
KHABEER (~): AN OBJECT-ORIENTED ARABIC

EXPERT SYSTEM SHELL

Mostafa M. Aref* and Husni A. AI-Muhtaseb

Information and Computer Science Department

King Fahd University ofPetroleum and Minerals

Saudi Arabia

~ () ~foil ..:.,J~L....\lI'p'- iUz; }y..) .o~1 ~ ~W ..:.,J\)jJl Js-...\.o.::.IU ol~i ".p.-
It

iUz; ~

~.r" L.;;f. obi .p.-~ 1..5' .u..1.S:.:.. JI.-A.:....I W } y-) ..:.,JI)jJi Js- ~) [.\.:;1 iUz; ~.I' 0~I

JI.ui ~ "!.,?"" ~.P.-.l-.# t..li) .~,;J\ ~4 ~I..6.>\I\ ..:.,J~) .l"'\)\lI) ~1.;J\}y.J ~

.~},.:. ~ ~ [.1o..li":J1~J,.....) uK:J1 ~J)..".:-1 Jl y.".....l>,:/' j.CJI 4t>:...1

~.l"'-~ J'L.A.,..) (J'lA>-) ~.l'" J'lA>- :J'1.A.:l1 ~~.,.k - [.\.:;1 iua..s' - .p.-~:

L....Ju ~ _:...!." ..J\ . L.· lj -II \'_-\ t...-.J)I ~ \..11"...v:.\ .II..JI .. (~li)II ~ J'.::'fI""~) J""'" r..r--;-' y ..frJU) • [.

..y;ill ~I J} Jl:;:,.:.1 ~~ ~I '-rl.;J ~ ~L....i C:::' !l1..:.A)v:.I.,.AJ1

~Jj ..:.,JI~ ~ I.S..".:-I) ~ J\..:...Pi ~~~) ...:.,JI)jJ4~.r..lJ.P.- () 1lA.:...,p" " ~~ t
,;.r---t) .4.Jr' jS"' ~.A ~ ~L..:z.,.:. JIJ.-l ~J .~I () lj.rJI ..:.,Jt......J\~..w..l>- J.>ry.. ":J) .~..l.A::..o

t.ly~ lj.rJI J\..:...P~ ..:.,J~t.... ~~ J..t.J ·~Jrll) y!~) 0:!~\) ~..w1·:~~!6l.a.

'---11.:5'") o~l}J 4 ~..l! o~\s.1J 4 J....-" J!.- J\..:...P\l1 ..:.,J~ ~ J-lAill JIJ..u1 ,:/' ..It..wl !l1..:.A) .~)

J~\lI..:.,J~ L-,.,~Illi.-......\I\,:/' ~I Js-.P.- JI.-A.:....I W ~ 1..5' ·4 J.k-J..:.,J~

, ~-j-<J-.L.A;) , ~-.L.-4.i) , ..:.,J~\-jS"'-J.>r)i) , 4-J.>r} J ' 4-,:/'-jA :J!.­
•..:.,J~I-~-..Lii)

*Address for correspondence:
KFUPM Box 1658. Dhahran 31261
Saudi Arabia
e-mail: aref@ccse.kfupm.edu.sa

husni@ccse.kfupm.edu.sa

October 1997 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 275

Mostafa M. Aref and Husni A. Al-Muhtaseb

ABSTRACT

KHABEER (~) is an object-oriented Arabic expert system shell. KHABEER

provides the basic requirements of any expert system shell: production system,

object-oriented and query language. KHABEER is an Arabic tool, where all the

syntax, commands, and error messages are in Arabic. KHABEER is written in C

language to support the goals of high portability, low cost, and ease of integration

with external systems.

KHABEER, as a production system, has two methods to represent facts: ordered

facts (J''---A.>-) and non-ordered facts (r~ti). Rules (~Ij) are the primary knowledge

representation scheme in KHABEER. KHABEER uses agenda mechanism (#) for

executing different rules. There are seven different strategi~s (y}-I) for selection of

a rule to be fired.

KHABEER, as Object Oriented Language, has 11 predefined classes and allows

abstract and concrete class definitions and multiple inheritance. Only available

memory limits the number of slots of an instance of a defined class in KHABEER.
!

Various features of slots are supported by KHABEER. These features include default

values, cardinality, storage, access, inheritance propagation, and others. KHABEER

allows the declaration of message-handlers for defined classes. Four types of

message-handler declarations are allowed. Each type has its certain purpose.

Manipulating instances of objects is supported through different functions in

KHABEER. These functions include creating instances, re-initializing existing

instances, reading slots, setting slots, deleting instances, instance query, and other

actions.

KHABEER, as a query language, provides six different types of queries. These

queries, that concern instances (.,:.,~) of classes, are: L.......y:--.:"..--j..t., ~-J.:".J',

.,:.,~\-JS'-J.:".J\' ~-..iA.i, ~-~-..iA.i, and ":"~I-~-..iA.i.

276 The Arabian Journalfor Science and Engineering, Volume 22, Number 2B. October 1997

Mostafa M. Aref and Husni A. Al-Muhtaseb

KHABEER (y,): AN OBJECT-ORIENTED ARABIC EXPERT SYSTEM SHELL

1. INTRODUCTION

The past decade has seen expert systems progress from effort in research laboratories to products built and deployed in

industrial applications. In consequence, the number of tools for building expert systems has increased significantly. Many

of these tools are written in languages other than LISP and executed on a variety of hardware platforms.

Expert systems tools are valuable because they provide rich software development environments, a~d the knowledge

representation and the inference engine are already built into them [1-4]. KHABEER (.p.) is an Arabic CLIPS-based

Expert System tool [5-8] where all the commands and syntax are written in Arabic. CLIPS (C Language Integrated

Production System) is a C-based expert system tool developed by the Artificial Intelligence Section (now the software

Technology Branch) at NASA's Johnson Space Center [9, 10].

KHABEER was developed using the conventional language C. KHABEER uses rules as its primary knowledge

representation approach and supports a rich pattern-matching language for specifying rule conditions. The system has an

interface that supports pull-down menus. In this paper, KHABEER as a production system is described in Section 2 with

the syntax and rules description. Section 3 presents the object oriented features of KHABEER version 2.0. The query

language of the system is introduced in Section 4. Section 5 presents several KHABEER examples and their outputs.

Section 6 presents implementation issues and the integration of KHABEER with other programs. The conclusion and

future work are given in Section 7.

2. KHABEER AS A PRODUCTION SYSTEM

KHABEER may be considered as a production system [4], which provides pattern-directed control of a problem­

solving process. KHABEER consists of knowledge base, fact list, agenda, and cycle of execution. The detailed

description of these components is as follows.

• The Knowledge base contains a set of production rules (...lJ;.\}). Each rule is a condition-action pair. The condition part

of the rule is a pattern that determines when that rule may be applied. The action part defines the associated problem­

solving step.

• The Fact list (the working memory) (.,;1\..4.:1-1) contains a description of the current state of the problem. This description

is a pattern that is matched against the condition part of the production rule. When the condition part of the

production rule is matched by the contents of the working memory, the action part of that rule may be performed. The

rule is said to be enabled (activated). Facts are the basic form of data in KHABEER. Each fact is constructed of either

several positional fields separated by spaces, or a word.

• The Agenda (.#) is essentially a stack. Rules are pushed onto the stack when they are activated. If the priority of the

new rule is less than the priority of the rule currently on the top of the stack, the new rule is pushed down the stack

until all rules of higher priorities are above it. Rules of equal or lower priorities remain below the new rule. The rules

priorities can be assigned by the programmer.

• The Cycle of execution is the control structure of KHABEER. Once a knowledge base (production rules) is built and

the fact list is prepared, KHABEER is ready to execute rules. The basic cycle of execution of KHABEER is as

follows:

1. 	 The knowledge base is examined to see if the conditions of any rule have been met.

2. 	 All rules, whose conditions are currently met, are activated and placed on the agenda based on the conflict

resolution strategy.

3. 	 The top rule on the agenda is selected, and its actions are executed.

October 1997 	 The Arabian Journalfor Science and Engineering. Volume 22, Number 2B. 277

Mostafa M. Aref and Husni A. Al-Muhtaseb

As a result of actions execution, new rules can be activated or deactivated. This cycle is repeated until all rules that can

be fired have done so or the rule limit is reached. The number of rule firings allowed in a cycle may be set by the

programmer.

2.1. Khabeer Syntax

KHABEER has a Lisp·like syntax as shown in Figure 1. It supports a rich pattern· matching language for specifying

rule conditions. The pattern·matching language operates on both single fields (expressed as ~ or ~~) and multifield

(expressed as !# or .)~-~!#) sequences composed of strings, symbols and numbers. KHABEER pattern·matching

operators range from a single operator that will match any and every fact in the knowledge base, to operators that only

match facts that meet specific constraints. Conditions can also be written such that a rule is activated only if a pattern

cannot be matched by any fact in the knowledge base. Thus, reasoning can be based on the absence of information as well

as its presence.

KHABEER also supports templates (c.)\1) as a means of specifying rule conditions. Templates, frame-like structures

composed of named slots with values, support the specification of default values and metaknowledge in the form of type

information.

The condition side of KHABEER rules has an implicit logical AND between conditions (JJ~). KHABEER also

supports the specification of explicit logical AND (J) and OR (JI) conditions for the condition-side of rules. If the

conditions are specified as disjunctions (using an explicit OR (JI»), the rule is a candidate to fire if any of the disjuncts are

matched by facts.

"o.u:.W4~;dJ aJL,.;,1 ~\..o}-" o.u:.WI-"""",' o.u:.u-J f)

O.u:.W, ~ JJ'11 ~l:l:-I ~ ('-J~)

J J~ o.u:. J.s- ~#- ~ (Y-J~)

. d' J l:. 1<',
~.T iJ.:o! .r"'..r' (r-J~)

<=

o.u:.WI ~ ? '11 ~l:l:-I ~ ('-jAi)

Jw' O.u:. J.s- ~#- ~ (Y-jAi)

(r-jAi)

Figure 1. Syntax of i.,J.J:.li-J/' Construct.

In addition, KHABEER provides procedural programming constructs (if .. then .. else) ('1IJ".)u,,\)\), while (Uu,) on the

action side of the rules. KHABEER provides debugging aids which include commands that produce a trace of facts

asserted in the knowledge base (Jfu,... ~\J)' rules placed on the agenda (.u:.\} ~\J)' and rules that fire (~ ~IJ)' Break

points (wJ-~) can be specified contingent on specific rules firing. A number of commands are available for displaying

entities in the knowledge base such as:

(Jfu,...) displays the facts,

(.u:.lj) displays the rules in the knowledge base,

("..;u=-) displays the rules in the agenda,

(Jiu,) displays a list of facts that match each condition of a specified rule.

The (~) command can be executed with a positive integer that specifies the number of rules to be fired; <' ~)
results in single-step execution. KHABEER provides seven conflict resolution strategies to rank the activated rules of

equal priority (~}JI). These strategies are as follows:

• ~ y ~I (depth): Newly activated rules are placed above all rules of the same priority.

278 The Arabian Journal/or Science and Engineering, Volume 22. Number 2B. October 1997

Mostafa M. Aref and Husni A. Al-Muhtaseb

• 	 ~ !wi~1 (breadth): Newly activated rules are placed below all rules of the same priority.

• 	 ~ !wi~I (simplicity): Newly activated rules are placed above all activations of rules with equal or higher

specificity (~). The specificity of a rule is determined by the number of comparisons that must be performed

on the first side of the rule.

• 	 ~j !wI~' (complexity): Newly activated rules are placed above all activations of rules with equal or lower

specificity.

• 	 ~I--.!J..b-I !wi~I (LEX): Newly activated rules are placed using the OPS5 strategy LEX. First the recency of fact

indices is used to determine where to place the activation. An activation with a more recent fact index is placed

before activations with less recent fact indices (I!.I...L-:o-I). If two activations have the exact same recency, the

activation with the higher specificity is placed above the activation with the lower specificity (~I).

• 	 ,J.".s;--.!J..b-I !wi~I (MEA): Newly activated rules are placed using the OPS5 strategy MEA. First the recency of

the fact index associated with the first pattern is used to determine where to place the activation. If two activations

have the same fact index for the first pattern, then the LEX strategy is used to determine placement of the

activation.

• 	 JI~ !wi~I (random): Each activation is assigned a random number which is used to determine its placement

among activations of equal priority.

The default strategy is depth. The current strategy can be set by using tHE !WI~I command (which will reorder the

agenda based upon the new strategy).

2.2. Khabeer Terms & Vocabulary ~ ~ ..:J~'

KHABEER vocabulary and terms were chosen using the suggested headline points in [6]. Some of these points are:

• 	 Use the smallest possible number of words such that the meaning will not be misunderstood.

• 	 Delete some functions that are not related to the Arabic language such as uppercase and lowercase.

• 	 Use the shortest of the imperative (;--'"1) form and the gerund ()",L.,a..) form. If their lengths are equal, use the one

which starts with an uncommon letter.

• 	 Give the terms their actual and practical meanings which may be different than the "dictionary" meaning.

• 	 Do not use abbreviations.

• 	 Better to translate a negative word into a single Arabic word. For example unusual is translated as ")\..!. " and not as

"C;::As- .r::S-".

• 	 Some terms needs to be replaced totally. Left parenthesis is given the term Cb)fl ;J"j.

For more comprehensive details the reader may refer to [6].

3. KHABEER OBJECT ORIENTED LANGUAGE ~ ~ ..:JIJ.llt 4J!.f.

KHABEER supports Object Oriented Language features. The primary five characteristics of any object oriented

language are [10]:

• 	 abstraction (,)~): is a higher level, more intuitive, representation for a complex concept;

• 	 encapsulation (, i)iJ): is the process whereby the implementation details of an object are masked by a well­

defined external interface;

• 	 inheritance (~\)J): where classes may be described in terms of other classes by use of inheritance;

October 1997 	 The Arabian Journalfor Science and Engineering, Volume 22. Number 2B. 279

Mostafa M. Aref and Husni A. AI-Muhtaseb

• 	 polymorphism (J~I JoW): is the ability of different objects to respond to the same message in a specialized

manner; and

• 	 dynamic binding (~ ~J): is the ability to defer the selection of which specific message-handlers will be

called for a message until run-time.

In KHABEER, the definitions of new classes (J~I) allows the abstraction of new data types. The slots (vir) and

message-handlers (v~l-) of these classes describe the properties and behavior of a new group of objects. KHABEER

supports encapsulation by requiring message-passing for the manipulation of instances of user-defined classes. An

instance (~) cannot respond to a message for which it does not have a defined message-handler.

The user is allowed to specify some or all of the properties and behavior of a class in terms of one or more superclasses

(j1L..ai). This process is called multiple inheritance (..!J)\'1 .)~). KHABEER uses the existing hierarchy of classes to

establish a linear ordering called the class precedence list (JI).,JI ~jJl Wti) fqr a new class. Objects which are instances

of this new class can inherit properties (vir) and behavior (vu:'l-) from each of the classes in the class precedence list.

The word precedence implies that properties and behavior of a class first in the list override conflicting definitions of a

Class later in the list.

Polymorphism implies that one KHABEER object can respond to a message in a completely different way than another

object. This is accomplished by attaching message-handlers with differing actions but which have the same name to the

classes of these two objects respectively. An object reference in J..-;I (send) function call is not bound until run-time. This

is called dynamic binding. For example, an instance name or variable might refer to one object at the time a message is

sent and another at a later time.

A query system for determining, grouping, and performing actions on sets of instances of user-defined classes that meet

user-defined criteria is provided by KHABEER. The query system allows the user to associate instances that are ei.ther

related or not. The user can use the query system to determine if a particular association set exists, he can save the set for

future reference, or he can iterate an action over the set. KHABEER query language is discussed in Section 4.0.

3.1. Predefined System Classes rtJi.~lI J~,

KHABEER provides eleven system classes (shown in Figure 2): Object (vlj_), User (r~-), Primitive (JJ'-),
External-Address (iJ""")L..,,:.-~ly_), Multifield (J."A>-_), Number (~)_), Integer (~_), Float (~_), Lexeme (o.)~_),

Symbol Cr-'")_}, and String (l.L-......L_). These classes are abstract classes. Thus, they are used only for inheritance. The

Object (v\j_) class is a superclass of all other classes including user-defined classes. A predefined class can not be

modified nor deleted by a user.

Integer

~

Float

~

Symbol

Y'J

String

Figure 2. Relationships Between Classes.

280 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 	 October 1997

Mostafa M. Aref and Husni A. Al-Muhtaseb

3.2. Defining Classes J~~I .Jt;A1

Classes can be defined using ~-J.r (define class) construct (as shown in Figure 3). This construct consists of four

elements: a name, a list of superclasses for which the new class inherits slots and message-handlers, a specifier defining

whether or not the creation of direct instances of the new class is allowed, and a list of slots specific to the new class.

(+<~r---"> .0~) [<u,.,.,...L->]

(*<~, ~..uZ> [<~J ~..uZ>]

(e-) I (~) -:: <~J ~..uZ>

«~\ ~L.,.:,..,.:.> <~\ r---'\>~) -:: <~\~..uZ>

[<~\)J>] I [<~>] I [<J..f>] I [<.)"u;.>] I [<J'.JA.->] -:: <~'~L.,.:,..,.:.>

[<)..L..4.0>] I

(*<a.bw> p.:;..-J'.JA.-) I (*<abw> J'.JA.-) -;: <J'.JA.->
(.).,u) I (.).,w...) -:: <.)"u;.>

(Js) I (!lP) -:: <J..f>

(..6.AJ-~) I (~-i.,z) I (..6.AJ-i.,z) -:: <~>

(.!.I)j) I (.!.I)j':J) -:: <~')J>

(~) I (y5'r) -:: <)..L..4.0>

The underlined values are the default values.

Figure 3. Syntax of ~-J~Construct.

Redefining an existing class deletes the current subclasses and all associated message-handlers. An error will occur if

instances of the class or any of its subclasses exist. Any old message-handlers for the class which do not conflict with

implicit slot-accessor message-handlers in the new definition are reattached.

3.2.1. Multiple Inheritance .!.I)':J\.).MJ

~ (class) in KHABEER inherits from ~ (superclass). Every user-defined class must have at least one direct

superclass. When a class has more than one direct superclass, multiple inheritance occurs. KHABEER establishes

~I)}' ~l.1I WI.i (a class precedence list) by examining the direct superclass list for a new class. The new class inherits

slots and message-handlers from each of the classes in the class precedence list. Slots and message-handlers of a class in

the list override conflicting definitions of another class found later in the list. A specific (.)~) class is a class that comes

before another class in the list. ~-~J function can be used to list the class precedence list.

3.2.2. Abstract and Concrete Classes ~\J ~I J~':JI

No direct instances of a class can be created if this class is ~ (abstract). A class of type e- (concrete) can have

direct instances. By default, a new class is e-.

3.2.3. Slots and Their Facets ~L.,.:,..,.:. J ..:,.JL......JI

Values associated with instances (..:,.Jy.) of a user-defined class are stored in slots (..:,.J\.c"). To determine the set of slots

for an instance, the class precedence list for the instances is examined in order from most specific to most general (right

to left). A class is more specific than its superclasses. Slots specified in any of the classes in the class precedence list are

given to the instance. with the exception of no-inherit (.!.I)j':J) slots. If a slot is inherited from more than one class, the

definition given by the more specific class takes precedence. with the exception of composite (y5'r) slots.

Facets (~L.,.z.;I...I) describe various features of a slot. These facets are: J'~ (default value), .)"u;. (cardinality).

~.f (storage), ~ (access). ~I)J (inheritance propagation). and)..L..4.0 (source) of other facets. With the exception of

shared slots (~p ..:,.J\.c"). each object can still have its own value for a slot.

October 1997 The Arabian Journal/or Science and Engineering, Volume 22. Number 2B. 281

Mostafa M. Aref and Husni A. AI-Muhtaseb

Default Value Facets ~JAlI ~I ~\....4>

The facets J'JA.a (default) and p.:...-J'JA.a (default-dynamic) can be used to specify an initial value given to a slot when
an instance is created or initialized. The specified expression in p.:...-J'JA.a is evaluated every time an instance is created,
and the result is assigned to the appropriate slot.

Cardinality Facets .)"wI ~\....4>

The facet .)~ (multiple) specifies that a slot can hold zero or more values, and the facet.)} (single) specifies that the
slot can hold zero or one value. Slots with.)~ facets are called J~ slots. J~ slot values can be manipulated with the
standard J~ functions, such as ~ and J~. KHABEER also provides functions for setting J~ slots.

Storage Facets ~yo:...:JI ~\....4>

The facet ~ (local) specifies that the value be stored with the instance. The facet .!l~ (shared) specifies that the
value be stored with the class. In the ~ facet, each instance can have a separate value for the slot. In the other facet, all
instances will have the same value for the slot.

Access Facets .!.LWI ~\....4>

The access facets types are ~-I}J (read-write), .lUi-I}J (read-only), and .lUi-~ (initialize-only) where the slot can
be read and set by slot overrides in ~-J..s call and ~ message-handlers.

Inheritance Propagation Facets GIJ}I ~\....4>

The facet ~Ji (inherit) specifies whether a slot in a class can be given to instances of other classes that inherit from the
first class or not. The facet ~Ji'i (no-inherit) says that only direct instances of this class will get the slot.

Source Facets)..l..4l1 ~\....4>

The ..y.. (exclusive) facet says: take the facets from the most specific class which gives the slot and give default values
to any unspecified facets. The ~r (composite) facet causes facets which are not explicitly specified by the most
specific class to be taken from the next most specific class.

3.3. Defining Message-Handlers -:,,~Ut1I...At;N

The construct t L.....tvo-J.r is used for specifying the behavior of a class of objects in response to a particular message
(shown in Figure 4). This construct consists of the following seven elements: a class name (~I t""") to which attach the
handler, a message name (~L-..)I t""") to which the handler will respond, a handler type, an optional comment, a list of
parameters that will be passed to the handler during execution, an optional wild card parameter, and a series of
expressions which are executed when the handler is called.

[<U;~>] [<tWI ti>] <~L...)I t""'1> <~I t"""> tl,...-J.r)

(*<JJ> (£rls--p.:...] *<~»

<''IIP~\-p.:...> -:: <p.:...>

~I~) 1J:iIJ~ -:: <tWI-ti>

<J~-p.:...> -:: <ils--p.:...>

Figure 4. Syntax ofMessage Handlers.

282 The Arabian Journal/or Science and Engineering. Volume 22. Number 2B. October J 997

Mostafa M. Aref and Husni A. Al-Muhtaseb

Message handlers are uniquely identified by class, name, and type. All message handlers have an implicit parameter

called ~! (self) which binds the active instance for a message. This parameter name is reserved and cannot be explicitly

listed in the message handler's parameter. There are three primary message handlers that are attached to the class

r~-:~ (initialize); J.,L,... (delete); and ~ (print).

There are four categories of message handlers:~) (primary); ~ (before); ~ (after); and J»" (around). The return

values of J---J and ~ handlers are always ignored. ~ handlers execute before the ~) ones, and ~ message-handlers

execute after the ~) ones. The return value of a message is generally given by the ~) message-handlers, but J»"
handlers can also return a value. J»" message-handlers allow the user to wrap code around the rest of the handlers. They

begin execution before the other handlers and pick up again after all the other message-handlers have finished.

The body of t L..--J.r--S' is a sequence of expressions that are executed in order when the handler is called.

tw-J f' returns the value of the last expression in the body. The body of tw-J f' may directly manipulate slots of the

active instance.

3.3.1. Slot Accessor Handlers ~L.....J' ~w

For every slot in ~-Jf' two primary message-handlers are created implicitly: <~ r-'>-~ to read slot values in

instances of a class; and <~ r-'>-t;:iI to set slot values in instances of a class. <~ r-'>-J...a> handler returns the value of

the slot, or the symbol ~ if the slot has no value. <~ r-'>-t;:iI returns the symbol ~ if the slot was successfully set, or

the symbol ~ otherwise.

3.3.2. Predefined System Message Handlers 4j."JI ~~W,

KHABEER has three primary message-handlers that are attached to the class r~-. These handlers are J+l"'", J.,L,...,

and ~. These handlers cannot be deleted or modified. The first handler J+l"'" is used for instance initialization with class

default values after creation. The second handler J.,L,... is used for instance deletion. The third handler ~ is used for

displaying slots of an instance and their values.

3.4. Message Dispatch 4)\..,.,)' j~'

KHABEER uses the roles (J.,..-. (around), ~ (before), ~) (primary), and ~ (after» to establish a complete set of

message handlers which are applicable to a given message (sent by the command J...-)1). This is done by examining

~I)}I ~jJl Wli (class precedence list) of the active instances class. This process is referred to as the message dispatch

(~L.)1 j~').

3.4.1. Message Handler Precedence ~~W, ~4}J'

The order of execution of message handlers begins with J»" handlers from most specific to most general, then ~

handlers execute from most specific to most general, then ~) handlers begin execution from most specific to most

general, after they finish execution from most general to most specific, ~ handlers execute from most general to most

specifiC, and J»" handlers finish execution from most general to most specific.

3.5. Manipulating Instances ~~I u.-w
Manipulation of objects is done by sending them messages. This is achieved by using J...-) (send) function (shown in

Figure 5), which takes as arguments the destination object for the message, ~L.)I (message) itself and any arguments

which are to be passed to handlers. The return value of J...-)1 is the result of the message.

(* <J'WU'> <~L.)I-r-I- J'WU'> <~-J'WU'> J...-) I
Figure 5. Syntax of J-j .

October 1997 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 283

Mostafa M. Aref and Husni A. Al-Muhtaseb

The slots of ~I,) (object) may be read or set directly only within the body of a message handler that is executing on

behalf of a message that was sent to that object. In this way, KHABEER implements the notion of encapsulation. Any

action performed on an object by an external source must be done with messages. Creation and initialization of an

instance of a user defined class are performed by the function y-J...s. (make instance).

3.5.1. Creating Instances ~~ J...s.

Instances (~~) of user defined classes (Jl..,.:.I) must be explicitly defined by the user. All instances are deleted during

~ (reset) command, and they can be loaded and saved similarly to facts. All operations involving instances require

message passing using J...;I (send) function except for creation.

*<~-)~\> <~-\""""'\-~>0'" <y-\""",,,'-ft:"U> -:: <y-~fU>

(*<~> <y-\""",,, I..:.ft:"U» -:: <~-)~I>

Figure 6. Syntax of ~-J...P.

A function called ~-J...s. (make instance) is used to create and initialize a new instance (shown in Figure 6). This

function sends an initialization message to the new object after allocation, and the user can customize instance

initialization. y-J...s. allows changing any predefined initialization for a particular instance.

~-J--.-s- returns the name of the new instance on success or the symbol Ua.:.:. (false) on failure. The evaluation of

<~-r--I-~> can either be an instance name or a symbol. When y-J...s. creates a new instances it performs the

following steps:

1. 	 If the instance exists, that instance receives a delete message, (J,1... <y-\""",,,'> J...).

2. 	 An uninitialized instance of the specified class is created.

3. 	 All ~-j~1 (slot overrides) are evaluated and placed by -~ messages, e.g.

(*<ft:"U> <~-\""",,,I>-~ <y-\""",,,'> J...)1).

4. 	 The new instance receives the ..J---+>." message, e.g. (.if"'" <y-\"""""> J...)1) for initialization. The handler attached to

class r~_ will respond to this message. This handler calls the ~~- .if"'" function. This function uses defaults

from the class definition - if any - for any slots which do not have ~-)~I . The class defaults are placed directly

without the use of messages.

Defining Instances Construct ~~I ~~

~~-Jr--S' construct allows the specification of instances which will be created every time.rA>- (reset) command is

executed (shown in Figure 7). Whenever .rA>- is issued, all current instances receive J,1... message, and the equivalent of

~-J--.-s- function call is made for every instance specified in ~~-Jf (define instances) constructs. Instances of

~~-Jf are created in order, and if any individual creation fails, the remainder of the instances will be aborted.

(*<y-c')yC> [<U;.~>] <~~-~~-\"""""> ~~-Jf)

«y-~~» -:: <y-C.)yC>

Figure 7. Syntax of ..::A.~'-J...P .

3.5.2 Re-initializing Existing Instances ~~I ~

To provide the ability to reinitialize an existing instance with class defaults and new slot overrides, the function

~-.i--T"" is used (shown in Figure 8). The return value of tyt.-.if"'" is the name of the new instance on success or the

symbol Ua.:.:. (false) on failure. The evaluation of <y-\"""",,,::,~:> can either be an instance name or a symbol.

284 The Arabian Journal for Science and Engineering. Volume 22. Number 2B. 	 October 1997

http:tyt.-.if

Mostafa M. Aref and Husni A. Al-Muhtaseb

(* <~ -J.1·1> <~. - 1 ~ ~- ~ 4"-r-- - fr:AJ'"

Figure 8. Syntax of ~-;pr- .

3.5.3. Reading and Setting Slots ..;:.,L.....JI ~J o~l)

Rules, defined functions, or any sources external to an object, can read or write a objects slot only by sending the

object - j...a>- (get) or -~ (put) messages. Message handles executing on the behalf of an object can either use messages

or direct access to read the objects slots. An attempt to read a slot which does not have a value will g~nerate an error.

There are ways of testing the existence of slots and their values.

3.5.4. Deleting Instances ..;:.,L:.:JI J~

Sending J.i....> (delete) message to an instance removes it from the system (shown in Figure 9). Within a message

handler, y,-J.i> function can be used to delete the active instance for a message.

(~-""'.i.-)I

<';.,&-; J...})

Figure 9. Syntax of ~-J~ .

4.0. KHABEER QUERY LANGUAGE

KHABEER has a useful query system for determining and performing actions on sets of instances of user defined

classes. The instance query system in KHABEER provides six functions. These six functions are as follows.

Function Purpose

finds if one or more instance sets satisfy a query.

gives the first instance set that satisfies a query .

..;:.,L:.:JI-Y -...\>.-JI Groups and returns all instance sets which satisfy a query.

~-.lA.i Performs an action for the first instance set which satisfies a query.

4.:..,.s.-~-.lA.i Performs an action for every instance set which satisfies a query as they are found.

..;:.,L:.:JI-~-.lA.i Groups all instance sets which satisfy a query and then iterates an action over this

group.

The syntax of the query includes the name of the query, instance set constrains, query conditions, and query actions

(shown in Figure 10) . ..;:.,L:.:JI ~ (instance set) is an ordered collection of instances of a set of classes defined by the user.

KHABEER uses straightforward pern:lUtations to generate instance sets.) o· ~I J J); (queries) are user defined

Boolean expressions applied to an instance set to determine if the instance set meets further user defined restrictions. If

the evaluation of these expressions for an instance set is anything but the symbol LJ.a>. (false), the instance set is said to

satisfy the query. Since only instance sets which satisfy a query are of interest, and the query is evaluated for all possible

instance sets, the query should not have any side effects.

(~I..ul JWI

Figure JO. Query Syntax.

October 1997 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 285

Mostafa M. Aref and Husni A. Al-Muhtaseb

UI...u1 J~\ (distributed actions) are a user-defined expressions evaluated for each instance set which satisfies a query.

Unlike queries, distributed actions must use messages to read slots of instance set members. If more than one action is

required. An instance set query function can be called from anywhere that a regular function can be called. If a variable

from an outer scope is not masked by an instance set member variable, then that variable may be referenced within the

query and action. In addition, rebinding variables within an instance set function action is allowed. However, attempts to

rebind instance set member variables will generate errors. Binding variables are not allowed within a query. Instance set

query functions can be nested.

Instance set member variables are only in scope within the instance set query function. Attempting to use instance set

member variables in an outer scope will generate an error. If an error occurs during an instance set query function, the

function will be immediately terminated and the return value will be the symbol ~ (false). The instance query system in

KHABEER provides six functions. For a given set of instances, all six query functions will iterate over these instances in

the same order. However, if a particular instance is deleted and recreated, the iteration order will change.

4.1.~-~-jA

This function applies a query to each instance set which matches the template (shown in Figure 11). If an instance set

satisfies the query, then the function is immediately terminated, and the return value is the symbol ~ (true). Otherwise,

the return value is the symbol ~ (false).

(()l.......i.:.,..":J 1)

Figure 11. Syntax of ~-~-~ .

4.2.~-..\I:-J'

This function applies a query to each instance set which matches the template (shown in Figure 12). If an instance set

satisfies the query, then the function is immediately terminated, and the instance set is returned in a multifield value.

Otherwise, the return value is a zero-length multifield value. Each field of the muItifield value is an instance name

representing an instance set member.

Figure 12. ,Syntax of ~-..L1,..i.

4.3. ~~I-Jf-..\I:-J'

This function applies a query to each instance set which matches the template (shown in Figure 13). Each instance set

which satisfies the query is stored in a multifield value. This multifield value is returned when the query has been applied

to all possible instance sets. If there are n instances in each instance set, and m instance sets satisfied the query, then the

length of the returned muItifield value will be n * m. The first n fields correspond to the first instance set, and so on. Each

field of the multifield value is an instance-name representing an instance set member. The muItifield value can consume a

large amount of memory due to permutational explosion, so this function should be used judiciously.

Figure 13. Syntax of ,.::A.::AiI-f-..L1,..J1 .

4.4.~-..\A.i

This function applies a query to each instance set which matches the template (shown in Figure 14). If an instance set

satisfies the query, the specified action is executed, and the function is immediately terminated. The return value is the

evaluation of the action. If no instance set satisfied the query, then the return value is the symbol ~ (false).

Figure 14. Syntax of ~-..u;.

286 The Arabian Journalfor Science and Engineering, Volume 22, Number 28. October 1997

http:A.::AiI-f-..L1

Mostafa M. Are! and Husni A. AI-Muhtaseb

4.S. ~-jSJ-.l.A.i

This function applies a query to each instance set which matches the template (shown in Figure 15). If an instance set

satisfies the query, the specified action is executed. The return value is the evaluation of the action for the last instance set

which satisfied the query. If no instance set satisfied the query, then the return value is the symboll.k>-(false).

Figure 15. Syntax of ~-j5J-..iA.i.

4 6 ~I..:..AJ'- •. ~4..-.l.A.i.... ~.

This function is similar to ~-J--..S0-..L.4; except that it groups all instance sets which satisfy the query into an

intermediary multifield value (shown in Figure 16). If there are no instance sets which satisfy the query, then the function

returns the symbol L....,b:.:. (false). Otherwise, the specified action is executed for each instance set in the multifield value,

and the return value is the evaluation of the action for the last instance set to satisfy the query. The intermediary

multifield value is discarded. This function can consume large amounts of memory in the same fashion as

..:.;~I-J.-.5-...l>. JI. This function should be used in lieu of ~- j5:J-J.Aj when the action applied to one instance set would

change the result of the query for another instance set (unless that is the desired effect).

Figure 16. Syntax of .,;.J~/-~-J..A.; .

S.O EXAMPLES

To show the syntax of KHABEER, several examples are given below. The output of each example is shown after it.

S.l A Simple Example

This example shows a simple rule and two facts. The rule will be activated and fired. A new fact is added to the fact list

(shown in Figure 17).

(O~L,a.,. 4.>.J\!JI ;Iii) 4.>.J\!JI-~l>- J1\.A.:..-J/,)

«c~ 4.>.J\!JI y4)

(O~L,a.,. 4.>.J\!JI J1il)

(C..,.:A." 4.>.J\!J1 y4)

«(..JJI; 4.>.J\!JI yl) ~) <=

(rA>-) <.fr:>­

(J.Aj) <~

(J1\.A.:..) <~

«a.:!J\-~) • -C)

«O~L,a.,. 4.>.J\!JI) i \) \ - C)

«Cfo 4.>.J\!JI y4) .,. -C)

«..JJI; 4.>.J\!JI yl) r -C)

t J1U:l-I-t..."...s.

Figure 17. Simple example.

October J997 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 287

http:j5:J-J.Aj

Mostafa M. Aref and Husni A. AI-Muhtaseb

5.2 An Example on Rules Definitions

This example shows a set of 6 rules. These rules are applied on different set of facts and the response of these rules are

shown as output. The rules concern the diagnosis of a pump (shown in Figure 18).

, -r\J2.;.lI-L)-~ oJ.s.li-J.r)

(J) /"'"-.r.S- \.k;ll-~l>)

«(UlA... ~\..:lI)~I) (J~ rL.......::Jl) (4\.s;. ';JI)--I-~J:»)')

«)a- ",~ .)s-I.,$Y- r\J2.;.lI" ~~) <=

"-r\J2.;.lI-L)-~ oJ.s.li-J.r)

(J)/"'"-.r.S- \.k;ll-~l>)

«UlA... ~\..:lI)~I)

«)a- ",,~ .)s-I.,$Y- r\J2.;.lI" ~~) <=

'-r\J2.;.lI-L)-~ oJ.s.li-J.r)

(J) /"'" - .r.S- \.k;ll-~l>)

(J~rL.......::Jl)

«)a- ",~ .)s-I.,$Y- r\J2.;.lI" ~~) <=

t -r\J2.;.lI-L)-~ oJ.s.li-J.r)

(J) /"'" - .r.S- \.k;l \ - ~l>)

(4\.s;. 0J,:ll-~ J:>)

1- ·"t~ 1.:. ,-.!. \J2.;.l1" • __ k.)«.r""",- I.,$~. r '-'" c: <=

o -r\J2.;.lI-L)-~ oJ.s.li-J.r)

(9 \.k;ll-~l>)

«J.l;v rL.......::Jl) (4\.s;.';))--I-~J:»)))1)

«(Cfo rL.......::Jl) (~ 0))--I-~J:»))

«)a- II~ .)s- 1.,$Y- r\J2.;.lI" ~~) <=

JWI-J..wl oJ.s.li-J.r)

(4\.s;. .;))--I-~J:»

(Cfo rL.......::JI)

«9 \.k;ll-~l>)v-:l)

«)a- "4\.s;. 0))--1 ~J:> \J~ rL......:J\ J")V;.~~" ~~) <=

(J)/"'"-.r.S- \.k;ll-~l» ~\-~l> ,.:;.1I..4.>-J.r)

(4\.s;. 0))--I-~J:»

«~fo ~\..:ll) ~I)
«J.l;v rL.......::JI)

(~)<~

(..iA.;)<~

'~.)s-I.,$Y- r\J2.;.l1

t~ .)s-I.,$Y- r\J2.;.l1

Figure 18. Example ofRules Definition.

288 The Arabian Journaljor Science and Engineering, Volume 22, Number 2B. October 1997

http:s-I.,$Y-r\J2.;.l1
http:Y-r\J2.;.lI

Mostafa M. Aref and Husni A. AI-Muhtaseb

(~ \1.:J...'-~l>-) ~'-~l>- ..;l\.A.:...-J/)

(~\s. 0;1.)-1-4".,.):»

«t:.­~ ~l)..') ~\)

«Jl;v il......4.ll)

(.rP-) <Y.

(..i.A.i) <Y.

~ Js­ ~y>:. ilJi;.1\

(~-~ \1.:J...I-~l>-) ~I-~l>- ..;l\.A.:...-J/)

(~\s. 0))-1-4".,.):»

«t:.­~ ~l)..\) ~I)

«C~ il......4.ll)

(.rP-) <Y.

(..i.A.i) <Y.

~\s. 0))-1 4".,.):> 0"1 il......4.l1 J')U-.4 ~

Figure 18. Example ofRules Definition (Continuation).

5.3 An Example on Instances and Message Handlers

This example shows the definition of a class and a message handler. Then, an instance is made of that class. The

contents of the instance is filled by the message handler and is printed out (shown in Figure 19).

(i~0~)o},!"" ~-J/)

(I"S"'\.."11--Vt.il1 ~)

«:>..l.Jt.:..t) JJ~~)

«JJ~I-~-\.::AJ.)"1I-.)..t&- ~)

(~I~# o.)\"~)o}~\-~-.)I)'-~ o}-:...o tLv-J/)

(o.)\..~ 1"S"'\.."1\--Vt.il\-~ ~~ J...))

(~I~ JJ~-~ ~~ J...))

«(~\~ Jyk) JJ~I-~-<.::.J\J.)"1I-.)..t&--t"" ~~ J...))

(O)~ ,y \;y...i 4-J....s-)<Y.

[\;y...i]

(~\...,.4.)-~)\..1.\ ~ o).~\-~-.)\)\-t"" [\;y...i] J...))<y.

~
(~ [\;y...i] J...) <y.

o}-:..... ,y \;y...i

(~ I"S"'\.."11--Vt.ilI)

(~\...,.4:>-~)\..1.\ J J~)

(Y JJ~I-~-,.::AJ:>"1I-:>..t&-)

Figure 19. Example on Instances and Message Handlers

October 1997 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 289

Mostafa M. Aref and Husni A. AI-Muhtaseb

«...,..s- 4.c") «!!p) (.1ili-I~)~ 4.c") (~) (~~ 0~) ~

«(~I uPJ-L-) (~f)~ 4.c")(~)(~ 0~) ~I

«(.?~ uPJ-L-) (~f)~ 4.c") (~) (~0~) .?~

(0", 'v, C\ <.S..t.o) (r-iJ- ti) (t uPJ-L-) ...,..s- 4.c") (~I 0~) ~

~-Jf)

~-Jf)

~-Jf)

~-Jf)

~-Jf)

~-Jf)

~-Jf)

...:.s~-Jf)

«)' A" ,. · I' <.S..t.o) (r-iJ- ti) ('I' 0 uPJ-L-)...,..s- 4.c") (~I 0~) oifl

(0, I' 'V,'\ <.S..t.o) (r-iJ- ti) (t uPJ-L-)...,..s- 4.c") (.?~ 0~) ..uJ

«)' · ·I' \ A" <.S..t.o) (r-iJ- ti) (" 0 uPJ-L-)...,..s- 4.c") (.?~ 0~) J>.-J
U"'\.:.:..;.\

«"\ • ...,..s-)J>.-J r:r '1'-J>.-J) «\A...,..s-) J>.-J r:r ,-J>.-J)

, -OffD

r-offD

«"\,..s-)

(..uJ

(..uJ r:r

oifl

r:r

r:r 'I'-offD «\A ...,..s-)

'I'-..uJ) «A...,..s-) ..uJ

t -..uJ) (..uJ

«~ r:r 'I'-~) «A...,..s-)

off!

(offl

r:r
r:r
~

r:r
r:r

r:r

\ -..uJ)

r-..uJ)

\-~)

(.r4» <~

«off! ~ ~-J\-offl~) (J>.-J ..uJ ..uJ-JI-J>.-J~» 4-j>J-.l.A.i)<~

«...,..s--~~-J\-offl~ ~JI) (...,..s-­~ ..uJ-J'-J>.-J~ ~) -)

«..,.6- "(" ~-J'-Offl~ "," ..uJ-J\-J>.-J~ 'ry' ~e;k)

d, -~],[, -..uJh

d,,-~],[,,-..uJh

d" -~], [r-..uJh

d ,,-~],[t-..uJh

d' -offl], [, - J>.-Jh

d" -Offl] ,[, - J>.-J)
«offl ~ ~-J\-Off!~) (J>.-J..uJ..uJ-J'-J>.-J~» 4-j>J-.l.A.i)<~

(...,..s-:~-JI-oifl~ ...,..s-:..uJ-JI-J>.-J~-)

«..,.6- "(" ~-JI-oifl~ \" ..uJ-JI-J>.-J~ 'ry' ~ e;k)
d \ -~],[\-..uJh

d,,-~], [,,-..uJh

d,,-~],[r-..uJh

d ,,-~],[t-..uJh

d \ -Off!]' [, - J>.-Jh

d "-offl], [, - J>.-Jh

(~Y) ...:.s~I-yL....,;... ~\.)-Jf)

). yL....,;...~..lJ)

)«' yL....,;...Y +) yL....,;...~..lJ) ~ «~Y 4~» 4-j>J-.l.A.i)
(yL....,;...~

(~~)'I'-...:.s~,-yL....,;... ~b-Jf)

«(~ «~~ 4~»...:.s~1-jS'-..\>.-J') Jyk)

Figure 20. Example on Query Language

290 The Arabian Journalfor Science and Engineering. Volume 22. Number 2B. October 1997

Mostafa M. Aref and Husni A. Al-Muhtaseb

(;ir l .:,.~\-y\.......:...)<y.-:>­

r

(..u.; .:,.~\-y\.......:...)<y.-:>­

t

(oirl r -.:,.~\-y\.......:...)<y.-:>­

r
(..u) r -.:,.~I-y\.......:...)<y.-:>­

or. ~:JY <) «J>.-J J~» Y-~-jA)<y.-:>­

~
«~:i~ ~:J~ -) «oir l i~) (J>.-J J~»Y-..b:-)I)<y.-:>­

d' -oirl] [, ­ J>.-Jh
«~:i~ ~:J~ -)«oirl i~) (J>.-J J~»':"~'-jS"-..b:-)I)<y.-:>­

d' -oirl] [, - J>.- J] [, -ofrl] [, - J>.-Jh
«~ r J'~) (~ rJ'~) (~ 'J'Y»a..yJ-..\.A;)<y.-:>­

(~:rJ'~ ~:rJ'~ ~: 'J'~ -»))

(rJ'~ 'J'Y J~)

(rJ'Y 'J'Y J~)

(rJ'Y rJ'Y J~)

«)a..... r J'Y II) " r J'~ II) II 'J'~ J' c:k)
[r-~]) [r-..u)b [r-..u)]

(.:,.t.y:.) <y.-:>­

,-~

..u)-~

,-..u)

r-..u)

r-..u)

t-..u)

:oiri-~

, -ofrl

r-ofrl

r-ofrl

:J>.-J-~

'-~J
r-J>.-J

" .:,.~\-t.,.,...s.

Figure 20. Example on Query Language (Continuation)

October 1997 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 291

Mostafa M. Aref and Husni A. Al-Muhtaseb

5.4 An Example on Query Language

This example shows the definition of several classes and several instances of these classes. KHABEER query language

is used to request some information. Some functions are defined and applied on these instances. At the end, the command

(.;.J~) is used to print all instances in KHABEER (shown in Figure 20).

6.0 IMPLEMENTATION ISSUES

KHABEER consists of 63 C files and 62 header files. The size of all source code files is 2.3 Mbytes. Microsoft C++ is

used to compile KHABEER source files. The size of the executable code of KHABEER which support object oriented

language is 13M bytes. The system runs under MS-Windows 3.1. Error messages within KHABEER system are

generated in Arabic. Reference Manual for the system is under development [7]. There are three ways for integrating

KHABEER with other programs. First, since KHABEER is written in C, an integrating subprogram may be written in C

and compiled with the system. Second, a Dynamic Linked Library (DLL) may be generated for KHABEER. Therefore

another external system may use ~t. Third, since KHABEER is a Microsoft Windows application, communication

between MS Windows applications can be done through message passing.

7.0 CONCLUSION AND FUTURE WORK

The number of tools for building expert systems has increased significantly following the progress of expert systems in

industry . Yet, there are few works about Arabic expert system shells. This paper presents KHABEER as one of the

pioneer projects of Arabic expert system tools. KHABEER is written in C language, which supports the goals of high

portability, low cost, and ease of integration with external systems. KHABEER supports Object Oriented Programming,

where it has 11 predefined classes and allows abstract and concrete class definitions and multiple inheritance. Various

features of slots are supported by KHABEER. KHABEER allows the declaration of message-handlers for defined

classes. Manipulating instances of objects is supported through different functions in KHABEER. These functions

include creating instances, re-initializing existing instances, reading slots, setting slots, deleting instances, instance query,

and other actions. These functions and other Object Oriented features are supported in Arabic by· KHABEER version 2.

KHABEER provides a query system for determining, grouping, and performing actions on sets of instances of user­

defined classes that meet user-defined criteria. The user can use the query system to determine if a particular association

set exists, he can save the set for future reference, or he can iterate an action over the set. KHABEER has a Windows

interface running under MS Windows. Researchers who are working in research areas, such as Arabic Language

Understanding, Machine Translation, Semantic Representation of Arabic language and others, will find KHABEER a

good tool for them.

ACKNOWLEDGMENT

The Authors wish to acknowledge the help of King Fahd University of Petroleum and Minerals (KFUPM) in utilizing

the various facilities in preparation of this paper.

REFERENCES

[1] 	 David W. Rolston, Principles ofArtificial Intelligence and Expert SySl.ems Development. McGraw-Hill Book Company, 1988.

[2] 	 William Mettrey, "A Comparative Evaluation of Expert System Tools",IEEE Computer Magazine, 24(2) (1991), pp19-31.

[3] 	 Chung S. Kim and Youngohc Yoon, "Selection of a Good Expert System Shell for Instructional Purposes in Business",
Information and Management, 23 (1992), pp 249-262.

[4] 	 A. C. Stylianou, G. R. Madey, and R. S. Smith, "Selection Criteria for Expert System Shells: A Socio-Technical Framework",
Communications ofThe ACM, 35(10) (1992), pp 30-48.

[5] 	 Mostafa M. Aref and Husni Al-muhtaseb, "KHABEER: (~) An Arabic Expert System Shell", The 18th International
Conference for Statistics, Computer Science, Scientific & Social Applications, Cairo, Egypt, April, 1993.

292 The Arabian Journalfor Science and Engineering, Volume 22, Number 2B. 	 October J997

Mostafa M. Aref and Husni A. Al-Muhtaseb

[6] 	 Husni A. AI-Muhtaseb and Mustafa M. Aref, "Arabic Technical Terms in Arabic Formal Languages", Proceedings ofThe 3rd

International Conference on Multi-lingual Computing, University ofDurham, UK, December 1992.

[7] 	 Mostafa Aref and Husni AI-Muhtaseb, "KHABEER Reference Manual", A Technical Report, ICS Department, KFUPM,

Dhahran, Saudi Arabia (to be published).

[8] 	 Husni A. AI-Muhtaseb, Mustafa M. Aref, and Ali AI-Kulaib, "Khool: KHABEER Co-..~>·) Object Oriented Language",

Proceedings ofthe 4th International Conference and Exhibition on Multi-lingual Computing, London, UK, April 1994.

[9] 	 CLIPS Reference Manual Version 4.3. Mission Planning and Analysis Division, Artificial Intelligence Section. NASA Johnson

Space Flight Center, USA, 1989.

[10] CLIPS Reference Manual Version 5.1. Software Technology Branch, Lyndon B. Johnson Space Center, USA, September 1991.

[11] George 	F. Luger, William A. Stubblefield, "Artificial Intelligence and the Design of Expert System", The Benjamin/Cummings

Publishing Company, 1989.

Paper Received 27 March 1995; Revised 24 February 1996; Accepted 26 June 1996.

October 1997 	 The Arabian Journalfor Science and Engineering, Volume 22. Number 2B. 293

