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ABSTRACT 

In this paper we shall study a regular right-definite eigenvalue problem for 
elliptic partial differential equation with eigenvalue parameter in the boundary 
conditions. We associate with it an essentially self-adjoint operator in suitably 
defined Hilbert space and develop associated eigenfunction expansion theorem. 
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EIGENFUNCTION EXPANSION ASSOCIATED WITH ELLIPTIC EIGENVALUE 

PROBLEM WITH EIGENVALUE PARAMETER IN THE BOUNDARY CONDITIONS 


1. INTRODUCTION 

Regular eigenvalue problem for the Laplace operator in R I with eigenvalue parameter in the boundary conditions 
have been studied by many authors, see for example, Fulton [1], Hinton [2], Walter [3], Schneider [4], Zayed and 
Ibrahim [5, 6], and Zayed [7]. But regular eigenvalue problems for the Laplace operator in R", n 2:: 2 with 
eigenvalue parameter in the boundary conditions have been studied by Canavati and Minzoni [8], Odhnoff [9], 
Eastham [10, 11], Zayed and Ibrahim [12], and many others. In the present paper we shall study a regular 
eigenvalue problem for the elliptic operator in R", n 2:: 2 with eigenvalue parameter in the boundary conditions. 

The problem to be discussed here can be formulated as follows: Let Q be a normal domain in RIl 
, n 2:: 2 with the 

smooth boundary aQ. We consider the following elliptic eigenvalue equation 

1 
t U :::: 	 - ( - E/I + q) U = AU in Q, ( 1.1) 

r 

with the mixed boundary condition 

U v + a(x)u AU, onaQ, (1.2) 

where we assume throughout that: 

/I a ( .au
(i) Ellu 	= L~. Pij(x) . 

i.)=i 	 a'\i a.\) 

=L11 	

Pu(x)u x ; Vj, where v = (v" ....,v
ll 

) is the outer unit normal of Q on its boundary aQ and(ii) 	 Uv 


i.)=1 


- ( . ) . ... RII h _ au .x - X 1' •••. ,.\/1 IS a genenc pomt m , were uX ; - , 

aXj 

(iii) 	 q(x) is a real-valued continuous function, and r(x) > 0 is a real-valued function such that r(x) E C(Q), 
Q = QUaQ and C(Q) is the space of all continuous functions which are defined on Q; 

(i\') Pij(X), i,j = I, ... ,n are real-valued functions which are continuously differentiable and Pij = Pj i; 


(\') a(x) is a real-valued continuous function for all x E aQ; 


(vi) 	 For an arbitrary complex function f(x) and a positive constant co' we have the "ellipticity condition"; 


II /I 


2L Pu (x)frilx ; 2:: Co L Ifr! 1, 	 (1.3) 

;.)=1 	 i=1 

for all x E 	Q; 

(vii) Ais a complex number. 

Definition 1.1. The eigenvalue problem (1.1) - (1.2) is said to be "regular" if Q is bounded and r(x) is defined on 
Q. 


Definition 1.2. The regular eigenvalue problem (1.1) (1.2) is said to be "right-definite" if r(x) is positive on Q. 


In this paper we give an operator-theoretic formulation of problem 0,1) - (1.2), by associating with it an 
essentially self-adjoint operator A with compact resolvent, and prove that the spectrum of A consists of unbounded 
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sequence of real eigenvalues. Moreover, we show that the eigenfunctions of A form a complete fundamental 
system in the Hilbert space H = L2 (n; r) ffi L2 (an), and then we prove an expansion theorem for A. 

2. HILBERT SPACE FORMULATION 

Let L 2 (n; r) and L 2 (an) be two complex Hilbert spaces of Lebesgue measurable functions I(x) in n and an 
respectively satisfying: 

2
(i) fr( x) II (x )1 dx < 00; 

n 

n 

where dx = dx, dx2••• dx
lI 

is the volume element corresponding to n, while ds is the surface element corresponding 
to an. 
Definition 2.1. We define a Hilbert space H of two component vectors by 

H= (n;r)ffiL2 (an); (2.1 ) 

with inner product 

[/,g]H = (/1,g'}n + (/2,g2}an 

=fl'(x)/1 (x)g, (x) dx + f 12 (X)g2 (x) ds; (2.2) 

n an 

and norm 

2 2"/II~ = fr(x)l/, (x)1 dx + f i/2 (x)1 ds; (2.3) 

n an 

for each I = (/1'12) and g (gl' g2) in H. 

Definition 2.2. Let H* be a set of all those elements I(x) satisfying 

(i) lEe' (n) (J c 2 (n); 

(ii) 
1 

(-EI/ + q)1 E L2 (n;r). 
r 


We define a linear operator A: D(A) ~ H by 


Af = (~( -E" + q)fl ,flY + cr(X)fl} (2.4) 

foreach/= (/1'/2) in D(A), in which the domain D(A) of A is defined as follows: 

D(A) = {(/ln,/lan) E H:I E H*}, (2.5) 

where II n (or II-an) is a restriction ofIon n (or on an) respectively. 

Remark 2.1. The parameter Ais an eigenvalue and I, is a corresponding eigenfunction of problem (1.1) (1.2) if 
and only if 

1= (/,,12) E D(A) and AI= Af. 

Therefore, the eigenvalues and the eigenfunctions of problem (1.1) (1.2) are equivalent to the eigenfunctions 
of A inH. 
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Lemma 2.1. D(A) is a dense subset of H with respect to the inner product (2.2). 

Proof Suppose that D(A) is not a dense subset of H with respect to the inner product (2.2), then there exists a non­
zero element 0 i 1= (II' h) E H such that 

[I, g]H =0 for all g =(gl' g2) E D(A). 

In particular 

(/"gl)n =0 for all gl E CI(O) n C2(n), 

which means that/l =: O. Hence, using (2.5) we obtain 

0= (/2,g2)an (/2.,gllan)an for all gl E C I(n)nC2(n), 

which means that/2 O. Thus/=: O. This is a contradiction. Hence D(A) is dense in H. 


Lemma 2.2. The linear operator A in H is symmetric. 


Proof Let (/1'12) and g = (gl' g2) be any two elements in D(A), then 


[AI,g]H = 	 (2.6)S{-!(Piij",)" +q/,}gl dx+ S{!Piij",Vi +cr/,}g2 ds. 
n 1 . ./=1 an 1./=1 


Making use of the formula (4) of Section 4.3 in [13], the above formula (2.6) becomes 


[Af,g]H 	 (2.7)S{tpi)j",gh' +q/,g,} dx~ Scr/lg2 ds+ S{t Pi) j", Vi}(g2 -gl) ds. 
n 1./=1 an an I./=! 


Because of (2.5) the last integral in (2.7) vanishes, and consequently 


(2.8)[A/,glH I{~Pii!L.j + q/,g,} dx + Lcr/, g, ds. 

Applying a similar argument, it follows that 

[j, Ag lH = I{~Pijj,'J + q/, g,} dx + Lcr/, g, ds. 	 (2.9) 

From (2.8) and (2.9) we find that 

[AI,g]H = [/,Ag]H' (2.10) 

Therefore A is a symmetric linear operator in H. 

Remark 2.2. 

(i) 	 Since A in H is symmetric, then it has only real eigenvalues 

(ii) 	 Since A in H is symmetric and its domain; D(A), is densely defined in H, then A is self-adjoint in H. 

(iii) 	 The density of the domain D (A) in H gives us the completeness of the orthonormal system of 
eigenfunctions of A. 

Lemma 2.3. Let/(x) be a complex-valued function such that I/(x)1 E C l(n), then 


2 2 2

JI/I(x)1 dX ~ 4J.l2 Sigrad II(x)1 dx + 2J.l JI/I(X) 1 dS, (2.11) 

n n an 
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where 

Jl = sup{lxI 1: x = (XI> ... , '\"'1) En}. 

Proof. Since (x)1 is a real-valued function and III (x)1 E Cl (Q), then by using Theorem 2 in [13, p.67], we have 

(2.12) 

Substituting the well known inequality: 

2{III (x)l xi r~ I/Lri (x)1 , X E n, (2.13) 

into (2.12) we arrive at (2.11). 

Lemma 2.4. The linear operator A in H is bounded from below. 

Proof. Let 1= (/1'/2) be any element in D(A). we have 

2 2 
[AI,/JH =f{!PidhJ", +QlfI 1}dX + fcrl/l1 ds. 	 (2.14) 

Q I.J=I 	 ()Q 

Making use of the ellipticity condition (1.3), the above formula (2.14) reduces to 

[AI, I]H ~ Co f igrad 1112 dx + fql/l12 dx + fcrill 12 ds. 	 (2.15) 

Q Q ~ 

With ~ =max (4Jl2, 2Jl), Lemma 2.3. gives the inequality 

2f1/112 ds ~ fIgrad 111 dx. 	 (2.16) 

()Q Q 

Substituting (2.16) into (2.15) we have 

f{
CO + ~q(X)} ., f 
 (2.17)[AI,/1H ~ -_.- r(x)l/l(x)l-dx + {cr(x) 
~r(x)

Q 	 ()Q 

Define a real number y as follows: 

y = min {inf[CO + ~q(X)], inf [cr(x) Co]}. 	 (2.18) 
xeQ ~r( x) xe()Q 

Then (2.17) can be written in the form 

[AI, I]H ~ YII/II~. (2.19) 

This proves that the linear operator A in H is bounded from below. 

Remark 2.3. 

(i) 	 If q(x) ~ 0 '\Ix E n and if cr(x) > Co '\Ix E an, then y> O. Under these assumptions we deduce that A in 

H is strictly positive and consequently A=0 is not an eigenvalue of A in H. 


(ii) Since A in H is symmetric and bounded from below, then for every eigenvalue A of A in H, A ~ y. 

Lemma 2.5. The linear operator A in H is unbounded from above. 

Proof. Let <Il(x) be a test function with compact support on n. We define a sequence this test function by 
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tllm (x) = tll(mx), XE n, m = 1,2, .... (2.20) 

On using the same argument of Lemma 2.4, we find that 

[A<I>,,,<I>mlH <! H~2 +Q(X)}I<I>m(X)1 
2 

dX, (2.21) 

Taking the limIt as m ---t 00 in (2.21), we obtain 

lim [Atllm' tllm]H = (2.22)00. 

m-"-7""" 

This proves that A in H is. unbounded from above. 

3. THE RESOLVENT OPERATOR AND THE EXPANSION THEOREM 

Under the assumptions that q(x) ;;::: 0 V'XE nand cr(x) > CoV'XE an, we have shown that A = 0 is not an 
eigenvalue of A in H. Then the inverse operator A-I of A exists in H. To study the operator A-I it is convenient to 
give an explicit formula for it in terms of the Green's function for problem (1.1) (1.2) with q(x) ;;::: O. 

Here it is difficult to characterize D(A-') = R(A), the range of A exactly. In any case, it is not true that 

because for such an I we· cannot in general find u = (u I, U 2 )E D( A) with Au = I. Hence, with reference to 
[13, Section 4.4] if Go (x, y) denotes the Green's function for problem (1.1) (1.2) with q(x) = 0 and if G(x, y) 
denotes the Green's.function for the same problem with q(x) > 0, then we have define A-' as follows: 

D(A-') = ((/ln,/lan) E H:/EC1(n)nC 2 (n)}; (3.1) 

A-':D(A-1 
) ---t H; 

A-I f = [I G{x,y) f,{y) r{y) dy, 1Go{x,y) fz{y) ds} (3.2) 

foreach/= (/1'/2) E D(A-1
); where 

G(x,y) Go(x,y) fGo(x,z) G(z,y) q(z) dz. (3.3) 

n 

Remark 3.1. 

(i) Applying a similar argument of Lemma 2.1., we can show that D(A-1) is dense in H. 

(ii) A-I is a linear operator in H. 

Remark 3.2. The Green's function Go(x, y) for fixed x E n is a fundamental solution of y with respect to n (see 
[13, Section 4.3]): 

Go(x,y) = S(x,y) + K(x,y). (3.4) 

where S(x, y) is a singularity function defined as follows: 

I1 X - 1 
2- 11 for n > 2,---- Y 


S(x, y) = (n - 2)0)/1 
 (3.5) 
- 1 loglx - yl for n 2. 

21t1 
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which is the solution of the equation Dr. 
II
U = 0 for x :;:. y, where roll denotes the surface of the unit ball in RII, while 

K(x, y) is a regular function satisfying the following: 

K(x, y) E C l (0) (l C 2 (0); 

Dr. /I K(x, y) = 0 in 0; 

Kv (x, y) + o(y)K (x, y) -{ Sv (x, y) + o(y )S(x, y)} on ao. 
Note that Go(x, y) and also G(x, y) will, by Section 4.4. in [13], satisfy estimates similar to (3.5); that is, 

Cl1x - yl2-n + C2 for n > 2, 
IG(x,y)1 ~ (3.6)

{CII loglx - yl I+ C2 for n = 2, 

where C I and can be determined. We can get (3.6) by using the maximum principle. See, for example, G. 
Hellwig [14]. 

Definition 3.1. We define linear operators B I and B2 as follows: 

(i) 	 D(Bd = {u E L2 (0; r) : U Eel (0) (l c 2(n)); 

B1u = JG(x,y) u(y) r(y) dy; 


n 


for each u E D(B 1). 

(ii) 	 D(B2 ) = {u E L2 (an): U E CI(Q)}; 

B2u = JGo(x,y) u(y) ds; 

an 

for each u E D(B2). 

Remark 3.3. 

(i) 	 With reference to [13, Section 7.4], we conclude that the linear operators B I and B2 are compact in L 2(0; r) 
and L2(an) respectively. Consequently, formula (3.2) shows that A-I is a compact linear operator in H. 

(ii) 	 Since A in H is symmetric, then A-I in H is also symmetric. 

(iii) Since D(A- I 
):;:. H, then A-I is an essentially self-adjoint operator. 


The results of our investigations are summarized in the following expansion theorem: 


Theorem 3.1. The spectrum of A consists of an unbounded sequence of real eigenvalues of finite multiplicity 
without accumulation point in (-00,00). Denoting them by 

o< AI ~ 1...2 ~ A3 ~ .... , with lim Ak = 00, 
k~OQ 

and the corresponding eigenfunctions by <PI, <P2, <P3, .... , we have {<Pk }k=1 forms a complete fundamental system 
in H and for every / E H we have the expansion formula 

"'" 

/ = L[/,<Pk]H<Pk; 	 (3.7) 

k=1 

in the sense of strong convergence in H. 

The above theorem has some corollaries for particular choices of the function / E H. 
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Corollary 3.1. If / = (/),0) E H,/I EL2«(l;r) then 

II = ~l[r(x)II (x)<I>" (x) dx J<I>" (x), 

and 

where <bk =(<bu , <bk2) are eigenfunctions of Theorem 3.1. 

Corollary 3.2. If/= (0'/2) E H, /2 E L2( a(l) , then 

o = 	~ [If, (x)<I>n(x) ds J<I>" (x), 

and 
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