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ABSTRACT 

A novel and powerful method or solving large sets of reservoir equations of the 
Fourier type in finite difference form is proposed. The technique is based upon a 
somewhat arbitrary selection of a region in two-dimensional space in which the 
solution of the unknown variable is obtained implicity subject to certain conditions 
imposed upon the boundary of the region. An iterative technique is used to move the 
region over the entire two-dimensional space until convergence criteria are satisfied. 
Although a rigorous proof of convergence is difficult, a demonstration of convergence 
is presented for a sample problem. Computer usage confirms that the method requires 
relatively little storage space and has the capability to handle a wide range of 
coefficients and thousands of equations with high speed. 
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A REGIONALLY IMPLICIT METHOD FOR SOLVING LARGE SETS 
OF SIMULTANEOUS RESERVOIR EQUATIONS 

INTRODUCTION 

The numerical simulation of reservoir equations of 
the Fourier type in two-dimensions frequently requires 
the solution of a large number of ~quations. Th~s can 
require considerable time and expense even on our very 
large, third generation, computers; and occasionally the 
problem is so large or expensive that even these 
computers are deemed indequate. For this reason 
considerable work has been underway to develop new 
or improved techniques of solving the large sets of 
equations involved. Desirable solution methods should 
be stable so that the'user can be assured of convergence 
even for great difference in adjacent coefficients. The 
machine solution t~me should be small and core storage 
space should be small. The solution technique should be 
simple, easily programmed and readily checked out. 

In 1955 a very useful implicit technique for solving 
large sets of equati'ons was proposed [1]. This methods, 
known as the alternating direction implicit method, has 
been ofgreat utility and is still being used. In 1968 Stone 
presented a strongly implicit procedure as a solution 
technique [2]. The Stone method is now referred to as 
SIP. The latter method is rated superior to ADIP, yet 
SIP requires considerable knowledge and experience in 
its application. Both methods require iteration 
parameters and both methods may fail to converge for 
some problems. 

In the paper by Stone it was pointed out that for 
large sets of equations iterative methods are normally 
considered superior to direct solution methods. The 
latter require more storage and more arithmetic 
operations and can become quite involved in 
programming. By contrast, Gauss-Seidel and successive 
over-relaxation iterative methods require little core 
storage and are easily programmed. They are normally 
used with single iterative parameters. Frankel [3] and 
Young [4] reported on convergence rates of the early 
iterative methods. 

In this paper we provide the foundation to support 
a new method of solution. The new method presented 
here, when coupled with an accelerator, runs faster than 
SIP and requires less storage. The method is easily 
. understood, readily programmed and has never yet 
failed to converge even for greatly different coefficients. 

MATHEMATICAL DEVELOPMENT 

The general fluid flow equation is of the same form 
as dimensional heat flow and is given by 

-",[ --'>. 	 ] oT(xyt)
V K(x,y)VT(x,y,t) +Q(x,y) p(x,y)c(x,y) 6; , 

(1) 

where K is the thermal conductivity of the material, p is 
its density, c is the specific heat capacity, Q is the source 
or sink term, and T is the temperature. This heat 
nomenclature is readily understood and is used in this 
paper. 

Using central differences in space and backward 
differences in time we can write Equation (1) as 

I)_Ki-1/2·j(T'.I,!, 1Tn+ 1
.1y2 	 i-l.j) 

I.) 

(2) 

where 	we have used a rectangular grid defined by 

j =0,1,2, ...,(J -1) 

i =0,1,2,...,(1-1) 

Compacting our notation we write (2) as 

B T n+ 1 + D T n + 1 E' Tn + 1 F T n 1 +H Tn + 1
i.j i,j - 1 i,j; - l.j + ;,j i.j + i.j i + t.j i.j i.j + 1 

( T ~ ~ 1 _ T .n. )
I,) I,) 

1'. 

+Q i,j =G;,j (t n 1 -tn) 

(3) 

where we have used 
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et cetera. 

Incorporating the right hand side of Equation (3) into 
the left hand side we define 

E· .= E'· . -	 -----=---­
I,) I,) ­(t + 

n 1 

to get 

Bi ,jT7';!1 + Dj,jT?-=-L+ E i .jT7,; 1 + F j,jT7:L 

+ Hj,jT7';J1 + Qj,j=O (4) 

The superscript (n + 1) is at this point superfluous, and 
we discard it with the note that Equation (4) is fully 
implicit in the unknown T. 

Two of the currently popular methods of solving 
finite difference equations similar to Equation 4 are 
ADIP [1J and SIP [2]. SIP has been shown to be 
superior to ADIP but requires the boundary condition 
aT aT ax = ay = 0 in order to generate its algorithm. Both 

ADIP and SIP are dependent upon iteration 
parameters to increase the rate of convergence, and the 

choice of iteration parameters is not always completely 
reliable, i.e., divergence may sometimes result. Our 
method requires neither a special choice of boundary 
conditions nor iteration parameters. 

Furthermore, we note that ADIP uses equations 
which are alternately implicit in the x and y directions. 
Although this formu~ation has certain mathematical 
advantages, it seems intutively more advantageous to 
construct equations which are regionally implicit. 

Consider the thirteen block grid shown in Figure 1. 
If we write an equation similar to Equation (4) for each 
of the five unshaded blocks we obtain five equations and 
thirteen unknowns. We can, however, easily reduce the 
number of unknowns to five by defining an iteration 
scheme such that the temperatures in the shaded blocks 
are known either from initial values or the previous 
iteration. In block (i,j - 1) we write 

Bj,j-l T~,j_ 2 + Di,j_ 1 T7- Lj-l + Ei,j-l T7';.\ 

+ Fj,j_1 T7+ l,j-l + Hj,j-l T7'; 1 + Qi,j-l =0 

(5) 

where the superscript k denotes the iteration number, 
In block (i - 1,j) 

Bi l,jT~-l,j-1 + Dj-l.jT~ 2.j+ E i -l.jT7-=-l.j 

+ Fi-l.jTU 1 + Hi-l.jT~-l.j+ 1 +Qi-l,j=O. 
(6) 

Figure 1. 	 Basic Grid Used in Dereloping New Method. Hachured Blocks are 1hose Havin(/ Constant Potential During 
One Computation. Interior Blocks are Solved Implicity for the New Potentials. 
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In block (ij) 

Bi.jT~.;.! 1 + Di.jT~~L + Ei.jT~.; 1 + Fi.jT~:L 

+H,)T~~+ll +Q' ,=0I. I.) I.) (7) 

In block (i + 1,j) 

Bi+I.jT~+ l.j-l + D i +l.jT~.; 1 + Ei+l.jT~:L 
+F'+l T~+2 ,H'+1 T~+l '+1 +Q'+l ,=0.1 .) 1 .) 1 .) I.) I ,) 

(8) 

In block (i,j + 1) 

(9) 

An of the Q terms are known, as are the values of T at 
the k'h iteration. So we define 

1 [ k kC1.1 = -~E--:-,- Qj,i-l + Bi,j-l Tj,j- 2 + D i •j - t Ti-l. j - 1 
!.)-I 

(10) 

-1 [ k kC2.l =-E,~ Qi-l,j+ Bi-l.jT i -1.j-l + D i - 1.jT i - 2.j 
1-1.) 

+H'-l.jTi- I.j" J 
(11) 

(12) 

(13) 

Cs 1 =_~_I_[Q' '+ 1 + D· .+ 1T~-I '+ 1 . Ej,j+ 1 I.)I.) I.) 

+ F',J+!Ti+ ',J+ ,H',I+' TL+ 2J 
(14) 

Then Equations (5) - (9) can be written in matrix 
notation as in (15). 

1 0 
Hi,i-l 
E j •j - t 

0 0 

0 1 Fj-l.j 

Ei ­ l.j 
0 0 

Bu. D i .j Ei •i Fi •i H i •j 

0 

0 

0 

0 

D·+ 1 · __'_.) 
E j + l.j 

Bj,j+ 1 

Ej.j+1 
0 

0 

T~.;!I C1.1 

T~~L 

T~~l 
I,) 

C2.1 

C 3•1 

(15) 

T~:l'! .) C4 •1 

T~,;;l CS•1 

The solution to Equation (15) can be easily obtained by 
making use of the symmetrical properties of the 
coefficient matrix on the left hand side of the equation. 

Define 

u=[~ ~J 
Hi.j- \ D j + \.j 

Ei .i _. \ Ej + l.j 

v2 = Vs= 

Fi-l,j Bi,j+ \ 

Ei-l,j Ei,i+\ 

I.) !,JV4=[B" D· 'J 

Then Equation (15) become: 

(16a) 

(16b) 
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(16c) 

Solving Equations (16) for P2 = Ttl I we obtain 

Tki~/ =N/D, (17) 

where 

N = -(Qi.j+ Bi.jCl. I + D j.jC2.1 + Fi.jC4 •1 + Hj,jCs.I) 
(18) 

(19) 

and in addition we obtain 

H· T~+I
Tk.+ I =C _ 1.)-1 I.j 

1.)- I 1.1 (20) 
ELj 1 

T~~II ,=C2 I1 ,) , (21) 

(22) 

(23) 

Equations (10) - (14) and Equations (17) - (23) 
constitute the solution to the temperatures in the 
regionally implicit grid. The easiest way to program 
these equations for computer solution is simply to allow 
two extra blocks on each side of the rectrangular grid so 
that there results (I +4) x (J +4) blocks instead of IJ 
blocks. The equations are then nested inside DO loops 
over the i and j indices such that the (i,j) block in Figure 
1 passes over each block in the problem once per 
iteration. 

If we use only Equation (17) then the temperature 
in each block is updated once per iteration. However, 
the inclusion of Equations (20) - (23) means that for each 
iteration the temperature in corner blocks is updated 
three times, that in the boundary blocks four times, and 
that in the interior ~locks five times. 

In general it is' definitely more advantageous to 
include Equations (20) - (23) than to use Equations (17) ­
(19) alone. For example, in a 7 x 9 homogeneous, steady 
state test case it was found that using only Equations 
(17) - (19) required 23 iterations for convergence, while 
the inclusion of Equations (20) - (23) reduced the 
number of iterations to 14. 

DEMONSTRATION OF CONVERGENCE 

A rigorous proof of the convergence of the new 
technique is particularly difficult because of the 
repeated updating of the temperature in each block per 
iteration. We can however, demonstrate convergence if 
we solve only for the temperature in the center block (i,j) 
of our thirteen block grid. We further assume a 
homogeneous, steady-state problem in which case Bi,j 
=D i•j = Fi,j = Hi,j = 1 and Ei.j = - 4. Substituting these 
values into Equations (10) - (14) and then using 
Equations (17) - (19) we obtain 

Tk +1 _ Qi,j I [Q Q Q Tk +1i,j -3~+12 i-I.j+ i,j-I+ i,j+l+ i.j-2 

2Tk+ 1 2Tk+ 1 Tk+ I Tk +2Tk+ i-v ,j - I + i + l.j - 1 + i - 2,j + i +2,j - l.j + Ij 

+2T:+ I.j+ I +T:,j+2 ] 
(24) 

where we move the thirteen block grid such that it 
passes down the first column of blo~ks, then down the 
second, third, etc, 

Now suppose we apply Equation (24) to a 5 x 5 
problem with the blocks labeled as in Figure 2. Using 
matrix notation we can write Equation (24) as 
-..:> ..-::. -..:> -..:> -.:.. --..30-'" 

Tk + 1 =AITk+I+A2Tk+A3Q (25) 
~..:l. ~~ 

where the terms Al Tk +1 and A2Tk are given in Figures 3 
and 4, respectively. The term A3Q includes the source 
terms of Equation (24) but its exact form does not 
concern us because we shall subsequently show that this 
term cancels out. 

If the iterative scheme defined by Equation (25) 
does indeed converge to the true solution T, then at 
convergence we have 

-'" -:lo -:lo -::.. -:lo -::.. ~ 

T=AIT+A2T+A3Q (26) 

Subtracting Equation (25) from Equation (26) we get 

T-Tk+l=A1(T Tk+l)+Air-Tk). (27) 

Define an error vector 

(28) 

then Equation (27) becomes 

(29) 
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or 

where U is the unit matrix. Hence 

~ --.::. -..:.. ~....:. 


e l =(U - A1)-1 A 2eo 


(31) 

We need only to establish that the spectral radius p of 
(U - Al ) -1 A2 is less than unity to demonstrate 
convergence [5]. This we do by use of a computer and 
find that p =0.839.We expect however, that had we been 
able to include Equations (20)-(23) in this analysis the 
spectral radius would have been smaller, indicating a 
more rapid rate of convergence. 

I . I 1.2 1.3 1.4 1.5 

2 .1 2.2 2.3 2.4 2.5 

3.1 3.2 3.3 3.4 3.5 

4.1 4.2 4.3 4.4 4.5 

5.1 5.2 5.3 5.4 5.5 

Figure 2. Block Notation for Sample Problem 
Demonst rat ing Convergence. 

= 


T(\, I) 

Te2, I) 
T(3, I) 
T(4,1) 
T(5, I) 

rfi,2) 
T(2,2) 
T(3,2) 
T(4,2) 
T(5,2) 

T( I, 3) 
T(2,3) 
T(3,3) 
T(4,3) 

T(5,3) 
TfI~4) 
T (2,4) 
T (3,4) 
T(4,4) 
T(5,4) 

rei,S) 
T(2,5) 
T (3,5 ) 
T(4,5) 
T(5,5) 

Figure 3. Graphical Display of Matrix Product AI T Appearing in Equation (25) Showing the lower Triangular Form. 
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II 
I 

~~k 
A T = 2 II 

---I --j 
I I 

I I 
I I I, 

L---I 
! 

I 
II 

I 
I 

T( , , I ) 
T(2, I ) 
T(3, I) 
T(4, I) 

T (5, I) 
1'n;2) 
T (2,2) 
T(3,2) 
T(4,2) 

T(5,2) 
1'(I,3'f 
T(2,3) 

T(3,3) 
T(4,3) 

T(5,3) 

T(~4-'­
T(2,4 ) 
T(3, 4) 

T(4,4) 

T(5,4) 
T(~5) 
T(2,5) 

T (3, 5) 

T(4,5) 
T(5,5) 

Figure 4. Graphical Display of Matrix Product A2 T Appearing in Equation (25) Showing the Upper Triangular Form. 
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