AN ERROR ANALYSIS FOR THE SECANT METHOD UNDER GENERALIZED ZABREJKO-NGUEN-TYPE ASSUMPTIONS

Ioannis K. Argyros

Cameron University
Department of Mathematics
Lawton, OK 73505, U.S.A.

الملاصـة :

 بطريقة القاطع في نضاء بناخ .

Abstract

An error analysis for the secant method in Banach spaces is provided under generalized Zabrejko-Nguen Assumptions.

Keywords and Phrases: Secant method, Banach space. AMS (MOS) Subject Classifications: $47 \mathrm{H} 17,65 \mathrm{H} 10,65 \mathrm{~J} 15$.

AN ERROR ANALYSIS FOR THE SECANT METHOD UNDER GENERALIZED ZABREJKO-NGUEN-TYPE ASSUMPTIONS

INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique solution x^{*} of the equation

$$
\begin{equation*}
F(x)+G(x)=0, \tag{1}
\end{equation*}
$$

where F, G are nonlinear operators defined on some convex subset D of a Banach space E_{1} with values in a Banach space E_{2}.

Sufficient conditions for the convergence of the secant method

$$
\begin{equation*}
x_{n+1}=x_{n}-\delta F\left(x_{n-1}, x_{n}\right)^{-1}\left(F\left(x_{n}\right)+G\left(x_{n}\right)\right), x_{-1}, \quad x_{0} \in D, \quad n \geq 0 \tag{2}
\end{equation*}
$$

have been given by many authors under various assumptions (see, e.g. [1-14] and the references there). Here the divided differences $\delta F\left(x_{n-1}, x_{n}\right) \in L\left(E_{1}, E_{2}\right)$ for all $n \geq 0$.

We assume that $\delta F\left(x_{-1}, x_{0}\right)^{-1}$ exists for $x_{-1} \neq x_{0}$, and

$$
\begin{equation*}
\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(\delta F\left(x+h_{1}, y+h_{2}\right)-\delta F(x, y)\right)\right\| \leq D_{1}\left(t_{1}+\left\|h_{1}\right\|, t_{1}\right)+D_{2}\left(t_{2}+\left\|h_{2}\right\|, t_{2}\right), \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(G\left(z+h_{3}\right)-G(x)\right)\right\| \leq c\left(t_{3}+\left\|h_{3}\right\|\right)-c\left(t_{3}\right) \tag{4}
\end{equation*}
$$

for all $x \in U\left(x_{0}, t_{1}\right)=\left\{x \in E_{1} \mid\left\|x-x_{0}\right\| \leq t_{1}\right\}, y \in U\left(x_{0}, t_{2}\right), z \in U\left(x_{0}, t_{3}\right),\left\|h_{1}\right\| \leq R-t_{1}$,
$\left\|h_{2}\right\| \leq R-t_{2}$, and $\left\|h_{3}\right\| \leq R-t_{3}$, for some fixed $R>0$.
D_{1}, D_{2} are nonnegative and continuous functions of two variables such that if one of the variables is fixed, then D_{1}, D_{2} are nondecreasing functions of the other on the interval $[0, R]$, with $D_{1}(0,0)=D_{2}(0,0)=0$. The function c is nonnegative and nondecreasing on $[0, R]$, with $c(0)=0$.

Using the majorant method and the above conditions we will provide an error analysis for the secant method. Our estimates on the distances $\left\|x_{n+1}-x_{n}\right\|$ and $\left\|x_{n}-x^{*}\right\|$, generalize earlier ones [2-14], when $G=0$ on D (or not). We also show how to choose the functions D_{1}, D_{2}, and c.

CONVERGENCE ANALYSIS

We will need to introduce the constants

$$
\begin{align*}
& r_{-1}=0, \quad r_{0}=\left\|x_{-1}-x_{0}\right\|>0, \quad r_{1}=r_{0}+\left\|x_{1}-x_{0}\right\|>0, \tag{5}\\
& a=1-\left[D_{1}(R, 0)+D_{2}(R, 0)+D_{1}\left(r_{0}, 0\right)\right], \tag{6}
\end{align*}
$$

the sequences for all $n \geq 0$

$$
\begin{align*}
& r_{n+2}=r_{n+1}+\frac{1}{a_{n+1}}\left\{\int_{r_{n}}^{r_{n+1}}\left[D_{1}\left(t, r_{n-1}\right)+D_{2}\left(t, r_{n}\right)\right] \mathrm{d} t+c\left(r_{n+1}\right)-c\left(r_{n}\right)\right\}, \tag{7}\\
& a_{n+1}=1-\left[D_{1}\left(r_{n}, 0\right)+D_{2}\left(r_{n+1}, 0\right)+D_{1}\left(r_{0}, 0\right)\right], \tag{8}
\end{align*}
$$

and the function T on $\left[r_{0}, R\right]$ by
$T(r)=r_{1}+\frac{1}{b(r)}\left\{\int_{r_{0}}^{r}\left[D_{1}(t, r)+D_{2}(t, r)\right] \mathrm{d} t+c(r)-c\left(r_{0}\right)\right\}$,
where

$$
\begin{equation*}
b(r)=1-\left[D_{1}(r, 0)+D_{2}(r, 0)+D_{1}\left(r_{0}, 0\right)\right] . \tag{10}
\end{equation*}
$$

We will now state and prove the main result:
Theorem. Let $F, G: D \subseteq E_{1} \rightarrow E_{2}$ be nonlinear operators satisfying conditions (3) and (4). Assume:
(i) the inverse of the linear operator $\delta F\left(x_{-1}, x_{0}\right)$ exists for $x_{-1}, x_{0} \in D$, with $x_{-1} \neq x_{0}$;
(ii) there exists a minimum positive number R_{1} such that

$$
\begin{equation*}
T\left(R_{1}\right) \leq R_{1} \tag{11}
\end{equation*}
$$

(iii) there exist R with $R_{1} \leq R$ such that the constant a, given by (6) is positive;

Then
(a) the scalar sequence $\left\{r_{n}\right\} n \geq-1$ generated by (7) is monotonically increasing and bounded above by its limit, which is number R_{1}.
(b) the sequence $\left\{x_{n}\right\} n \geq-1$ generated by the secant method (2) is well defined, remains in $U\left(x_{0}, R_{1}\right)$ for all $n \geq-1$, and converges to a solution x^{*} of equation $F(x)+G(x)=0$, which is unique in $U\left(x_{0}, R\right)$ (if $G=0$ on D).

Moreover, the following estimates are true for all $n \geq 0$:

$$
\begin{align*}
& \left\|x_{n}-x_{n-1}\right\| \leq r_{n}-r_{n-1}, \tag{12}\\
& \left\|x_{n}-x^{*}\right\| \leq R_{1}-r_{n}, \tag{13}\\
& \left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(F\left(x_{n+1}\right)+G\left(x_{n+1}\right)\right)\right\| \leq v_{n+1}=\int_{r_{n}}^{r_{n+1}}\left[D_{1}\left(t, r_{n-1}\right)+D_{2}\left(t, r_{n}\right)\right] \mathrm{d} t+c\left(r_{n+1}\right)-c\left(r_{n}\right), \tag{14}\\
& \left\|x_{n+1}-x^{*}\right\| \leq \frac{\bar{v}_{n+1}}{I_{n+1}},(\text { if } G=0) \tag{15}\\
& I_{n+1}=1-\int_{0}^{1}\left[D_{1}\left((1-t)\left\|x_{0}-x^{*}\right\|+t\left\|x_{n+1}-x_{0}\right\|, 0\right)+D_{2}\left((1-t)\left\|x_{0}-x^{*}\right\|+t\left\|x_{n+1}-x_{0}\right\|, 0\right)\right] \mathrm{d} t-D_{1}\left(r_{0}, 0\right) \\
& \quad\left\|x_{n+1}-x_{n}\right\| \leq\left\|x_{n}-x^{*}\right\|+\frac{p_{n}}{s_{n}}, \tag{16}
\end{align*}
$$

where

$$
\begin{align*}
p_{n}= & \int_{0}^{1}\left[D_{1}\left(\left\|x_{n}-x_{n-1}\right\|+t\left\|x_{n}-x^{*}\right\|,\left\|x_{n-1}-x_{0}\right\|\right)-D_{2}\left(\left\|x_{n}-x_{0}\right\|+t\left\|x_{n}-x^{*}\right\|\left\|x_{n}-x_{0}\right\|\right)\right] \mathrm{d} t \\
& +c\left(\left\|x_{n}-x_{0}\right\|+\left\|x_{n}-x^{*}\right\|\right)-c\left(\left\|x_{n}-x_{0}\right\|\right) \tag{17}\\
s_{n}=1- & {\left[D_{1}\left(\left\|x_{n-1}-x_{0}\right\|, 0\right)+D_{2}\left(\left\|x^{*}-x_{0}\right\|, 0\right)+D_{1}\left(r_{0}, 0\right)\right] . } \tag{18}
\end{align*}
$$

and

$$
\bar{v}_{n+1}=\int_{r_{n}}^{r_{n+1}}\left[D_{1}\left(t, r_{n-1}\right)+D_{2}\left(t, r_{n}\right)\right] \mathrm{d} t .
$$

Proof.

(a) By (5), (7), (8) and the monotonicity of the function D_{1}, D_{2}, and c, we deduce that the sequence $\left\{r_{n}\right\} n \geq-1$ is monotonically increasing and nonnegative. Using (5), (7), (8), we obtain $r_{-1}, r_{0}, r_{1} \leq R_{1}$. Let us assume that $r_{k+1} \leq R_{1}$ for $k=-1,0,1,2, \ldots, n$. Then by (7) and the induction hypothesis

$$
\begin{aligned}
r_{k+2} & \leq r_{k+1}+\frac{1}{b\left(R_{1}\right)}\left\{\int_{r_{k}}^{r_{k+1}}\left[D_{1}\left(t, r_{k-1}\right)+D_{2}\left(t, r_{k}\right) \mathrm{d} t+c\left(r_{n+1}\right)-c\left(r_{k}\right)\right]\right\} \\
& \leq r_{k}+\frac{1}{b\left(R_{1}\right)}\left\{\int_{r_{k-1}}^{r_{k+1}}\left[D_{1}\left(t, R_{1}\right)+D_{2}\left(t, R_{1}\right)\right] \mathrm{d} t+c\left(r_{k+1}\right)-c\left(r_{k-1}\right)\right\} \\
& \leq \ldots \leq r_{1}+\frac{1}{b\left(R_{1}\right)}\left\{\int_{r_{0}}^{r_{k+1}}\left[D_{1}\left(t, R_{1}\right)+D_{2}\left(t, R_{1}\right)\right] \mathrm{d} t+c\left(R_{1}\right)-c\left(r_{0}\right)\right\}
\end{aligned}
$$

$$
=T\left(R_{1}\right) \leq R_{1} \text { by }(11) .
$$

That is the scalar sequence $\left\{r_{n}\right\} n \geq-1$ is bounded above by R_{1}. By (ii) and (iii) R_{1} is the minimum zero of equation $T(r)-r=0$ in $\left(0, R_{1}\right]$, and from the above $R_{1}=\lim _{n \rightarrow \infty} r_{n}$.
(b) By (5) and (11) it follows that $x_{-1}, x_{1} \in U\left(x_{0}, R_{1}\right)$, and (12) is true for $n=0,1$. Let us assume that $x_{k+1} \in U\left(x_{0}, R_{1}\right)$ and (12) is true for $k=-1,0,1, \ldots, n$. We first show that $\delta F\left(x_{k}, x_{k+1}\right)$ is invertible. In fact, by the induction hypothesis, and (12)
$\left\|x_{k+1}-x_{0}\right\| \leq \sum_{j=1}^{k+1}\left\|x_{j}-x_{j-1}\right\| \leq \sum_{j=1}^{k+1}\left(r_{j}-r_{j-1}\right)=r_{k+1}-r_{0} \leq R_{1}$,
and hence, by (3) and (4)

$$
\begin{align*}
& \left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(\delta F\left(x_{k}, x_{k+1}\right)-\delta F\left(x_{-1}, x_{0}\right)\right)\right\| \leq\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(\delta F\left(x_{k}, x_{k+1}\right)-\delta F\left(x_{0}, x_{0}\right)\right)\right\| \\
& \quad \quad+\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(\delta F\left(x_{0}, x_{0}\right)-\delta F\left(x_{-1}, x_{0}\right)\right)\right\| \\
& \leq\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(\delta F\left(x_{0}, x_{0}\right)-\delta F\left(x_{0}+\left(x_{k}-x_{0}\right), x_{0}+\left(x_{k+1}-x_{0}\right)\right)\right)\right\| \\
& \quad \quad+\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(\delta F\left(x_{0}+\left(x_{-1}-x_{0}\right), x_{0}+\left(x_{0}-x_{0}\right)\right)-\delta F\left(x_{0}, x_{0}\right)\right)\right\| \\
& \leq D_{1}\left(\left\|x_{k}-x_{0}\right\|, 0\right)+D_{2}\left(\left\|x_{k+1}-x_{0}\right\|, 0\right)+D_{1}\left(r_{0}, 0\right)+D_{2}(0,0) \\
& \leq D_{1}\left(r_{k}, 0\right)+D_{2}\left(r_{k+1}, 0\right)+D_{1}\left(r_{0}, 0\right) \\
& \leq \tag{20}
\end{align*}
$$

by the choice of $a>0$ and hypothesis (iii). It now follows from the Banach lemma on invertible operators that
$\left\|\delta F\left(x_{k}, x_{k+1}\right)^{-1} \delta F\left(x_{-1}, x_{0}\right)\right\| \leq \frac{1}{a_{k+1}} \leq \frac{1}{b\left(R_{1}\right)} \leq \frac{1}{a}$,
where a, a_{k+1} are given by (6) and (8) respectively.

Using the estimates

$$
\begin{align*}
& \left\|h_{1}\right\|=\left\|x_{k}+t\left(x_{k+1}-x_{k}\right)-x_{k-1}\right\| \leq\left\|x_{k}-x_{k-1}\right\|+t\left\|x_{k+1}-x_{k}\right\|, \tag{22}\\
& \left\|h_{2}\right\|=\left\|x_{k}+t\left(x_{k+1}-x_{k}\right)-x_{k}\right\| \leq t\left\|x_{k+1}-x_{k}\right\| \tag{23}\\
& \left\|h_{3}\right\|=\left\|x_{k}-x_{k+1}\right\| \tag{24}
\end{align*}
$$

relations (2), (3), (4), (21), (22), (23), and (24) we obtain in turn for all $k \geq 0$

$$
\begin{align*}
&\left\|x_{k+2}-x_{k+1}\right\| \leq\left\|\delta F\left(x_{k}, x_{k+1}\right)^{-1} \delta F\left(x_{-1}, x_{0}\right)\right\| \\
& \cdot\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left[\left(F\left(x_{k+1}\right)-F\left(x_{k}\right)-\delta F\left(x_{k-1}, x_{k}\right)\right)\left(x_{k+1}-x_{k}\right)+G\left(x_{k+1}\right)-G\left(x_{k}\right)\right]\right\| \\
& \leq \frac{1}{a_{k+1}}\left[\int_{0}^{1} \| \delta F\left(x_{-1}, x_{0}\right)^{-1}\left(\delta F \left(x_{k}+t\left(x_{k+1}-x_{k}\right), x_{k}+t\left(x_{k+1}-x_{k}\right)\right.\right.\right. \\
&\left.\left.-\delta F\left(x_{k-1}, x_{k}\right)\right)\left(x_{k+1}-x_{k}\right) \mathrm{d} t+\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(G\left(x_{k+1}\right)-G\left(x_{k}\right)\right)\right\|\right] \\
& \leq \frac{1}{a_{k+1}}\left\{\int_{0}^{1}\left[D_{1}\left(r_{k}-r_{0}+t\left(r_{k+1}-r_{k}\right), r_{k-1}\right)\right]+D_{2}\left(r_{k}-r_{0}+t\left(r_{k+1}-r_{k}\right), r_{k}-r_{0}\right)\right]\left(r_{k+1}-r_{k}\right) \mathrm{d} t \\
&\left.\quad+D_{3}\left(r_{k+1}-r_{0}, r_{k}-r_{0}\right)\right\} \tag{25}\\
& \leq \frac{1}{a_{k+1}}\left\{\int_{r_{k}}^{r_{k+1}}\left[D_{1}\left(t, r_{k-1}\right)+D_{2}\left(t, r_{k}\right)\right] \mathrm{d} t+D_{3}\left(r_{k-1}, r_{k}\right)\right\} \\
& \leq \frac{1}{a_{k+1}}\left\{\int_{r_{k}}^{r_{k+1}}\left[D_{1}\left(t, r_{k-1}\right)+D_{2}\left(t, r_{k}\right)\right] \mathrm{d} t+c\left(r_{k-1}\right)-c\left(r_{k}\right)\right\} \\
&= r_{k+2}-r_{k+1}, \tag{26}
\end{align*}
$$

which shows (12) for all $n \geq 0$, where we used $\delta F(x, x)=F^{\prime}(x)$ for all $x \in U(x, R)$.
It now follows from (a), (19) and (26) that the secant iteration $\left\{x_{n}\right\}, n \geq-1$ is Cauchy, well defined and remains in $U\left(x_{0}, R_{1}\right)$ for all $n \geq-1$. Hence, it converges to some x^{*} in such a way that (13) is satisfied. For $n=0$, (13) gives $x^{*} \in U\left(x_{0}, R_{1}\right)$. By taking the limit as $n \rightarrow \infty$ in (2) we obtain $F\left(x^{*}\right)+G\left(x^{*}\right)=0$, which shows that x^{*} is a solution of Equation (1). To show uniqueness, we assume that there exists another solution y^{*} of Equation (1) in $U\left(x_{0}, R\right)$.

Then, using (26) for $x_{k}=x_{k+1}=y^{*}+t\left(x^{*}-y^{*}\right)$, we obtain

$$
\begin{align*}
& \| \delta F\left(x_{-1}, x_{0}\right)^{-1}\left[\left(\int_{0}^{1}\left[F^{\prime}\left(y^{*}+t\left(x^{*}-y^{*}\right)\right)-\delta F\left(x_{0}, x_{0}\right)\right] \mathrm{d} t+\left(\delta F\left(x_{0}, x_{0}\right)-\delta F\left(x_{-1}, x_{0}\right)\right)\right]\right. \\
& \left.\left.\quad \leq \int_{0}^{1}\left[D_{1}(1-t) R+t R_{1}, 0\right)+D_{2}(1-t) R+t R_{1}, 0\right)\right] \mathrm{d} t+D_{1}\left(r_{0}, 0\right)+D_{2}(0,0)<1 \tag{27}
\end{align*}
$$

by the choice of a and hypothesis (ii), where we also used the estimates

$$
\left\|x_{0}-y^{*}-t\left(x^{*}-y^{*}\right)\right\|=\left\|(1-t)\left(x_{0}-y^{*}\right)+t\left(x_{0}-x^{*}\right)\right\| \leq(1-t) R+t R_{1}
$$

I. K. Argyros

It now follows from (27) that the linear operator $\int_{0}^{1} F^{\prime}\left(y^{*}+t\left(x^{*}-y^{*}\right)\right) \mathrm{d} t$ is invertible. By using the approximation (if $G=0$)

$$
F\left(x^{*}\right)-F\left(y^{*}\right)=\int_{0}^{1} F^{\prime}\left(y^{*}+t\left(x^{*}-y^{*}\right)\right)\left(x^{*}-y^{*}\right) \mathrm{d} t
$$

we obtain $x^{*}=y^{*}$, which shows that x^{*} is the unique solution of Equation (1) in $U\left(x_{0}, R\right)$.
Using the approximation

$$
\begin{aligned}
& x_{n+1}-x_{n}=x^{*}-x_{n}+\left(\delta F\left(x_{n-1}, x_{n}\right)^{-1} \delta F\left(x_{-1}, x_{0}\right)\right) \\
& \quad \cdot\left[\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(\left(F\left(x^{*}\right)-F\left(x_{n}\right)-\delta F\left(x_{n-1}, x_{n}\right)\left(x^{*}-x_{n}\right)\right)\right)+\left(G\left(x^{*}\right)-G\left(x_{n}\right)\right)\right],
\end{aligned}
$$

estimates (3), (4), and the triangle inequality, as before, we get

$$
\left\|x_{n+1}-x_{n}\right\| \leq\left\|x_{n}-x^{*}\right\|+\frac{p_{n}}{s_{n}},
$$

which shows (16) for all $n \geq 0$.
Moreover, from the estimate

$$
\begin{align*}
& \int_{0}^{1} \| \delta F\left(x_{-1}, x_{0}\right)^{-1}\left(\left(F^{\prime}\left(x^{*}+t\left(x_{n+1}-x^{*}\right)\right)-\delta F\left(x_{0}, x_{0}\right)+\left(\delta F\left(x_{0}, x_{0}\right)-\delta F\left(x_{1}, x_{0}\right)\right)\right) \| \mathrm{d} t\right. \\
& \quad \leq \int_{0}^{1}\left[D_{1}\left((1-t)\left\|x_{0}-x^{*}\right\|+t\left\|x_{n+1}-x_{0}\right\|, 0\right)+D_{2}\left((1-t)\left\|x_{0}-x^{*}\right\|+t\left\|x_{n+1}-x_{0}\right\|, 0\right)\right] \mathrm{d} t+D_{1}\left(r_{0}, 0\right) \\
& \quad \leq \int_{0}^{1}\left[D_{1}\left((1-t) R_{1}+t R_{1}, 0\right)+D_{2}\left((1-t) R_{1}+t R_{1}, 0\right)\right] \mathrm{d} t+D_{1}\left(r_{0}, 0\right) \tag{28}
\end{align*}
$$

since $a>0$.
It now follows from (28) that the linear operators $\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(x_{n+1}-x^{*}\right)\right) \mathrm{d} t$ is invertible, and

$$
\begin{equation*}
\left\|\left[\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(x_{n+1}-x^{*}\right)\right) \mathrm{d} t\right]^{-1} \delta F\left(x_{-1}, x_{0}\right)\right\| \leq \frac{1}{I_{n+1}} \leq \frac{1}{a}, \tag{29}
\end{equation*}
$$

Furthermore, using the approximation (if $G=0$)

$$
F\left(x_{n+1}\right)-F\left(x^{*}\right)=\left[\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(x_{n+1}-x^{*}\right)\right) \mathrm{d} t\right]\left(x_{n+1}-x^{*}\right),
$$

estimates (21) and (29), we obtain

$$
\begin{gathered}
\left\|x_{n+1}-x^{*}\right\| \leq\left\|\left[\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(x_{n+1}-x^{*}\right)\right) \mathrm{d} t\right]^{-1} \delta F\left(x_{-1}, x_{0}\right)\right\| \\
.\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1} F\left(x_{n+1}\right)\right\| \leq \frac{v_{n+1}}{I_{n+1}} \leq \frac{v_{n+1}}{a}
\end{gathered}
$$

where v_{n+1} is given by (14) for all $n \geq 0$.
That completes the proof of the theorem.

Remarks

(a) Let us assume that the following stronger conditions are satisfied instead of (3) and (4)
$\left\|\left(\delta F x_{-1}, x_{0}\right)^{-1}(\delta F(x, y)-\delta F(z, z))\right\| \leq q_{1}(r)\|x-z\|+q_{2}(r)\|y-z\|$
and
$\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}(G(x)-G(y))\right\| \leq q_{3}(r)\|x-y\|$
for all $x, y, z \in U\left(x_{0}, r\right) \subseteq U\left(x_{0}, R\right) \subseteq D$. The functions q_{1}, q_{2}, and q_{3} are nondecreasing on the interval $[0, R]$.

Then we can show

$$
\begin{align*}
& \left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(\delta F\left(x+h_{1}, y+h_{2}\right)-\delta F(x, y)\right)\right\| \\
& \quad \leq\left(w_{1}\left(t_{1}+\left\|h_{1}\right\|\right)-w_{1}\left(t_{1}\right)\right)+\left(w_{2}\left(t_{2}+\left\|h_{2}\right\|\right)-w_{2}\left(t_{2}\right)\right) \tag{32}
\end{align*}
$$

and
$\left\|\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(G\left(z+h_{3}\right)-G(z)\right)\right\| \leq w_{3}\left(t_{3}+\left\|h_{3}\right\|\right)$
for all $x \in U\left(x_{0}, t_{1}\right), y \in U\left(x_{0}, t_{2}\right), z \in U\left(x_{0}, t_{3}\right)$,
$\left\|h_{1}\right\| \leq R-t_{1},\left\|h_{2}\right\| \leq R-t_{2}$, and $\left\|h_{3}\right\| \leq R-t_{3}$,
with
$w_{1}(r)=\int_{0}^{r} q_{1}(t) \mathrm{d} t, \quad w_{2}(r)=\int_{0}^{r} q_{2}(t) \mathrm{d} t$, and $w_{3}(r)=\int_{0}^{r} q_{3}(t) \mathrm{d} t$.
Proof. We will only show (32), since (33) can then easily follow. Set
$g=\delta F\left(x_{-1}, x_{0}\right)^{-1} \delta F$, let $x \in U\left(x_{0}, t_{1}\right), y \in U\left(x_{0}, t_{2}\right), m \in N$, then from (30) we obtain

$$
\begin{aligned}
\left\|g\left(x+h_{1}, y+h_{2}\right)-g(x, y)\right\| & \leq \sum_{j=1}^{m}\left\|g\left(x+m^{-1} j h_{1}, y+m^{-1} j h_{2}\right)-g\left(x+m^{-1}(j-1) h_{1}, y+m^{-1}(j-1) h_{2}\right)\right\| \\
& \leq \sum_{j=1}^{m} q_{1}\left(t_{1}+m^{-1} j\left\|h_{1}\right\|\right) m^{-1}\left\|h_{1}\right\|+\sum_{j=1}^{m} q_{2}\left(t_{2}+m^{-1} j\left\|h_{2}\right\|\right) m^{-1}\left\|h_{2}\right\| \\
& \leq \int_{t_{1}}^{t_{1}+\mid h_{1} \|} q_{1}(t) \mathrm{d} t+\int_{t_{2}}^{t_{2}+\mid h_{2} \|} q_{2}(t) \mathrm{d} t \text { as } m \rightarrow \infty,
\end{aligned}
$$

by the monotonicity of q_{1}, q_{2}, and the definition of the Riemann integral. That completes the proof for (32) and (33).

Several authors have studied the convergence of the secant method using conditions (30) and (31) for $q_{1}(r)=k_{1}, q_{2}(r)=k_{2}$, and $q_{3}(r)=k_{3}$ on $[0, R] G=0$, (or not) for some positive constants k_{1} and k_{2} (see, e.g. [3], [5-7]). If we now choose

$$
\begin{aligned}
& D_{1}\left(t+\left\|h_{1}\right\|, t_{1}\right)=\int_{t_{1}}^{t_{1}+\mid h_{1} \|} q_{1}(t) \mathrm{d} t \\
& D_{2}\left(t+\left\|h_{2}\right\|, t_{2}\right)=\int_{t_{2}}^{t_{2}+\left|h_{2}\right|} q_{2}(t) \mathrm{d} t
\end{aligned}
$$

and
$C\left(t_{3}+\left\|h_{3}\right\|\right)-C\left(t_{3}\right)=\int_{t_{3}}^{t_{3}+\left|h_{3}\right|} q_{3}(t) \mathrm{d} t$,
then conditions (3) and (4) will be satisfied.
Moreover,
$D_{1}\left(t_{1}+\left\|h_{1}\right\|, t_{1}\right) \leq k_{1}\|x-z\|$,
$D_{2}\left(t_{2}+\left\|h_{2}\right\|, t_{2}\right) \leq k_{2}\|y-z\|$,
$\mathrm{C}\left(t_{3}+\left\|h_{3}\right\|\right)-\mathrm{C}\left(t_{3}\right) \leq k_{3}\|x-y\|$,
which suggest that our estimates on the distances $\left\|x_{n+1}-x_{n}\right\|$ and $\left\|x_{n}-x^{*}\right\|$ will be smaller than the corresponding ones in [2-14], ((For $G=0$, or not) and the references there).
(b) Furthermore, if we choose D_{1}, D_{2} and D_{3} as in the remark, then

$$
\begin{aligned}
& D_{1}\left(t+\left\|h_{1}\right\|, t_{1}\right) \leq \int_{t_{1}}^{t_{1}+\left\|h_{1}\right\|} q_{1}(t) \mathrm{d} t \\
& D_{2}\left(t+\left\|h_{2}\right\|, t_{2}\right) \leq \int_{t_{2}}^{t_{2}+\left|h_{2}\right|} q_{2}(t) \mathrm{d} t
\end{aligned}
$$

and

$$
D_{3}\left(t+\left\|h_{3}\right\|, t_{3}\right) \leq \int_{t_{3}}^{t_{3}+\left|h_{3}\right|} q_{3}(t) \mathrm{d} t
$$

then our estimates on the distances $\left\|x_{n+1}-x_{n}\right\|$ and $\left\|x_{n}-x^{*}\right\|$ will be smaller than the corresponding ones in [1-14], ((for $G=0$, or not), and the references there).
(c) Estimates (15) and (16) can sometimes be solved explicitly for $\left\|x_{n+1}-x^{*}\right\|$ and $\left\|x_{n}-x^{*}\right\|$ respectively, when for example conditions (30) and (31) are true instead of (3) and (4) for $q_{1}(r)=k_{1}, q_{2}(r)=k_{2}$, and $q_{3}(r)=k_{3}$ on $[0, R]$. Estimate (15) will then provide an upper bound on $\left\|x_{n+1}-x^{*}\right\|$, whereas (16) will provide a lower bound on the estimate $\left\|x_{n}-x^{*}\right\|$ for all $n \geq 0$.
(d) Finally, note that by (19) and (25), it can easily be seen that a stronger result can immediately follow if by making the appropriate changes the estimate $\left\|x_{k}-x_{0}\right\| \leq r_{k}-r_{0}$ is used instead of $\left\|x_{k}-x_{0}\right\| \leq r_{k}$ for all $k \geq 0$ in the proof of the theorem.
(e) The uniqueness of the solution x^{*} of Equation (1) in $U\left(x_{0}, R\right)$ was established only when $G=0$ on D. We assume that $G \neq 0$ on D, and define the iterations

$$
\begin{aligned}
& y_{n+1}=y_{n}-\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(F\left(y_{n}\right)+G\left(y_{n}\right)\right), \text { for any } y_{0} \in U\left(x_{0}, R_{1}\right) n \geq 0 \\
& z_{n+1}=z_{n}-\delta F\left(x_{-1}, x_{0}\right)^{-1}\left(F\left(z_{n}\right)+G\left(z_{n}\right)\right), z_{0}=x_{0}, \quad z_{-1}=x_{-1} \quad n \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& s_{n+1}=s_{n}+\int_{s_{n-1}}^{s_{n}}\left[D_{1}\left(t, s_{0}\right)+D_{2}(t, 0)\right] \mathrm{d} t+c\left(s_{n}\right)-c\left(s_{n-1}\right) n \geq 1 \\
& \quad s_{-1}=0, s_{0}=\left\|y_{1}-y_{0}\right\|, s_{1}=s_{0}+\left\|y_{1}-y_{0}\right\| \\
& t_{n+1}=t_{n}+\int_{t_{n-1}}^{t_{n}}\left[D_{1}\left(t, t_{0}\right)+D_{2}(t, 0)\right] \mathrm{d} t+c\left(t_{n}\right)-c\left(t_{n-1}\right) n \geq 0 \\
& t_{-1}=R, \quad s_{0} \leq \mathrm{t}_{0}<R \\
& \delta_{n}=t_{n}-s_{n}+\int_{t_{n-1}}^{t_{n}}\left[D_{1}\left(t, t_{0}\right)+D_{2}(t, 0)\right] \mathrm{d} t+c\left(s_{n-1}\right)-c\left(t_{n-1}\right) \\
& \quad-\int_{s_{n-1}}^{s_{0}}\left[D_{1}\left(t, s_{0}\right)+D_{2}(t, 0)\right] \mathrm{d} t-\int_{t_{n}}^{s_{0}}\left[D_{1}\left(t, s_{0}\right)+D_{2}(t, 0)\right] \mathrm{d} t n \geq 0
\end{aligned}
$$

and the function
$T_{1}(r)=s_{1}+\int_{r_{0}}^{r}\left[D_{1}\left(t, s_{0}\right)+D_{2}(t, 0)\right] \mathrm{d} t+c(r)-c\left(r_{0}\right)$.
Moreover, we assume that in addition to the hypotheses of the above theorem, there exists a minimum positive number R_{1}^{*} with $R_{1}^{*} \leq R$ such that

$$
T_{1}\left(R_{1}^{*}\right) \leq R_{1}^{*},
$$

and
$\delta n \geq 0 \quad n \geq 0$.
Then as in the theorem above, we can show:
(i) the sequence $\left\{s_{n}\right\} n \geq-1$ is monotonically increasing, whereas the sequence $\left\{t_{n}\right\} n \geq-1$ is monotonically decreasing and
$\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} t_{n}=R_{1}^{*} \leq R_{1}$ and $T_{1}\left(R_{1}\right) \leq R_{1}$.
(ii) the sequence $\left\{z_{n}\right\} n \geq-1$ is well defined, remains in $U\left(x_{0}, R_{1}^{*}\right)$ for all $n \geq 0$, and converges to a solution z^{*} of Equation (1), which is unique in $U\left(x_{0}, R\right)$, with $z^{*}=x^{*}$.

Moreover, the following estimates are true:
$\left\|z_{n}-z_{n-1}\right\| \leq s_{n}-s_{n-1} \quad n \geq 0$
$\left\|z_{n}-x^{*}\right\| \leq R_{1}^{*}-s_{n} \quad n \geq 0$
and
$\left\|z_{n}-y_{n}\right\| \leq t_{n}-s_{n}$

$$
n \geq 0 .
$$

The condition on the sequence $\left\{\delta_{n}\right\}$ can be dropped if we define the sequences

$$
\begin{aligned}
& \bar{s}_{n+1}=\int_{0}^{\bar{s}_{n}}\left[D_{1}\left(t, \bar{s}_{0}\right)+D_{2}(t, 0)\right] \mathrm{d} t+c\left(\bar{s}_{n}\right)+\bar{s}_{1}, \bar{s}_{0}=0 n \geq 0 \\
& \bar{t}_{n+1}=\int_{0}^{\bar{t}_{n}}\left[D_{1}\left(t, \bar{t}_{0}\right)+D_{2}(t, 0)\right] \mathrm{d} t+c\left(\bar{t}_{n}\right)+\bar{s}_{1}, \bar{t}_{0}=R \quad n \geq 0
\end{aligned}
$$

instead of the sequences $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ respectively. The conclusions (i) and (ii) will then also hold for the new sequences $\left\{\bar{s}_{n}\right\}$ and $\left\{\bar{t}_{n}\right\}$.

Moreover, the following estimates are true:
$s_{n}-s_{n-1} \leq \bar{s}_{n}-\bar{s}_{n-1}$
and
$t_{n}-s_{n} \leq \bar{t}_{n}-\bar{s}_{n}$ for all $n \geq 0$.

REFERENCES

[1] J. Appel, E. Pascale, and P. P. Zabrejko, "On the Application of the Newton-Kantorovich Method to Nonlinear Equations of Uryson Type", Numer. Funct. Anal. and Optimiz., 12 (3 and 4) (1991), pp. 271-283.
[2] I. K. Argyros, "On Newton's Method and Nondiscrete Mathematical Induction", Bull. Austral. Math. Soc., 38 (1988), pp. 131-140.
[3] I. K. Argyros, "The Secant Method and Fixed Points of Nonlinear Operators", Monatshefte für Math., 106 (1988), pp. 8594.
[4] I. K. Argyros and F. Szidarovszky, The Theory and Applications of Iteration Methods. Boca Raton, Florida, U.S.A.: CRC Press, Inc., 1993.
[5] M. Balazs and G. Goldner, "On the Method of the Cord and on a Modification of it for the Solution of Nonlinear Operator Equations", Stud. Cerc. Mat., 20 (1968), pp. 981-990.
[6] F. A. Potra, "Sharp Error Bounds for a Class of Newton-Like Methods", Libertas Mathematica, 5 (1985), pp. 72-84.
[7] F. A. Potra and V. Ptak, "Sharp Error Bounds for Newton's Process", Numer. Math., 34 (1980), pp. 63-72.
[8] F. A. Potra and V. Ptak, Nondiscrete Induction and Iterative Processes. Boston: Pitman, 1984.
[9] J. W. Schmidt, "Regula-Falsi Verfahren mit Konsistenter Steigung und Majoranten Printzipp", Periodica Mathematica Hungarica, 5(3) (1974), pp. 187-193.
[10] T. Yamamoto, "A Method for Finding Sharp Error Bounds for Newton's Method under the Kantorovich Assumptions", Numer. Math., 49 (1986), pp. 203-220.
[11] T. Yamamoto, "Error Bounds for Newton-Like Methods under Kantorovich-Type Assumptions", Japan. J. Appl. Math., 3 (1986), pp. 295-313.
[12] T. Yamamoto and X. Chen, "Ball-Convergence Theorems and Error Estimates for Certain Iterative Methods for Nonlinear Equations", Japan. J. Appl. Math., 7 (1990), pp. 131-143.
[13] P. P. Zabrejko and D. F. Nguen, "The Majorant Method in the Theory of Newton- Kantorovich Approximations and the Ptak Error Estimates", Numer. Funct. Anal. and Optimiz., 9 (1987), pp. 671-684.
[14] A. I. Zincenko, "Some Approximate Methods of Solving Equations with Nondifferentiable Operators (Ukrainian)", Dopovidi Akad. Nauk. Ukrain, RSR, (1963), pp. 156-161.

Paper Received 29 September 1993; Revised 8 May 1994; Accepted 3 July 1994.

