(A)$ (if $A = \{x\}$, we write $\rho(A)$).

A filter \mathcal{F} in a topological space (X, τ) is called a closed filter [10] iff \mathcal{F} has a filter base consisting only of closed sets. We call $F_1 > F_2$ iff $F_1 \subseteq F_2$, for two different filters F_1 , F_2 [10]. A minimal proper closed filter on a topological space (X, τ) is called an ultraclosed filter [10]. A bijective mapping $f: (X, \tau) \to (Y, \mu)$ is called a semi-homeomorphism [11] (pre-homeomorphism [12]), if $f^{-1}(V) \in SO(X, \tau)$ ((if $f^{-1}(V) \in PO(X, \tau)$) for each $V \in SO(Y, \mu)$ ($V \in PO(Y, \mu)$) and $f(U) \in SO(Y, \mu)$ ($f(U) \in PO(Y, \mu)$ for each $U \in SO(X, \tau)$ ($U \in PO(X, \tau)$). If A is a subset of a topological space (X, τ) such that $A \notin \tau$, then the topology $\tau(A) = \{O \cup (O' \cap A), O, O' \in \tau, A \notin \tau\}$ is called the simple extension of τ by A [13]. The topology $\tau[A] = \{U \setminus B, U \in \tau, B \subseteq A \subseteq X\}$ is called the local discrete extension of τ by A [14] (where $\tau(A), \tau[A]$ are independent [15]). If (X, τ) is a topological space and \mathcal{F} is a filter on X, then the topology $\tau(\mathcal{F}) = \{U \cap F: U \in \tau, F \in \mathcal{F}\}$ is called a filter extension of τ by the filter \mathcal{F} on X [15]. A space (X, τ) is submaximal [16] if all dense subsets are open.

2. SOME FORMS OF COMPACTIFICATIONS

Definition 2.1. Let (X, τ) , (Y, μ) be two topological spaces. Let S be a dense subset of Y. If there exists a semi-homeomorphism (pre-homeomorphism) $f: (X, \tau) \to (S, \mu_s)$ then the pair $(f, (Y, \mu))$ is called a semi-extension (pre-extension) of X.

Definition 2.2. A semi-extension (pre-extension) $(f, (Y, \mu))$ is called a semi-compactification (strongly compactification) if the space (Y, μ) is semi-compact (strongly compact).

Theorem 2.1. Let (X, τ) be a topological space which is neither semi-compact nor strongly compact. Set $X^* = X \cup \{\omega\}, \omega \notin X$, let $\tau^* = \{\tau(\rho(\omega)) \cup \{H: H \in \rho(\omega), X^* \setminus H \text{ is closed and semi-compact (strongly compact) in } X\}\} = \tau(\rho(\omega)) \cup K$. Then τ^* is a topology on X^* and $(i, (X^*, \tau^*))$ where *i* is the identity map on X, is a semi-compactification (strongly-compactification).

Proof. It is not difficult to verify that τ^* is a topology on X^* . We show that X^* is semi-compact. Let $\{G_1^*\}$ be a semi-open cover of X^* , then there must be at least one element say $G_{1(\omega)}^*$ in the cover which contains ω . Then $A = X^* \setminus G_{1(\omega)}^*$ is a closed and a semi-compact set in X and is covered by the family $\{G_i^* \cap X\}$ of semi-open sets in X (because X is an open subspace of X^*). Hence there exists a finite subfamily $G_{i(1)}^* \cap X, \ldots, G_{i(n)}^* \cap X$ which covers A. The finite family $G_{1(\omega)}^*, G_{i(1)}^*, \ldots, G_{1(n)}^*$ is a semi-open cover of X^* and is a subcover of the original cover. Thus X^* is semi-compact. In the same way, we can prove X^* is strongly-compact. We show that $(i, (X^*, \tau^*))$

is a semi-extension (strongly extension). Since $\tau_x^* = \tau$ (because $G^* \cap X \in \tau = \tau_x^*$, $G^* \in \tau^*$. Hence $i = (X, \tau) \to (X, \tau_x^*)$ is a semi-homeomorphism. We show that X is dense in X*, since $G^* \cap X \neq \emptyset$ for every $G^* \in \tau^*$ (because (a) If $G^* \in \tau$ ($\rho(\omega)$), then $G^* \cap X \neq \emptyset$; (b) If $G^* \in K$, then $X^* \setminus G^*$ is closed and semi-compact in X), $(X \setminus X^* \setminus G^*) \cap X \neq \emptyset$, which implies $X \cap G^* \cap X \neq \emptyset$, hence $G^* \cap X \neq \emptyset$, and therefore $(i, (X^*, \tau^*))$ is a semi-compactification. In the same way we can prove the other part of the theorem.

Remark 2.1. In this type of a stronger form of compactification, we could take the space (X, τ) to be compact but neither semi-compact nor strongly compact and we know that semi-compact \Rightarrow compact and strongly compact \Rightarrow compact.

Lemma 2.1 [16]. If A is τ -dense and τ -semi-open, then $SO(X, \tau) = SO(X, \tau(A))$.

Lemma 2.2 [16]. If (X, τ) is submaximal and $A \in PO(X, \tau)$, then $PO(X, \tau) = PO(X, \tau (A))$.

Theorem 2.2. Let (X, τ) be a topological space which is not semi-compact. Set $X^* = X \cup \{\omega\}, \omega \notin X$. Then $\tau^* = \tau(A) \cup \{H: H \in \rho(\omega), X^* \setminus H \text{ is closed and semi-compact in } X\} = \tau(A) \cup K$ is a topology on X^* provided that A is τ -dense and τ -semi-open, and $(i, (X^*, \tau^*))$, where i is the identity map on X, is a semi-compactification.

Proof. Obvious by Lemma 2.1 and Theorem 2.1.

Theorem 2.3. Let (X, τ) be a submaximal space which is not strongly compact. Set $X^* = X \cup \{\omega\}, \omega \notin X$. Then $\tau^* = \tau(A) \cup \{H: H \in \rho(\omega), X^* \setminus H \text{ is closed and strongly compact in } X\} \tau(A) \cup K \text{ is a topology on } X^* \text{ provided that } A \in PO(X, \tau) \text{ and } (i, (X^*, \tau^*)) \text{ where } i \text{ is the identity map on } X, \text{ is a strongly compactification.}$

Proof. Obvious by Lemma 2.2 and Theorem 2.1.

Lemma 2.3 [16]. Let (X, τ) be a topological space and A be a subset of X such that $A \cap U = \emptyset$, for every $U \in \tau, U \neq X$. Then $PO(X, \tau) = PO(X, \tau[A])$.

Theorem 2.4. Let (X, τ) be a topological space which is not strongly-compact and A be a subset of X such that $A \cap U = \emptyset$, for every $U \in \tau, U \neq X$. Set $X^* = X \cup \{\omega\}$, $\omega \notin X$. Then $\tau^* = \tau[A] \cup \{H: H \in \rho(\omega), X^* \setminus H \text{ is closed} and strongly-compact in <math>X\} = \tau(A) \cup K$ is a topology on X^* , and $(i, (X^*, \tau^*))$, where *i* is the identity map on X, is a strongly compactification.

Proof. Obvious by Lemma 2.3 and Theorem 2.1.

The previous compactifications are called 1-point semi-compactification (1-point strongly compactification).

Clearly:

1-point-compactification	
ſ	ſ
1-point-semi-compactification	1-point strongly compactification

If the semi-compactification (strongly compactification) has any property P then the compactification has P.

Theorem 2.5. The 1-point semi-compactification (1-point strongly compactification) is semi- T_i [resp. pre- T_i , i = 0, 1, 2] iff (X, τ) is semi- T_i (pre- T_i).

Proof. Let (X^*, τ^*) be semi- T_2 , then for every two distinct points x, y in X, there are two disjoint semi-open sets U, V in X* containing x, y respectively, since $x \in U \cap X = N$ and $y \in V \cap X = M$, where M, N are disjoint semi-open sets in X containing x, y respectively [because X is an open subspace of X* and $M \cap N = U \cap X \cap V \cap X = U \cap V \cap X = \emptyset$]. Hence (X, τ) is semi- T_2 . Conversely, let (X, τ) be semi- T_2 and let x, y be two distinct points in X also in X*. If $y = \omega$, then there is a semi-compact-neighborhood U of x which is semi-closed (because X is semi- T_2), so its complement is a semi-open set containing ω which is disjoint from some semi-open sets containing x. Hence X* is semi- T_2 and also semi-normal (because X* is semi-compact). In the same way, we prove the other parts of the theorem.

Lemma 2.4 [10].

- (a) Given a closed filter F in a space (X, τ) , there exists an ultraclosed filter F' containing F.
- (b) In a T_1 -space (X, τ) , every $\rho(x)$ is an ultraclosed filter
- (c) If $U, V \in \tau$, F is an ultraclosed filter, then $U \cup V \in F$ implies $U \in F$ or $V \in F$.
- (d) If F, F' are ultraclosed filter on X, $F \neq F'$, there exist closed sets C, C' such that $C \in F$, $C' \in F'$, $C \cap C' = \emptyset$.

Theorem 2.6. Let W(X) be the collection of all ultraclosed filters on a T_1 which is not semi-compact space (X, τ) . Let $X: X \to W(X)$ be the mapping, $X(x) = \rho(x)$. Finally for every $U \in SO(X, \tau)$ (resp. $U \in PO(X, \tau)$), define $U^* = \{F: F \in W(X), U \in F\}$ and the family $\beta = \{U^*: U \in SO(X, \tau) (U \in PO(X, \tau))\}$ is a base for a topology ω on W(X), then $(X(W(X)\omega))$ is a T_1 -semi-compactification $(T_1$ -strongly compactification).

Proof. We must prove that:

(a) β is a base for a topology ω on W(X). Let $\beta = \{U^* : U \in SO(X, \tau)\}$, then

$$U^* \cap V^* = \{F : F \in W(X), U \in F\} \cap \{F : F \in W(X), V \in F\}$$
$$= \{F : F \in W(X), U \cap V \in F\} = (U = V)^*.$$

Thus β is a base for a topology ω on W(X).

- (b) $U^* = V^*$ implies U = V, because if $U \neq V$ there exists a point $X \in U$, $x \notin V$, this implies $U \in \rho(x)$ and $V \notin \rho(x)$, hence $U^* \neq V^*$.
- (c) We observe that $X(X) \cap U^* = [\rho(x): U \in \rho(x)] = [\rho(x): x \in U] = X(U)$.

This ensures that $\chi:(X,\tau) \to (\chi(X), \omega_{\chi(X)})$ is a semi-homeomorphism (pre-homeomorphism), because

- (i) $X(X) \cap U^* \neq \emptyset$, this implies X(X) is a dense subset of W(X).
- (*ii*) If $G \in \tau$ then $\mathcal{X}(G) = \mathcal{X}(X) \cap G^* \in \omega_{\mathcal{X}(X)}$.
- (iii) If $H^* \in \omega_{X(X)}$, then $\mathcal{X}^{-1}(H^*) = \mathcal{X}^{-1}(\mathcal{X}(X) \cap G^*) = G$ where $G^* \in \omega$ and $G \in SO(X, \tau)$. Hence $(\mathcal{X}, (W(X), \omega) \text{ is a semi-extension of the space } (X, \tau).$
- (d) We show that W(X) is semi-compact.

Let $\{C_{ik}^*\}$ be a semi-closed family of subsets of W(X) which has the finite intersection property $\cap \{C_{ik}^*\} \neq \emptyset$, which implies $\cap \{Cl_{\omega} C_{ik}^*\} \neq \emptyset$, so $X^* \setminus \cap \{Cl_{\omega} C_{ik}^*\} \neq X^*$, which implies $\cup \{X^* \setminus Cl_{\omega} C_{ik}^*\} \neq X^*$, so $\cup \{U_{ik}^*\} \neq X^*$, but $\cup \{U_{ik}^*\} = \{\bigcup U_{ik}\}^*$, hence $\{\bigcup U_{ik}\}^* \neq X^*$ this implies $X^* \setminus \bigcup U_{ik}^* \neq \emptyset$, so $\cap \{X \setminus U_{ik}\} \neq \emptyset$, which implies $\cap \{C_{ik}\} \neq \emptyset$, hence the family $\{C_i\}$ forms a subbase for a

closed filter in X and by Lemma 2.4 (a), there exists an ultraclosed filter containing $\{C_i\}$, so $\cap \{C_i^*\} \neq \emptyset$. Hence W(X) is semi-compact. Therefore $(\mathcal{X}(X), \omega_{\mathcal{X}(X)})$ is a semi-compactification. In the same way we can prove $(\mathcal{X}(X), \omega_{\mathcal{X}(X)})$ is strongly compactification.

(e) We show that W(X) is T_1 -space. Let $F, F' \in W(X), F \neq F'$, then from Lemma 2.4(d) there exists two disjoint closed sets C, C' such that $C \in F, C' \in F'$, which implies $X \setminus C \supseteq C'$. Take $U = X \setminus C \supseteq C'$, so that $U \in F'$ and hence $F' \in U^*$, since $X \setminus U = C \in F$, this implies $U \in F$ and $F \in U^*$, similarly, one shows that $(X \setminus C')^*$ is an open-neighborhood of F which does not contain F'. Thus W(X) is T_1 .

Theorem 2.7. W(X) is semi-normal space, (resp. pre-normal) iff (X, τ) is semi-normal (resp. pre-normal).

Proof. Let (X, τ) be a semi-normal space, let $F, F' \in W'(X)$, $F \neq F'$ then there exists two disjoint closed sets C, C' such that $C \in F, C' \in F'$, but (X, τ) is semi-normal, so there exists two disjoint semi-open sets U, V in X such that $C \subseteq U, C' \subseteq V$, which implies $F \in U^*, F' \in V^*$ and $(U^* \cap V^*) = (U \cap V)^* = \emptyset$. Hence W(X) is semi- T_2 space, also semi-normal (because W(X) is semi-compact). Conversely, let W(X) be semi- T_2 (semi-normal), let A, B be two disjoint closed sets in X, define.

$$A^* = [\{[A]^c\}^*]^c, \quad B^* = [\{[B]^c\}^*]^c,$$
$$A^* \cap B^* = [\{[A]^c\}^*]^c \cap [\{[B]^c\}^*]^c$$
$$= [\{[A]^c\}^* \cup \{[B]^c\}^*]^c$$
$$= [\{[A]^c \cup [B]^c\}^*]^c = [\{[A \cap B]^c\}^*]^c = [\{X^*\}]^c = \emptyset.$$

Since W(X) is semi-normal, there exists two disjoint semi-open sets W, W' in W(X) such that $A^* \subseteq W, B^* \subseteq W'$, we have $W = \bigcup U_i^*, W' = \bigcup V_i^*$, where $\{U_i^*\}$ is a semi-open cover of A^* which is a semi-closed in a semi-compact space, hence itself semi-compact, there exist a finite number of $\{U_i^*\}$ such that

$$A^* \subseteq \bigcup U_{ik}^* = \{\bigcup U_{ik}^*\} = U^*$$

$$B^* \subseteq \bigcup V_{ik}^* = \{\bigcup V_{ik}^*\} = U^*,$$

since $U^* \subseteq W, V^* \subseteq W'$, and $W \cap W' = \emptyset$,
this implies $U^* \cap V^* = \emptyset$, $(U \cap V) = \emptyset$, and $A \subseteq U, B \subseteq V$

Hence (X, τ) is semi-normal. In the same way we can prove the other part of the theorem.

Example 2.1. Let X be an infinite set, τ be the indiscrete topology, then (X, τ) is compact and semi-compact but not strongly compact, if we take W(X) to be the collection of all ultraclosed filters in X and $X: X \to W(X)$ is the mapping $X(x) = \rho(x)$ and for every $U \in PO(X, \tau)$, define $U^* = \{F: F \in W(X), U \in F\}$ and the family $\beta = \{U \in PO(X, \tau)\}$ is a base for the topology ω on W(X). Then $(X, (W(X), \omega))$ is a T_1 -strongly compactification of (X, τ) .

Example 2.2. Let (X, τ) be an infinite cofinite space. This is T_1 and compact but not strongly compact and by Lemma 2.4(b), $\rho(x)$ is an ultraclosed filter, hence the collection of all ultraclosed filters $W(X) = \{\rho(x): x \in X\}$, for every $U \in PO(X, \tau)$, take $\beta = \{\rho(x): x \in U, U \in \rho(x)\}$ this is a base for a topology ω on W(X). Let $X: X \to W(X)$ be the mapping $X(x) = \rho(x)$. Then $(X, (W(X), \omega))$ is a T_1 -strongly-compactification of (X, τ) .

REFERENCES

- [1] N. Levine, "Semi Open Sets and Semi-Continuity in Topological Spaces", Amer. Math. Monthly, 70 (1963), pp. 36-41.
- [2] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, "On Pre-Continuous and Weak Pre-Continuous Mapping", Proc. Math. Phys. Soc. Egypt, 53 (1982), pp. 47-53.
- [3] S. G. Crossely and S. K. Hildebrand, "Semi-Closed Sets and Semi-Continuity in Topological Spaces", Texas. J. Sci., (2+3)(22) (1971), pp. 123-126.
- [4] C. Dorsett, "Semi-Convergence and Semi-Compactness", Indian J. Math. Mech., 19 (1981), pp. 11–17.
- [5] M. E. Abd El-Monsef, I. A. Hasanein, A. S. Mashhour, and M. E. T. Noiri, "Strongly Compact Spaces", Delta J. Sci., 8(1) (1984), pp. 30-46.
- [6] A. S. Mashhour, A. A. Allam, I. A. Hasanein, and S. N. El-Deeb, "On Supratopological Spaces", International Conference on Mathematics, Riyadh. Saudi Arabia, 17-12 October 1982.
- [7] A. S. Mashhour, A. A. Allam, F. S. Mahmoud, and F. H. Keder, "On Supratopological Spaces", Indian J. Pure. Appl. Math., 14(4) (1983), pp. 502-510.
- [8] S. N. Maheshwari and R. Parasad, "Some New Separation Axioms", Ann. Soc. Sci. Bruxelles, T-3(89) (1979), pp. 395-407 (MR, 52#6660).
- [9] A. S. Mashhour and A. M. Abd-Allah, "New Types of Separation Axioms", 7th, Arab. Sci. Cong., Cairo, 1973, vol. III, pp. 59–63.
- [10] W. J. Thorn, Topological Structures. University of Colorado, 1966.
- [11] S. G. Grossley and S. K. Hildeband, "Semi-Topological Properties", Fund. Math., 74(19) (1972), pp. 233-254.
- [12] A. S. Mashhour, M. E. Abd El-Monsef, and A. I. Hasanein, "Pre-Topological Spaces", Bull. Math. Soc. R.S. de Romania, 28(76) (1984), pp. 39–95.
- [13] N. Levine, "Simple Extensions of Topologies", Amer. Math. Monthly, 71(1) (1969), pp. 22-25.
- [14] Sp. Young, "Local Discrete Extension of Topologies", Kyungpook Math. J., 11 (1971), pp. 21-24.
- [15] E. F. Lashien, "Study on Extension of Topologies", Ph.D. Thesis, Tanta University, 1988.
- [16] D. E. Cameron, "A Class of Maximal Topologies", Pacific Journal of Math., 7 (1977), pp. 101-104.

Paper Received 16 September 1992; Revised 19 April 1995; Accepted 24 June 1995.