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ABSTRACT 

This paper studies direct sums of uniform modules. We give a number of 
necessary and sufficient conditions for such a sum to complement uniform 
summands, or to have that local summands, of uniform submodules, are 
summands. We also investigate direct sums of nonsingular uniform modules over 
semiprime right Goldie rings; and prove that if every finite subsum is a CS
module, then every closed submodule is a direct summand. As a result, we show 
that the relative injectivity of every two distinct submodules appear in such a sum, 
is equivalent to the quasi-continuity. 
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ON DIRECT SUMS OF UNIFORM MODULES 

1. INTRODUCTION 

Direct sums of indecomposable modules have been investigated in great detail, in a long series of papers, by 
Harada [1], Harada and Oshiro [2], Muller and Rizvi [3, 4], and by Kamal [5]. The present paper owes a great 
deal to the work in [4], and some of the arguments here are taken from that source with little modification. 

A module M is a CS-module if every complement submodule of M is a direct summand of M, or equivalently, 
every closed submodule of M is a direct summand of M. The notion of CS-modules is due to Osofsky and Smith 
[6]. Chatter and Hajarnavis [7], in one of the first papers to study this concept, have investigated rings"in which 
every complement right ideal is a direct summand. Later, other terminology, such as extending, has been used 
in place of CS [8-10]. 

A module M is quasi-continuous if it is a CS-module, and the following condition holds: (Ca) For all X, 
Y ~@ M with X n Y = 0, one has X $ Y ~@ M. M is continuous if it is a CS-module, and the following 
condition holds : (C2) if a submodule N of M is isomorphic to a direct summand of M, then N is a direct 
summand of M. It is clear that CS-modules are generalizations of (quasi) continuous modules, which, in turn, 
are generalizations of (quasi) injective modules. 

All modules here are right-modules over a ring R. mO denotes the annihilator in R of the element m E M. 
X ~e M and Y ~@ M signify that X is an essential submodule, and Y is a direct summand, of M. A submodule 
A is closed in M if it has no proper essential extensions in M. 

A module M is a l-CS-module if every closed uniform submodule is a direct summand. A special case of 
the condition (Ca) is that: (1 - Ca) For all X, Y ~@ M with X n Y = 0, and with X, Y uniform; one has 
X $ Y ~@ M. A direct sum 61iEI Ni of submodules of M is called a local direct summand (or for short a local 
summand) if 61iEFNi ~@ M, for all finite F ~ I. 

An element s in a ring R is called a right regular element in R if sr :f:. 0 for all non-zero r E R. An element of 
R is called a regular element of R if it is right and left regular. M and N are called relatively injective modules 
if M is N-injective and N is M-injective (see [11]). 

For a given decomposition M = 61iEIMi and a subset K of the index set I, we denote 61iEKMi by M(K). 
The decomposition M =61iEIMi is said to have (1 - Ca)if for every uniform direct summand X of M and 
J ~ I with X n M(J) = OJ one has X $ M(J) ~@ M. M = 61iEIMi is said to satisfy the condition (Aa) if for 
any choice of distinct ij E I(j E IN) and mj E Mij' if the sequence mj is ascending, then it becomes stationary. 

Lemma 1. ([9], Lemma 17) Let M = X $ Y be a module over an arbitrary ring, where Y is X -injective. 
Let N be a submodule of M, with N n Y = O. Then there exists a homomorphism f : X ~ Y such that 
X* = {x + f(x) : x E X} contains N, and that M = X* $ Y. 

Corollary 2. Let M =61iEI Mi, where the Mi are Mj-injective for all i :f:. j E I. Then for every direct summand 
N of M and every finite subset F of I, with N n M(F) = 0, one has N $ M(F) ~@ M. 

Proof Let N ~@ M and N n M(F) = 0, with F finite subset of I. By Lemma 1, and since M(F) is M(I - F)
injective, we have M = M(F) $ M*(I - F), and N ~@ M*(I - F); where M*(I - F) is defined as X* in 
Lemma 1. 
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2. DIRECT SUMS OF UNIFORM MODULES 

Theorem 3. Let M = EBiel Mi, where M, are uniform and Mj -injective for all i 1= j E I. Then the following 
are equivalent: 

(1) M has (1- C;), 

(2) EBielMj complements uniform direct summands. 

Proof. (1) => (2). Let U be a uniform summand of M. Let 01= z E U. It follows that z E M(F) for some finite 
subset F of I. Since the submodule zR of M(F) is uniform, we have zRnker7ri = 0 for some natural projection 

7rj : M(F) -+ Mi; i E F (otherwise 0 = zR n [nker7ri] = n[zR n ker7rj] 1= 0, which is a contradiction). 
iel iel 

Thus zR n M(F - i) = 0, and hence zR EB M(F - i) ~e M(F). It follows that zR n M(I - i) = 0, and that 
zREB M(I - i) ~e M. Since zR U, we have un M(I - i) =O. By (1- C;), U EB M(I - i) ~ED M. Therefore 
U EB M(I - i) =M (due to U EB M(I - i) M). 

(2) => (1). Let X be a uniform summand of M, with XnM(J) =0 for some J ~ I. Since EBielMi complements 
uniform summands, we have M = X EB M(I - {3) for some {3 E I. Hence X ~ Mf3 is M(I - {3)-injective. By 
Corollary 2, and since M(J) n X = 0; we have that M(J) EB X ~ED M. 

Proposition 4. Let M = EBielMi, where the Mi are uniform and not imbeddable in M(I - i); for all i E I. 
Then the following are equivalent: 

(1) M has (1 - C;), 

(2) EBielMi complements uniform direct summands. 

Proof. (1) => (2). Follows from Theorem 3. 

(2) => (1). Let X be a uniform summand of M with X n M(J) = 0, J ~ I. Since EBielMj complements 
uniform summands, we have X EB M(I - a) =M for some a E I. Now if a E J, then Ma n X = OJ and thus 
7r imbeds Ma in M(I - a), where 7r is the projection of X EB M(I - a) onto M(I - a)j which contradicts our 
assumption. Therefore a ¢ Jj i.e. X EB M(J) ~ED X EB M(I - a) =M. 

Lemma 5. If a decomposition EBielMi' with Mi uniform for all i E I, complements uniform direct summands; 
then it complements direct summands of the form EBr=l Ui, with all Uj uniform, for all n EN. 

Proof. By induction on n. Assume that the claim holds true for n, and let A =EBr=oUi , with all Ui uniform, be a 
direct summand of M. By induction M = A* EB M(KI) for some Kl ~ I, where A* := EBr=lUj. By the modular 
law, A = A* EB(AnM(Kl))' It follows that U6 := AnM(KI) ~ Uo is a uniform summand of A, hence a summand 
of M(K1 ). Since M(Kt} inherits the same property, there exists K2 ~Kl such that M(K1 ) = U6 EB M(K2); 
and therefore M = A EB M(K2)' 

Lemma 6. Let M = EBielMj, where the Mi are uniform for all i E I. If M has (1 C;), then every 
direct summand of M of the form X = EBr=lXj , with all Xi uniform (n E IN), and every subset J of I with 
X n M(J) = 0; one has X EB M(J) ~ED M. 

Proof. By induction on n. Assume that the claim holds true for n, and let X = EBr=oXi ~ED M, with XnM(J) = 
0; where all Xi "are uniform, and J ~ I. Let X =: EBi=lXi , and consider S = {J ~ K ~ I : X n M(K) = O} 
ordered by inclusion. Zorn's Lemma yields a maximal member K of S. By the maximality of K, we have 
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[X $ M(K)] n Mi t= 0 for all i E I. Since the Mi, s are uniform, we get that [X $ M(K)] n Mi ~e Mi.; i E I. It 
follows that $i.EI([X $ M(K)] n Mi) ~e M; and therefore X $ M(K) ~e M. By induction X $ M(K) ~e M; 
and hence M = X $ M(K). Then X = X $ (X n M(K)); and thus Xo ~ X n M(K) =: Xo ~e X ~e M. 
Now we have Xo is a uniform summand of M(K), with Xo n M(J) = O. Since M(K) inherits (1 - Cs), 
Xo $ M(J) ~e M(K); and therefore X ~e M. 

Lemma 7. Let M =$iE1M;" where the Mi are uniform for all i E I. If M has (1- C3 ), then for every uniform 
summand X of M and every finite subset F of I with X n M(F) =0, one has X $ M(F) ~e M. 

Proof. By induction over the cardinality of F. Assume that it holds true for cardinality < n, and let X be a 
uniform summand of M, and F ~ I where X n M(F) = 0, and IFI =n. By induction, X $ M(F - i) ~e M for 
some i E F. Write M =X$M(F-i)$N. By the modular law, we have that M(F) M(F-i)$M(F)n[X$N]. 
It follows that Mt := M(F) n [X $ N] ~ Mi is a uniform summand of M(F). Hence Mt is a uniform summand 
of X $ N, with Mt n X =O. Since (1- C3 ) is inherited by direct summands, Mt $ X ~e X $ N. Therefore 
X$M(F) = Mt $X$M(F-i) ~e X$M(F-i)$N = M. 

Theorem 8. Let M $iEIMi, where the M;. are uniform for all i E I. Let (A3) hold. Then the following are 
equivalent: 

(1) M has (1 - Cs), 

(2) M has (1 - C3 ), and every local summand of M of the form $jEJ Lj with all Lj uniform, is a summand. 

Proof. (1) => (2). Let L =$jEJ Lj be a local summand of M, with all Lj uniform. By the same argument as in 
Lemma 6, there exists K ~ I such that LnM(K) = 0 and that L$M(I<) ~e M. By Lemma 6, and since $jEJLj 
is a local summand of M, we get that L(F) $ M(K) ~e M for all finite subsets F of J; i.e. L(J) $ M(K) is a 
local summand of M. Hence, without loss of generality, we may consider L ~e M. Now we show that L = M. 
Assume, on the contrary, that L t= M; then there exists Xo E Mio \L, for some io E I. Since L ~e M, there exists 
r E R with 0 t= xor E Lj and thus xor E L(F) for a finite subset F of J. Since M has (1 - Cs), by Theorem 
3 and Lemma 5 we have that the decomposition complements L(F). Write M = L(F) $ M(T); T ~ I. Then 
Xo =60 + Y; where 60 E L(F), and Y =EtETYt E M(T). It is clear that Xo ~ yf, and since 0 t= xor E L(F), we 
obtain Xo c yf; for all t E T. Observe (due to Xo ¢ L) that there exists t. E T, with Yt. E Mt • \L. 

Denote Xl := Yt. and i l := t., we have Xj E Mij \L(j = 0,1); such that Xo C x~. By repeating the 
same argument, we eventually obtain a sequence {Xj};EN; where Xj E M;'j\L(j E N) for distinct ij with 
xg C x~ C ... c x~ C ... ; which contradicts (A3)' Therefore L =M. 

To show that M has (1 - C3). Let X, Y ~e M, X and Yare uniform with X n Y =O. Then, by (1 - Cs), 
M = X $ M(I - i) for some i E I. Hence X ~ Mi; and thus the docomposition X $ M(I - i) inherits (1- Cs). 
Since Y n X = 0, we conclude X $ Y ~e M. 

(2) => (1). Let X be a uniform summand of M, with X n M(J) = 0, for some J ~ I. Since M has (1- C3 ), 

by Lemma 7, we have that X $ M(F) is a direct summand of M for all finite subsets F of J. Therefore the 
decomposition X $ M(J) is a local summand of Mj and hence a summand of M, by (2). 

Corollary 9. Let M =$iEIMi, with Mi uniform and M;-injective for all i t= j E I. Let (A3) be hold. Then 
the following are equivalent: 

(1) M has (1 Cs), 

(2) every local summand of M, of the form $jEJ Lj with all Lj uniform, is a summand. 
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Proof. Theorem 8, and Corollary 2. 

Lemma 10. Let M =$iEI Mi , with all Mi non-singular uniform, be a module over a semiprime right Goldie 
ring R. If M(F) is a CS-module, for all finite subsets F of I, then every non-zero summand of M contains a 
uniform summand. 

Proof. Let A be a non-zero summand of M. Let 0 # a E A, it follows that a E M(F); and hence aR S; M(F), 
for some finite subset F of I. Let U be a uniform submodule of aR, and consider a maximal essential extension 
U· of U in M(F). Since M(F) is CS-module, with a closed submodule U·, we have U· S;E& M(F) S;E& M. Write 
M = A $ M·, and let x E U· be arbitrary. Then x = y + z; where YEA, z E M·. Since U S;e U·, and R 
is a semiprime right Goldie ring, there exists a regular element s E R such that xs E U. Thus xs - ys = zs E 
An M· = 0, and hence z = 0 (due to M· non-singular). Hence x = yEA; and therefore U· is the required 
uniform summand of A. 

Lemma 11. Let M =$iE1Mi , with all Mi non-singular uniform, be a module over a semiprime right Goldie 
ring R. Let M(F) be a CS-module for all finite subsets F of I. Then the following are equivalent: 

(1) every local summand of M is a summand; 

(2) every local summand of M, of the form $jEJLj with all L j uniform, is a summand. 

Proof. (1) => (2) is obvious. To show (2) => (1), it suffices to show that every direct summand of M is a direct 
sum of uniform submodules. To this end, let X be a direct summand of M. Let S =: {Xj : j E J} be the family 
of all uniform direct summands of X. Observe, by Lemma 10, that S is non empty. We call a subset K of J 
local direct if EkEK Xk is a direct sum and is a local summand of M. Consider the collection of all local direct 
subsets of J; ordered by inclusion. An application of Zorn's Lemma yields a maximal local direct subset K of J. 
By (2), $kEKXk is a direct summand of M; hence of X. Write X =$kEKXk $ X·. If x· # 0, then by Lemma 
10 X· contains a uniform direct summand; which contradicts the maximality of K. Therefore X = $kEK Xk is 
a direct sum of uniforms. 

Lemma 12. Let M = $iEI Mi, with all Mi non-singular uniform, be a module over a semi prime right Goldie 
ring R. Let M(F) be CS-module, for all finite subsets F of I. Then M is a l-CS-module. 

Proof. Let A be a closed uniform submodule of M. Let 0 # x E A, it follows that xR S; M(F); with F a finite 
subset of I. Let U be a maximal essential extension of xR in M(F). By assumption, M(F) is a CS-module; 
hence M(F) = U $ N. Thus M = U $ N $ M(I - F). Now for each a E A, we have that a =, u + y; u E U 
and yEN $ M(I - F). Since xR S;e U, there exists a regular element s E R such that us E xR. It follows that 
(a - u)s = ys E An [N $ M(I - F)] = 0 (due to A uniform, and xR n [N $ M(I - F)] = 0); and hence y = 0 
(due to all Mi being non-singular). It follows that A s;e U; and therefore A =U S;E& M, since A is closed in M. 

Lemma 13. ([5], Corollary 14) Let M be a non-singular module over a semiprime right Goldie ring R. Then 
the following are equivalent: 

(1) M is a CS-module, 

(2) M is a l-CS-module, and local direct summands of M are summands. 

Corollary 14. Let M = $iEI Mi, with all Mi non-singular uniform, be a module over a semiprime right Goldie 
ring R. Then the following are equivalent: 

(1) M is a CS-module, 
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(2) M(F) is a CS-module for all finite subsets F of I, and every local summand of M is a summand. 

Lemma 15. ([12], Corollary 5) Every direct summand of a CS-module (l-CS-module) is a CS-module (l-CS
module). 

Lemma 16. ([13], Theorem 2.13) Let {Ma : a E A} be a family of quasi-continuous modules. Then the following 
are equivalent: 

(1) M =EDaEAMa is quasi-continuous, 

(2) M(A - a) is Ma-injective for all a E A. 

Lemma 17. Let M =EDiEI Mi, with all Mi non-singular uniform, be a module over a semiprime right Goldie 
ring R. Let M(F) be a CS-module for all finite F ~ I. If M has (1- Ca), then every submodule A =EDi:lAil 
with all Ai uniform summands of M, is a summand of M. 

Proof By induction on n. Let the claim hold true for n, and let A =EDi=oAi' with all Ai uniform summands 
of M. By induction, EDi=lAj ~@ M. Write M = EDi:lAi ED N; hence A = EDi=lAj ED (A n N). Let Bo be a 
maximal essential extension of AnN in N. Since Ao ~ AnN ~e Bo, we have that Bo is a uniform closed 
submodule of N. By Lemma 12 and Lemma 15, N is a 1-CS-module; and hence Bo ~@ N. It follows that 
A ~ EDi:lAiEDBO ~@ M. Now EDi=lAiEDBo inherits (l-Ca), and is a 1-CS-module; hence Lemma 16 yields that 
Al is Bo-injective for all i =1,2, ... ,n. By Lemma 1, and since EDi=l Ai is Bo-injective with EDi=l Ai n Ao =0, 
there exists Bo such that Ao ~ Bo and that EDi=l Ai ED Bo = EDi=l Ai ED Bo· Since Ao ~@ M and Bo ~ Bo is 
uniform, we obtain Ao Bo; and therefore A =EDi=l Ai ED Bo ~@ M. 

Theorem 18. Let M =EDiEI Mi, with all Mi non-singular uniform, be a module over a semiprime right Goldie 
ring R. Let M(F) be CS-module for all finite F ~ I. Then (1- Ca) is equivalent to (1- C;). 

Proof Let M have (l-Ca), and let X be a uniform summand of M with XnM(J) =0; J ~ I. By Zorn's Lemma, 
there exists K ~ I a maximal with respect to J ~ K and XnM(K) =O. One can check that X EDM(K) ~e M. 
We show that M = X ED M(K). To this end, let m E M be arbitrary. Then, by the essentiality of Mover 
X ED M (K), there exists a regular element s in R, such that ms E X ED M (K) j and thus ms E X ED M (F) for 
some finite F ~ I. Then X ED M(F) ~@ M, by Lemma 17. Write M =X ED M(F) ED N; thus m =b+ n, where 
bE X ED M(F), n E N. We deduce (m - b)s =ns E (X ED M(F» n N =O. Since N is non-singular, we have 
that n =0; and hence m =bE X ED M(F) ~ X ED M(K). Therefore X ED M(J) ~@ X ED M(K) =M. 

The converse is obvious, by Theorem 8. 

Lemma 19. ([4], Theorem 9). Let M =EDiEIMi, with all Mi uniform. Then M is quasi-continuous if and only 
if (1 - Cd and (1 - C;) hold. 

Theorem 20. Let M = EDiEI Mi, with all Mi non-singular uniform, be a module over a semiprime right Goldie 
ring R. Let M(F) be CS-module for all finite F ~ I. Then M is quasi-continuous if and only if (1 - Ca) holds. 

Proof Lemma 12, Theorem 18, and Lemma 19. 

Lemma 21. ([12]'Theorem 18) Let M =EDi=lMi, where Mi is M;-injective for all i =/:- j. Then M is CS-module 
if and only if all Mi are CS-modules. 

Theorem 22. Let M = EDiEI Mi, with all Mi non-singular uniform, be a module over a semiprime right Goldie 
ring R. Then the following are equivalent: 
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(1) 	Mi is Mj-injective for all i :f. j E I, 

(2) 	M is quasi-continuous, 

(3) 	M(I - a) is M-injective for all a E I. 

Proof (1) => (2): By Lemma 21, M(F) is CS-module for all finite F ~ I. In view of Theorem 20, it remains to 
show that M has (1 - C3)' Let X and Y be uniform summands of M, with X n Y =O. Let 0 :f. x EX, by the 
same argument as in Theorem 3, we have xR ~ M(F) with xRnM(F-a) =0 for a finite F ~ I and a E F. Let 
B be a maximal essential extension of xR in M(F); hence B nM(F - a) =O. By Lemma 1 and since M(F - a) 
is Mo-injective, we have that M(F) =M; $ M(F - a) with B ~ M;; and hence M =M; $ M(I - a). Now 
for each a E X, we get a = c+ d where c EM; and dE M(I - a). Since xR ~e B ~e M; (due to M; ~ Mo 
uniform), there is a regular element s E R such that cs E x R. It follows that (a - c)s =ds E M; nM (I - a) =0; 
and thus d =0 (due to all being Mi non-singular). Then X ~$ M;; and hence X =M;. Now we have that 
M =X $ M(I - a), where Y n X =0 and X is M(I - a)-injective. Thus, again by LeIIll1;la 1, we have that 
M =X $ M*(I - a) with Y ~$ M*(I - a). Therefore X $ Y ~$ M. 

(2) => (3) follows from Lemma 16, and (3) => (1) is obvious. 
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