EIGENFUNCTION EXPANSION ASSOCIATED WITH ELLIPTIC EIGENVALUE PROBLEM WITH EIGENVALUE PARAMETER IN THE BOUNDARY CONDITIONS

S. F. M. Ibrahim
Mathematics Department, Faculty of Education
Ain Shams University, Roxy, Cairo, Egypt

الملاصة :

ندرس في هذا البحث مسألة القيمة الذاتية المنتظمة والمكـوُّنـة من معادلة تفاضلية جزئية بالاضانـة

 الذاتية المرتبطة بهذه المسالة .

Abstract

In this paper we shall study a regular right-definite eigenvalue problem for elliptic partial differential equation with eigenvalue parameter in the boundary conditions. We associate with it an essentially self-adjoint operator in suitably defined Hilbert space and develop associated eigenfunction expansion theorem. Key words and phrases: An expansion theorem, an elliptic operator, right-definite eigenvalue problems, eigenvalue parameter in the boundary conditions, Hilbert space formulation.

1980 AMS subject classification code (1985): 35J, 58 G 25.

EIGENFUNCTION EXPANSION ASSOCIATED WITH ELLIPTIC EIGENVALUE PROBLEM WITH EIGENVALUE PARAMETER IN THE BOUNDARY CONDITIONS

1. INTRODUCTION

Regular eigenvalue problem for the Laplace operator in R^{1} with eigenvalue parameter in the boundary conditions have been studied by many authors, see for example, Fulton [1], Hinton [2], Walter [3], Schneider [4], Zayed and Ibrahim [5, 6], and Zayed [7]. But regular eigenvalue problems for the Laplace operator in $R^{n}, n \geq 2$ with eigenvalue parameter in the boundary conditions have been studied by Canavati and Minzoni [8], Odhnoff [9], Eastham [10, 11], Zayed and Ibrahim [12], and many others. In the present paper we shall study a regular eigenvalue problem for the elliptic operator in $R^{n}, n \geq 2$ with eigenvalue parameter in the boundary conditions.

The problem to be discussed here can be formulated as follows: Let Ω be a normal domain in $R^{n}, n \geq 2$ with the smooth boundary $\partial \Omega$. We consider the following elliptic eigenvalue equation

$$
\begin{equation*}
\tau u=\frac{1}{r}\left(-E_{n}+q\right) u=\lambda u \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

with the mixed boundary condition

$$
\begin{equation*}
u_{v}+\sigma(\mathbf{x}) u=\lambda u, \quad \text { on } \partial \Omega \tag{1.2}
\end{equation*}
$$

where we assume throughout that:
(i) $\quad E_{I \prime} u=\sum_{i, j=1}^{\prime \prime} \frac{\partial}{\partial x_{i}}\left(p_{i j}(\mathbf{x}) \frac{\partial u}{\partial x_{j}}\right)$;
(ii) $u_{v}=\sum_{i, j=1}^{n} p_{i j}(\mathbf{x}) u_{v_{j}} v_{i}$, where $v=\left(v_{l}, \ldots ., v_{n}\right)$ is the outer unit normal of Ω on its boundary $\partial \Omega$ and $\mathbf{x}=\left(\mathbf{x}_{1}, \ldots, x_{n}\right)$ is a generic point in R^{n}, where $u_{x_{j}}=\frac{\partial u}{\partial x_{j}} ;$
(iii) $q(\mathbf{x})$ is a real-valued continuous function, and $r(\mathbf{x})>0$ is a real-valued function such that $r(\mathbf{x}) \in C(\bar{\Omega})$, $\bar{\Omega}=\Omega U \partial \Omega$ and $C(\bar{\Omega})$ is the space of all continuous functions which are defined on $\bar{\Omega}$;
(iv) $p_{i j}(\mathbf{x}), i, j=1, \ldots, n$ are real-valued functions which are continuously differentiable and $p_{i j}=p_{j i}$;
(v) $\sigma(\mathbf{x})$ is a real-valued continuous function for all $\mathbf{x} \in \partial \Omega$;
(vi) For an arbitrary complex function $f(\mathbf{x})$ and a positive constant c_{0}, we have the "ellipticity condition";
$\sum_{i, j=1}^{n} p_{i j}(\mathbf{x}) f_{x_{i}} \bar{f}_{x_{i}} \geq c_{0} \sum_{i=1}^{n}\left|f_{x_{i}}\right|^{2}$,
for all $\mathbf{x} \in \Omega$;
(vii) λ is a complex number.

Definition 1.1. The eigenvalue problem (1.1) - (1.2) is said to be "regular" if Ω is bounded and $r(\mathbf{x})$ is defined on $\bar{\Omega}$.
Definition 1.2. The regular eigenvalue problem (1.1) - (1.2) is said to be "right-definite" if $r(\mathbf{x})$ is positive on $\bar{\Omega}$.
In this paper we give an operator-theoretic formulation of problem (1.1) - (1.2), by associating with it an essentially self-adjoint operator A with compact resolvent, and prove that the spectrum of A consists of unbounded
sequence of real eigenvalues. Moreover, we show that the eigenfunctions of A form a complete fundamental system in the Hilbert space $H=L^{2}(\Omega ; r) \oplus L^{2}(\partial \Omega)$, and then we prove an expansion theorem for A.

2. HILBERT SPACE FORMULATION

Let $L^{2}(\Omega ; r)$ and $L^{2}(\partial \Omega)$ be two complex Hilbert spaces of Lebesgue measurable functions $f(\mathbf{x})$ in Ω and $\partial \Omega$ respectively satisfying:
(i) $\int_{\Omega} r(\mathbf{x})|f(\mathbf{x})|^{2} \mathrm{~d} \mathbf{x}<\infty ;$
(ii) $\int_{\Omega}|f(\mathbf{x})|^{2} \mathrm{~d} s<\infty$;
where $\mathrm{d} \mathbf{x}=\mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n}$ is the volume element corresponding to Ω, while $\mathrm{d} s$ is the surface element corresponding to $\partial \Omega$.

Definition 2.1. We define a Hilbert space H of two component vectors by

$$
\begin{equation*}
H=L^{2}(\Omega ; r) \oplus L^{2}(\partial \Omega) ; \tag{2.1}
\end{equation*}
$$

with inner product

$$
\begin{align*}
{[f, g]_{H} } & =\left\langle f_{1}, g_{1}\right\rangle_{\Omega}+\left\langle f_{2}, g_{2}\right\rangle_{\partial \Omega} \\
& =\int_{\Omega} r(\mathbf{x}) f_{1}(\mathbf{x}) \overline{g_{1}(\mathbf{x})} \mathrm{d} x+\int_{\partial \Omega} f_{2}(\mathbf{x}) \overline{g_{2}(\overline{\mathbf{x}})} \mathrm{d} s ; \tag{2.2}
\end{align*}
$$

and norm

$$
\begin{equation*}
\|f\|_{H}^{2}=\int_{\Omega} r(\mathbf{x})\left|f_{1}(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}+\int_{\partial \Omega}\left|f_{2}(\mathbf{x})\right|^{2} \mathrm{~d} s ; \tag{2.3}
\end{equation*}
$$

for each $f=\left(f_{1}, f_{2}\right)$ and $g=\left(g_{1}, g_{2}\right)$ in H.
Definition 2.2. Let H^{*} be a set of all those elements $f(\mathbf{x})$ satisfying
(i) $f \in C^{1}(\bar{\Omega}) \cap C^{2}(\Omega)$;
(ii) $\frac{1}{r}\left(-E_{n}+q\right) f \in L^{2}(\Omega ; r)$.

We define a linear operator $A: D(A) \rightarrow H$ by

$$
\begin{equation*}
A f=\left(\frac{1}{r}\left(-E_{n}+q\right) f_{1}, f_{1 v}+\sigma(\mathbf{x}) f_{1}\right) ; \tag{2.4}
\end{equation*}
$$

for each $f=\left(f_{1}, f_{2}\right)$ in $D(A)$, in which the domain $D(A)$ of A is defined as follows:
$D(A)=\left\{\left(\left.f\right|_{\Omega},\left.f\right|_{\partial \Omega}\right) \in H: f \in H^{*}\right\}$,
where $\left.f\right|_{\Omega}$ (or $\left.f\right|_{\partial \Omega}$) is a restriction of f on Ω (or on $\partial \Omega$) respectively.
Remark 2.1. The parameter λ is an eigenvalue and f_{1} is a corresponding eigenfunction of problem (1.1)-(1.2) if and only if

$$
f=\left(f_{1}, f_{2}\right) \in D(A) \text { and } A f=\lambda f .
$$

Therefore, the eigenvalues and the eigenfunctions of problem (1.1)-(1.2) are equivalent to the eigenfunctions of A in H.

Lemma 2.1. $D(A)$ is a dense subset of H with respect to the inner product (2.2).
Proof. Suppose that $D(A)$ is not a dense subset of H with respect to the inner product (2.2), then there exists a nonzero element $\mathbf{0} \neq f=\left(f_{1}, f_{2}\right) \in H$ such that

$$
[f, g]_{H}=0 \text { for all } g=\left(g_{1}, g_{2}\right) \in D(A) .
$$

In particular

$$
\left\langle f_{1}, g_{1}\right\rangle_{\Omega}=0 \text { for all } g_{1} \in C^{1}(\bar{\Omega}) \cap C^{2}(\Omega),
$$

which means that $f_{1} \equiv 0$. Hence, using (2.5) we obtain

$$
0=\left\langle f_{2}, g_{2}\right\rangle_{\partial \Omega}=\left\langle f_{2} ;\left.g_{1}\right|_{\partial \Omega}\right\rangle_{\partial \Omega} \text { for all } g_{1} \in C^{1}(\bar{\Omega}) \cap C^{2}(\Omega),
$$

which means that $f_{2} \equiv 0$. Thus $f \equiv \mathbf{0}$. This is a contradiction. Hence $D(A)$ is dense in H.
Lemma 2.2. The linear operator A in H is symmetric.
Proof. Let $f=\left(f_{1}, f_{2}\right)$ and $g=\left(g_{1}, g_{2}\right)$ be any two elements in $D(A)$, then

$$
\begin{equation*}
[A f, g]_{H}=\int_{\Omega}\left\{-\sum_{i, j=1}^{n}\left(p_{i j} f_{1 x_{j}}\right)_{x_{j}}+q f_{1}\right\} \bar{g}_{1} \mathrm{~d} \mathbf{x}+\int_{\partial \Omega}\left\{\sum_{i, j=1}^{n} p_{i j} f_{1 x_{j}} v_{i}+\sigma f_{1}\right\} \bar{g}_{2} \mathrm{~d} s . \tag{2.6}
\end{equation*}
$$

Making use of the formula (4) of Section 4.3 in [13], the above formula (2.6) becomes

$$
\begin{equation*}
[A f, g]_{H}=\int_{\Omega}\left\{\sum_{i, j=1}^{n} p_{i j} f_{1, x_{j}} \bar{g}_{1 x_{i}}+q f_{1} \bar{g}_{1}\right\} \mathrm{d} \mathbf{x}+\int_{\partial \Omega} \sigma f_{1} \bar{g}_{2} \mathrm{~d} s+\int_{\partial \Omega}\left\{\sum_{i, j=1}^{n} p_{i j} f_{1 x_{j}} v_{i}\right\}\left(\bar{g}_{2}-\bar{g}_{1}\right) \mathrm{d} s . \tag{2.7}
\end{equation*}
$$

Because of (2.5) the last integral in (2.7) vanishes, and consequently

$$
\begin{equation*}
[A f, g]_{H}=\int_{\Omega}\left\{\sum_{i, j=1}^{n} p_{i j} f_{1 x_{j}} \bar{g}_{1 x_{i}}+q f_{1} \bar{g}_{1}\right\} \mathrm{d} \mathbf{x}+\int_{\partial \Omega} \sigma f_{1} \bar{g}_{1} \mathrm{~d} s . \tag{2.8}
\end{equation*}
$$

Applying a similar argument, it follows that

$$
\begin{equation*}
[f, A g]_{H}=\int_{\Omega}\left\{\sum_{i, j=1}^{n} p_{i j} f_{1 x_{j}} \bar{g}_{1 x_{i}}+q f_{1} \bar{g}_{1}\right\} \mathrm{d} \mathbf{x}+\int_{\partial \Omega} \sigma f_{1} \bar{g}_{1} \mathrm{~d} s . \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9) we find that

$$
\begin{equation*}
[A f, g]_{H}=[f, A g]_{H} \tag{2.10}
\end{equation*}
$$

Therefore A is a symmetric linear operator in H.

Remark 2.2.

(i) Since A in H is symmetric, then it has only real eigenvalues
(ii) Since A in H is symmetric and its domain; $D(A)$, is densely defined in H, then A is self-adjoint in H.
(iii) The density of the domain $D(A)$ in H gives us the completeness of the orthonormal system of eigenfunctions of A.
Lemma 2.3. Let $f(\mathbf{x})$ be a complex-valued function such that $|f(\mathbf{x})| \in C^{1}(\bar{\Omega})$, then

$$
\begin{equation*}
\int_{\Omega}\left|f_{1}(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x} \leq 4 \mu^{2} \int_{\Omega}\left|\operatorname{grad} f_{1}(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}+2 \mu \int_{\partial \Omega}\left|f_{1}(\mathbf{x})\right|^{2} \mathrm{~d} s \tag{2.11}
\end{equation*}
$$

where

$$
\mu=\sup \left\{\left|x_{1}\right|: \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Omega\right\}
$$

Proof. Since $\left|f_{1}(\mathbf{x})\right|$ is a real-valued function and $\left|f_{1}(\mathbf{x})\right| \in C^{1}(\bar{\Omega})$, then by using Theorem 2 in [13, p.67], we have

$$
\begin{equation*}
\left.\int_{\Omega}\left|f_{1}(\mathbf{x})^{2} \mathrm{~d} \mathbf{x} \leq 4 \mu^{2} \int_{\Omega} \sum_{i=1}^{n}\left\{\left|f_{1}(\mathbf{x})\right|_{x_{i}}\right\}^{2} \mathrm{~d} \mathbf{x}+2 \mu \int_{\partial \Omega}\right| f_{1}(\mathbf{x})\right|^{2} \mathrm{~d} s \tag{2.12}
\end{equation*}
$$

Substituting the well known inequality:

$$
\begin{equation*}
\left\{\left|f_{l}(\mathbf{x})\right|_{x_{i}}\right\}^{2} \leq\left|f_{1 x_{i}}(\mathbf{x})\right|^{2}, \mathbf{x} \in \Omega \tag{2.13}
\end{equation*}
$$

into (2.12) we arrive at (2.11).
Lemma 2.4. The linear operator A in H is bounded from below.
Proof. Let $f=\left(f_{1}, f_{2}\right)$ be any element in $D(A)$. We have

$$
\begin{equation*}
[A f, f]_{H}=\int_{\Omega}\left\{\sum_{i, j=1}^{n} p_{i j} f_{\mathrm{l}, j_{j}} \bar{f}_{1 x_{i}}+q\left|f_{\mathrm{l}}\right|^{2}\right\} \mathrm{d} \mathbf{x}+\int_{\partial \Omega} \sigma\left|f_{1}\right|^{2} \mathrm{~d} s . \tag{2.14}
\end{equation*}
$$

Making use of the ellipticity condition (1.3), the above formula (2.14) reduces to

$$
\begin{equation*}
[A f, f]_{H} \geq\left. c_{o} \int_{\Omega} \operatorname{grad} f_{1}\right|^{2} \mathrm{~d} \mathbf{x}+\int_{\Omega} q\left|f_{1}\right|^{2} \mathrm{~d} \mathbf{x}+\int_{\partial \Omega} \sigma\left|f_{1}\right|^{2} \mathrm{~d} s . \tag{2.15}
\end{equation*}
$$

With $\beta=\max \left(4 \mu^{2}, 2 \mu\right)$, Lemma 2.3. gives the inequality

$$
\begin{equation*}
\frac{1}{\beta} \int_{\Omega}\left|f_{1}\right|^{2} \mathrm{~d} \mathbf{x}-\int_{\partial \Omega}\left|f_{1}\right|^{2} \mathrm{~d} s \leq \int_{\Omega}\left|\operatorname{grad} f_{1}\right|^{2} \mathrm{~d} \mathbf{x} . \tag{2.16}
\end{equation*}
$$

Substituting (2.16) into (2.15) we have

$$
\begin{equation*}
[A f, f]_{H} \geq \int_{\Omega}\left\{\frac{c_{\mathrm{o}}+\beta q(\mathbf{x})}{\beta r(\mathbf{x})}\right\} r(\mathbf{x})\left|f_{1}(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}+\int_{\partial \Omega}\left\{\sigma(\mathbf{x})-c_{\mathrm{o}}\right\}\left|f_{1}(\mathbf{x})\right|^{2} \mathrm{~d} s \tag{2.17}
\end{equation*}
$$

Define a real number γ as follows:

$$
\begin{equation*}
\gamma=\min \left\{\inf _{\mathbf{x} \in \Omega}\left[\frac{c_{\mathrm{o}}+\beta q(\mathbf{x})}{\beta r(\mathbf{x})}\right], \inf _{\mathbf{x} \in \Omega \Omega}\left[\sigma(\mathbf{x})-c_{\mathrm{o}}\right]\right\} . \tag{2.18}
\end{equation*}
$$

Then (2.17) can be written in the form

$$
\begin{equation*}
[A f, f]_{H} \geq \gamma\|f\|_{H}^{2} . \tag{2.19}
\end{equation*}
$$

This proves that the linear operator A in H is bounded from below.

Remark 2.3.

(i) If $q(\mathbf{x}) \geq 0 \forall \mathbf{x} \in \bar{\Omega}$ and if $\sigma(\mathbf{x})>c_{\mathrm{o}} \forall \mathbf{x} \in \partial \Omega$, then $\gamma>0$. Under these assumptions we deduce that A in H is strictly positive and consequently $\lambda=0$ is not an eigenvalue of A in H.
(ii) Since A in H is symmetric and bounded from below, then for every eigenvalue λ of A in $H, \lambda \geq \gamma$.

Lemma 2.5. The linear operator A in H is unbounded from above.
Proof. Let $\Phi(\mathbf{x})$ be a test function with compact support on $\bar{\Omega}$. We define a sequence this test function by

$$
\begin{equation*}
\Phi_{m}(\mathbf{x})=\Phi(m \mathbf{x}), \quad \mathbf{x} \in \bar{\Omega}, \quad m=1,2, \ldots \tag{2.20}
\end{equation*}
$$

On using the same argument of Lemma 2.4 , we find that

$$
\begin{equation*}
\left[A \Phi_{m}, \Phi_{m}\right]_{H} \geq\left.\int_{\Omega}\left\{\frac{m^{2}}{\beta}+q(\mathbf{x})\right\} \Phi_{m}(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}_{9} \tag{2.21}
\end{equation*}
$$

Taking the limit as $m \rightarrow \infty$ in (2.21), we obtain

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left[A \Phi_{m}, \Phi_{m}\right]_{H}=\infty \tag{2.22}
\end{equation*}
$$

This proves that A in H is unbounded from above.

3. THE RESOLVENT OPERATOR AND THE EXPANSION THEOREM

Under the assumptions that $q(\mathbf{x}) \geq 0 \forall \mathbf{x} \in \bar{\Omega}$ and $\sigma(\mathbf{x})>c_{0} \forall \mathbf{x} \in \partial \Omega$, we have shown that $\lambda=0$ is not an eigenvalue of A in H. Then the inverse operator A^{-1} of A exists in H. To study the operator A^{-1} it is convenient to give an explicit formula for it in terms of the Green's function for problem (1.1)-(1.2) with $q(\mathbf{x}) \geq 0$.

Here it is difficult to characterize $D\left(A^{-1}\right)=R(A)$, the range of A exactly. In any case, it is not true that

$$
D\left(A^{-1}\right)=\left\{\left(\left.f\right|_{\Omega},\left.f\right|_{\partial \Omega}\right) \in H: f \in C^{\circ}(\bar{\Omega})\right\}
$$

because for such an f we cannot in general find $u=\left(u_{1}, u_{2}\right) \in D(A)$ with $A u=f$. Hence, with reference to [13, Section 4.4] if $G_{0}(\mathbf{x}, \mathbf{y})$ denotes the Green's function for problem (1.1) - (1.2) with $q(\mathbf{x})=0$ and if $G(\mathbf{x}, \mathbf{y})$ denotes the Green's function for the same problem with $q(\mathbf{x})>0$, then we have define A^{-1} as follows:

$$
\begin{align*}
& D\left(A^{-1}\right)=\left\{\left(\left.f\right|_{\Omega},\left.f\right|_{\partial \Omega}\right) \in H: f \in C^{1}(\bar{\Omega}) \cap C^{2}(\Omega)\right\} \tag{3.1}\\
& A^{-1}: D\left(A^{-1}\right) \rightarrow H \\
& A^{-1} f=\left(\int_{\Omega} G(\mathbf{x}, \mathbf{y}) f_{1}(\mathbf{y}) r(\mathbf{y}) \mathrm{d} \mathbf{y}, \int_{\partial \Omega} G_{o}(\mathbf{x}, \mathbf{y}) \quad f_{2}(\mathbf{y}) \mathrm{d} s\right) \tag{3.2}
\end{align*}
$$

for each $f=\left(f_{1}, f_{2}\right) \in D\left(A^{-1}\right)$; where

$$
\begin{equation*}
G(\mathbf{x}, \mathbf{y})=G_{0}(\mathbf{x}, \mathbf{y})-\int_{\Omega} G_{0}(\mathbf{x}, \mathbf{z}) \quad G(\mathbf{z}, \mathbf{y}) \quad q(\mathbf{z}) \mathrm{d} \mathbf{z} \tag{3.3}
\end{equation*}
$$

Remark 3.1.

(i) Applying a similar argument of Lemma 2.1., we can show that $D\left(A^{-1}\right)$ is dense in H.
(ii) A^{-1} is a linear operator in H.

Remark 3.2. The Green's function $G_{0}(\mathbf{x}, \mathbf{y})$ for fixed $\mathbf{x} \in \bar{\Omega}$ is a fundamental solution of \mathbf{y} with respect to Ω (see [13, Section 4.3]):

$$
\begin{equation*}
G_{\mathrm{o}}(\mathbf{x}, \mathbf{y})=S(\mathbf{x}, \mathbf{y})+K(\mathbf{x}, \mathbf{y}) \tag{3.4}
\end{equation*}
$$

where $S(\mathbf{x}, \mathbf{y})$ is a singularity function defined as follows:

$$
S(\mathbf{x}, \mathbf{y})= \begin{cases}\frac{1}{(n-2) \omega_{n}}|\mathbf{x}-\mathbf{y}|^{2-n} & \text { for } n>2 \tag{3.5}\\ -\frac{1}{2 \pi} \log |\mathbf{x}-\mathbf{y}| & \text { for } n=2\end{cases}
$$

which is the solution of the equation $\Delta_{n} u=0$ for $\mathbf{x} \neq \mathbf{y}$, where ω_{n} denotes the surface of the unit ball in R^{n}, while $K(\mathbf{x}, \mathbf{y})$ is a regular function satisfying the following:

$$
\begin{aligned}
& K(\mathbf{x}, \mathbf{y}) \in C^{1}(\bar{\Omega}) \cap C^{2}(\Omega) \\
& \Delta_{n} K(\mathbf{x}, \mathbf{y})=0 \text { in } \Omega \\
& K_{v}(\mathbf{x}, \mathbf{y})+\sigma(\mathbf{y}) K(\mathbf{x}, \mathbf{y})=-\left\{S_{\mathrm{v}}(\mathbf{x}, \mathbf{y})+\sigma(\mathbf{y}) S(\mathbf{x}, \mathbf{y})\right\} \text { on } \partial \Omega
\end{aligned}
$$

Note that $G_{0}(\mathbf{x}, \mathbf{y})$ and also $G(\mathbf{x}, \mathbf{y})$ will, by Section 4.4. in [13], satisfy estimates similar to (3.5); that is,

$$
|G(\mathbf{x}, \mathbf{y})| \leq \begin{cases}c_{1}|\mathbf{x}-\mathbf{y}|^{2-n}+c_{2} & \text { for } n>2 \tag{3.6}\\ c_{1}|\log | \mathbf{x}-\mathbf{y}| |+c_{2} & \text { for } n=2\end{cases}
$$

where c_{1} and c_{2} can be determined. We can get (3.6) by using the maximum principle. See, for example, G. Hellwig [14].

Definition 3.1. We define linear operators B_{1} and B_{2} as follows:
(i) $D\left(B_{1}\right)=\left\{u \in L^{2}(\Omega ; r): u \in C^{1}(\bar{\Omega}) \cap C^{2}(\Omega)\right\}$;

$$
B_{1} u=\int_{\Omega} G(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) r(\mathbf{y}) \mathrm{d} \mathbf{y}
$$

for each $u \in D\left(B_{1}\right)$.
(ii) $D\left(B_{2}\right)=\left\{u \in L^{2}(\partial \Omega): u \in C^{1}(\bar{\Omega})\right\}$;
$B_{2} u=\int_{\partial \Omega} G_{0}(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) \mathrm{d} s ;$
for each $u \in D\left(B_{2}\right)$.

Remark 3.3.

(i) With reference to [13, Section 7.4], we conclude that the linear operators B_{1} and B_{2} are compact in $L^{2}(\Omega, r)$ and $L^{2}(\partial \Omega)$ respectively. Consequently, formula (3.2) shows that A^{-1} is a compact linear operator in H.
(ii) Since A in H is symmetric, then A^{-1} in H is also symmetric.
(iii) Since $D\left(A^{-1}\right) \neq H$, then A^{-1} is an essentially self-adjoint operator.

The results of our investigations are summarized in the following expansion theorem:
Theorem 3.1. The spectrum of A consists of an unbounded sequence of real eigenvalues of finite multiplicity without accumulation point in $(-\infty, \infty)$. Denoting them by

$$
0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots, \text { with } \lim _{k \rightarrow \infty} \lambda_{k}=\infty
$$

and the corresponding eigenfunctions by $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$, , we have $\left\{\Phi_{k}\right\}_{k=1}^{\infty}$ forms a complete fundamental system in H and for every $f \in H$ we have the expansion formula

$$
\begin{equation*}
f=\sum_{k=1}^{\infty}\left[f, \Phi_{k}\right]_{H} \Phi_{k} \tag{3.7}
\end{equation*}
$$

in the sense of strong convergence in H.
The above theorem has some corollaries for particular choices of the function $f \in H$.

Corollary 3.1. If $f=\left(f_{1}, 0\right) \in H, f_{1} \in L^{2}(\Omega ; r)$ then

$$
f_{1}=\sum_{k=1}^{\infty}\left(\int_{\Omega} r(\mathbf{x}) f_{1}(\mathbf{x}) \boldsymbol{\Phi}_{k 1}(\mathbf{x}) \mathrm{d} \mathbf{x}\right) \boldsymbol{\Phi}_{k 1}(\mathbf{x}),
$$

and

$$
0=\sum_{k=1}^{\infty}\left(\int_{\Omega} r(\mathbf{x}) f_{1}(\mathbf{x}) \boldsymbol{\Phi}_{k 1}(\mathbf{x}) \mathrm{d} \mathbf{x}\right) \boldsymbol{\Phi}_{k 2}(\mathbf{x})
$$

where $\Phi_{k}=\left(\Phi_{k 1}, \Phi_{k 2}\right)$ are eigenfunctions of Theorem 3.1.
Corollary 3.2. If $f=\left(0, f_{2}\right) \in H, f_{2} \in L^{2}(\partial \Omega)$, then

$$
0=\sum_{k=1}^{\infty}\left(\int_{\partial \Omega} f_{2}(\mathbf{x}) \boldsymbol{\Phi}_{k 2}(\mathbf{x}) \mathrm{d} s\right) \boldsymbol{\Phi}_{k 1}(\mathbf{x})
$$

and

$$
f_{2}=\sum_{k=1}^{\infty}\left(\int_{\partial \Omega} f_{2}(\mathbf{x}) \Phi_{k 2}(\mathbf{x}) \mathrm{d} s\right) \boldsymbol{\Phi}_{k 2}(\mathbf{x})
$$

REFERENCES

[1] C. T. Fulton, "Two-Point Boundary Value Problem with Eigenvalue Parameter Contained in the Boundary Conditions", Proc. Royal Soc. Edinburgh, 77A (1977), pp. 293-308.
[2] D. B. Hinton, "An Expansion Theorem for an Eigenvalue Problem with Eigenvalue Parameter in the Boundary Condition", Quart. J. Math. Oxford (2), 30 (1979), pp. 33-42.
[3] J. Walter, "Regular Eigenvalue Problems with Eigenvalue Parameter in the Boundary Condition", Math. Z., 133 (1973), pp. 301-312.
[4] A. Schneider, "A Note on Eigenvalue Problem with Eigenvalue Parameter in the Boundary Conditions", Math. Z., 136 (1974), pp. 163-167.
[5] E. M. E. Zayed and S. F. M. Ibrahim, "Eigenfunction Expansion for a Regular Fourth Order Eigenvalue Problem with Eigenvalue Parameter in the Boundary Conditions", Internat. J. Math. \& Math. Sci., 12(2) (1989), pp. 341-348.
[6] E. M. E. Zayed and S. F. M. Ibrahim, "Regular Eigenvalue Problem with Eigenparameter in the Boundary Conditions", Bull. Cal. Math. Soc., 84 (1992), pp. 379-393.
[7] E. M. E. Zayed, "Regular Eigenvalue Problem with Eigenvalue Parameter in the Boundary Conditions", Proc. Math. Phys. Soc. Egypt, 58 (1984), pp. 55-62.
[8] J. A. Canavati and A. A. Minzoni, "A Discontinuous Steklov Problem with an Application in Water Waves", J. Math. Anal. Appl., 69 (1979), pp. 540-558.
[9] J. Odhnoff, "Operators Generated by Differential Problems with Eigenvalue Parameter in Equation and Boundary Condition", Meddi. Lunds. Unir. Mat. Sem., 14 (1959), pp. 1-80.
[10] M. S. P. Eastham, "An Eigenvalue Problem with the Parameter in the Boundary Condition", Quart. J. Math. Oxford (2), 13 (1962), pp. 304-320.
[11] M. S. P. Eastham, "An Eigenvalue Problem with the Parameter in the Boundary Condition", Quart. J. Math. Oxford (2), 14 (1963), pp. 259-272.
[12] E. M. E. Zayed and S. F. M. Ibrahim, "Regular Eigenvalue Problem with Eigenparameter Contained in the Equation and the Boundary Conditions", Internat. J. Math. \& Math. Sci., 13(4) (1990), pp. 651-660.
[13] G. Hellwig, Differential Operators in Mathematical Physics. New York: Addison-Wesley, 1967.
[14] G. Hellwig, Partial Differential Equations. New York, Toronto, London: Addison-Wesley, 1964.
Paper Received 5 April 1993; Revised 23 April 1994.

