THE BOUNDARY VALUE PROBLEM FOR A DIFFERENTIAL-DIFFERENCE EQUATION OF THE SECOND ORDER

E. P. Ivanova
Applied Mathematics Department
Moscow Institute of Aviation
Volokolamskoe Shosse, 4, Moscow, A-80, GSP-125871
Russia

بهتم هذا البحث بمسائل القيم المديُّة (م ق ح) التفاضلية بالنسبة لأحد متغيرانها والفرقية بالنسبة

 يكون له نواة لانهائية

Abstract

The paper is concerned with the boundary value problem (BVP) for equations, which are differential with respect to one variable and difference with respect to the other variable.

The solvability theorem of this BVP is proved. If the domain in which the investigated solutions occur is rectangular, the BVP is normally solvable, if the domain is nonrectangular, the BVP is not normally solvable. The operator corresponding to this BVP is not a Fredholm type operator, and can have an infinite kernel.

THE BOUNDARY VALUE PROBLEM FOR A DIFFERENTIAL-DIFFERENCE EQUATION OF THE SECOND ORDER

INTRODUCTION

The paper is concerned with the boundary value problem (BVP) for equations, which are differential with respect to one variable (t) and difference with respect to the other variable (s). For example

$$
\begin{align*}
& x_{t t}(t, s)+a_{0} x(t, s)+a_{1}(x(t, s+1)+x(t, s-1)) \\
& =f(t, s),(t, s) \in Q, x(t, s)=0,(t, s) \in \mathbb{R}^{2} \backslash Q . \tag{1}
\end{align*}
$$

Here

$$
(t, s) \in \mathbb{R}^{2}, \quad f(t, s) \in L_{2}(Q), \quad Q=(0, T) \times(0, a)
$$

Investigations of different equations of this type and their applications in earlier papers (see [1]) deal with discrete variation of $s\left(x(t, s)=x_{s}(t), s \in \mathbb{Z}\right)$. Problems where s is a continuous variable have appeared more recently in several biological and ecological models [2]. The theory of the investigated BVP is connected with the theory of the BVP for strongly elliptic differential-difference equations, which are difference and differential with respect to the same variables [3]. In contrast to the theory of this BVP (and discrete BVP), the operator, that corresponding to the BVP (1) is not of Fredholm type, and can have an infinite dimensional kernel (see Example 1). The initial value problem for differential-difference equations of this type was studied in references [1] and [4].

In this paper we prove a theorem of solvability of the BVP for difference-differential equations.

NOTATIONS AND RESULTS

Consider the equation:

$$
\begin{gather*}
-\left(R_{0} x_{t}(t, s)\right)_{t}+R_{1} x_{t}(t, s)+R_{2} x(t, s)=f(t, s), \\
(t, s) \in Q \tag{2}
\end{gather*}
$$

with boundary conditions

$$
\begin{equation*}
x(t, s)=0, \quad(t, s) \in \mathbb{R}^{2} \backslash Q \tag{3}
\end{equation*}
$$

Here $(t, s) \in \mathbb{R}^{2}, f(t, s) \in L_{2}(Q), Q=(0, T) \times(0, a)$, $(a=N+\theta, \quad N$-integer, $\quad 0<\theta \leq 1)$; $R_{k}: L_{2}\left(\mathbb{R}^{2}\right) \rightarrow L_{2}\left(\mathbb{R}^{2}\right)$ are difference operators

$$
\begin{equation*}
\left(R_{k} x\right)(t, s)=\sum_{i=-N}^{N} a_{k}^{i}(t) \times(t, s+i) \tag{4}
\end{equation*}
$$

$k=0,1,2, a_{0}^{i} \in C^{2}(0, a), a_{1}^{i} \in C^{1}(0, a), a_{2}^{i} \in C(0, a)$, R_{0}-one-to-one operator, i.e. $R_{0} x \neq 0$ for $\forall x \in L_{2}\left(\mathbb{R}^{2}\right), x \neq 0$.

Consider the operators $I_{Q}, P_{Q}, R_{Q}^{i}, i=1,2$,

$$
\begin{aligned}
I_{Q}: & L_{2}(Q) \rightarrow L_{2}\left(\mathbb{R}^{2}\right),\left(I_{Q} x\right)(t, s)=x(t, s), \\
& (t, s) \in Q,\left(I_{Q} x\right)(t, s)=0,(t, s) \in \mathbb{R}^{2} \backslash Q \\
P_{Q}: & L_{2}\left(\mathbb{R}^{2}\right) \rightarrow L_{2}(Q),\left(P_{Q} x\right)(t, s)=x(t, s), \\
& (t, s) \in Q \\
R_{Q}^{i}: & L_{2}(Q) \rightarrow L_{2}(Q), R_{Q}^{i}=P_{Q} R_{i} I_{Q}, i=1,2 .
\end{aligned}
$$

Lemma 1. Operators $R_{Q}^{i}: L_{2}(Q) \rightarrow L_{2}(Q)$ are bounded.

The proof is obvious.
Denote $L_{2}\left(\bigcup_{\cup} Q_{r 1}\right)=\left\{x(t, s) \in L_{2}(Q) \mid x(t, s)=0\right.$ for $\left.(t, s) \in Q \backslash \bigcup_{\imath} Q_{r 1}\right\}$; here, if $\theta<1$, then $r=1,2$,

$$
\begin{aligned}
Q_{1 \iota}= & (0, T) \times(\imath-1, \iota-1+\theta),(\imath=1, \ldots, N+1), \\
Q_{2 \iota}= & (0, T) \times(\imath-1+\theta, \imath),(\imath=1, \ldots, N) ; \\
& \text { if } \theta=1, \text { then } r=1, \\
Q_{1 \iota}= & (0, T) \times(\imath-1, \iota),(\imath=1, \ldots, N+1) .
\end{aligned}
$$

We introduce the isomorphism of Hilbert spaces: $U_{r}: L_{2}\left(\bigcup_{\imath=1}^{m} Q_{r 1}\right) \rightarrow L_{2}^{m}\left(Q_{r 1}\right)$ by the formula $\left(U_{r} x\right)_{\imath}(t, s)=x(t, s+\imath-1),(t, s) \in Q_{r 1}, \quad \imath=1, \ldots, m$, where $\quad L_{2}^{m}=\prod_{r=1}^{m} L_{2}\left(Q_{r 1}\right), \quad m=N+1, \quad$ if $\quad r=1$; $m=N$, if $r=2$.

Obviously, the operator $R_{Q_{r}}^{k}=U_{r} R_{Q}^{k} U_{r}^{-1}: L_{2}^{m}\left(Q_{r_{1}}\right)$ $\rightarrow L_{2}^{m}\left(Q_{r 1}\right)$, is the operator of multiplication by an $m \times m$ dimensional matrix R_{Q}^{k} with the elements $b_{1 p}(t)$ according to the formula:

$$
\begin{equation*}
b_{1 p}(t)=a_{1-p}(t) \tag{5}
\end{equation*}
$$

Assertion 1. Let R be a one-to-one operator. Then Equation (2) can be reduced to the form (in the old notation):

$$
\begin{gather*}
-x_{t t}(t, s)+R_{1} x_{t}(t, s)+R_{2} x(t, s)=f(t, s) \\
(t, s) \in Q \tag{6}
\end{gather*}
$$

Proof is in the supplement.
Remark 1. If Q is a nonrectangular domain Equation (2) cannot be simplified to the form (6).

Let $H^{p, 0}(Q)$ be a Sobolev space $H^{p, 0}(Q)=$ $\left\{x \in L_{2}(Q) \left\lvert\, \frac{\partial^{k} x}{\partial t^{k}} \in L_{2}(Q) k=1\right., \ldots, p\right\}$ (see Section 7, III of reference [5]) with the inner product:

$$
(x, y)_{p}=\sum_{i=0}^{p} \int_{Q} x_{t}^{(i)} y_{t}^{(i)} \mathrm{d} t \mathrm{~d} s
$$

Let H be a closure of a set $C_{0}^{\infty}(Q)$ in $H^{1,0}(Q)$.
Definition 1. We say that the function $x \in H$ is a solution of the boundary value problem (6), (3), if for $\forall v \in H$

$$
\begin{equation*}
\left(x_{t}, v_{t}\right)+\left(R_{Q}^{1} x_{t}, v\right)+\left(R_{Q}^{2} x, v\right)=(f, v) \tag{7}
\end{equation*}
$$

where $(.,$.$) is the inner product in the space L_{2}(Q)$.
Consider the operator $A: H \rightarrow L_{2}(Q)$, $A x=R_{Q}^{1} x_{t}+R_{Q}^{2} x$. Then Equation (7) takes the form

$$
\begin{equation*}
\left(x_{t}, v_{t}\right)+(A x, v)=(f, v) \tag{8}
\end{equation*}
$$

Consider also homogeneous equation

$$
\begin{equation*}
\left(x_{t}, v_{t}\right)+(A x, v)=0 \tag{9}
\end{equation*}
$$

and its adjoint equation

$$
\begin{equation*}
\left(x_{t}, v_{t}\right)+\left(A^{+} x, v\right)=0 \tag{10}
\end{equation*}
$$

where A^{+}is formally adjoint to operator A

$$
\begin{aligned}
& \left(A^{+} x\right)(t, s)=-\left(R_{Q}^{1}\right)^{*} x_{t}+\left[\left(R_{Q}^{2}\right)^{*}-\frac{\partial}{\partial t}\left(R_{Q}^{1}\right)^{*}\right] x \\
& \left(R_{Q}^{k}\right)^{*}=P_{Q}\left(R_{k}^{*}\right) I_{Q} \\
& \left(R_{k}^{*} x\right)(t, s)=\sum_{i=-N}^{N} a_{k}^{i}(t) x(t, s-i), k=1,2
\end{aligned}
$$

From Lemma 1.10, Section 1.8, 1 of reference [6] there follows:

$$
\|f\|_{L_{2}(Q)}<k_{Q}\left\|f_{t}\right\|_{L_{2}(Q)}, \quad \quad k_{Q}=\mathrm{const}<0
$$

Lemma 2. For any function $f \in H$

$$
\|f\|_{L_{2}(Q)}<k_{Q}\left\|f_{i}\right\|_{L_{2}(Q)}, \quad \quad k_{Q}=\mathrm{const}>0
$$

It follows from Lemma 2 that in H we can introduce the equivalent inner product by the formula:

$$
(x, y)_{1}=\int_{Q} x_{t} v_{t} \mathrm{~d} s \mathrm{~d} t
$$

Lemma 3. Equations (8)-(10) correspond to the operator equations in H with the norm $\|\cdot\|_{1}$:

$$
\begin{align*}
& x+G x=F \tag{11}\\
& x+G x=0 \tag{12}\\
& x+G^{*} x=0 \tag{13}
\end{align*}
$$

where $G: H \rightarrow H$ is a linear bounded operator.
Proof. For any fixed $x \in H$ the linear functional $\phi_{x}(v)=(A x, v)$ is bounded in H (see Lemma 1). According to the Riesz theorem on the general form of the functional in Hilbert space, there exists a unique solution $w=w(x) \in H$, such that $\|w\|_{1}=\left\|\phi_{x}\right\| \leq c\|x\|_{1}, \quad(c=$ const $>0), \quad$ and $\phi_{x}(v)=(w, v)_{1}$. Hence, $w=w(x)$ defines the linear bounded operator $G: H \rightarrow H$, such that $(A x, v)=(G x, v)_{1}$ for every $v, x \in H$. And for every $v, x \in H\left(A^{+} x, v\right)=(x, A v)=(x, G v)_{1}=\left(G^{*} x, v\right)_{1}$, G^{*} is the adjoint to G operator. In the same way we define F from the formula

$$
\begin{equation*}
(f, v)=(F, v)_{1}, \quad \forall v \in H \tag{14}
\end{equation*}
$$

and $\|F\|_{1}<c_{2}\|f\|, c_{2}=$ const >0.
Remark 2. In contrast to the theory of elliptic differential-difference equations which are difference and differential in respect to the same variables [3], operator G is not compact and the theory of Fredholm type operator does not apply to Equation (11).

Consider $H^{p}(0, T), p \geq 0$ - the Sobolev space:

$$
\begin{aligned}
H^{p}(0, T)=\left\{x \in L_{2}(0, T) \left\lvert\, \frac{\partial^{k} x}{\partial t^{k}} \in L_{2}(0, T)\right.\right. & \\
\qquad & k=1, \ldots, p\},
\end{aligned}
$$

$\stackrel{\circ}{H}^{1}(0, T)=\left\{x \in H^{1}(0, T) \mid x(0)=x(T)=0\right\}$.

Denote W operator $W: H \rightarrow H$ by the formula $W x=x+G x$.

Lemma 4. Operator W is normally solvable, i.e. $\overline{\operatorname{Im}(W)}=\operatorname{Im}(W)[7]$.
Proof.
(1). We prove that some auxiliary equation is normally solvable. Using operators $U_{r}, R_{Q r}^{k}$, we write Equation (8) in the form:

$$
\begin{align*}
& \left(\left(U_{r} x\right)_{t},\left(U_{r} v\right)_{t}\right)_{N_{r}}+\left(R_{Q_{r}}^{1}\left(U_{r} x\right)_{t},\left(U_{r} v\right)\right)_{N_{r}} \\
& \quad+\left(R_{Q_{r}}^{2}\left(U_{r} x\right),\left(U_{r} v\right)\right)_{N} \\
& =\left(\left(U_{r} f\right),\left(U_{r} v\right)\right)_{N_{r},}, \quad r=1,2, \tag{15}
\end{align*}
$$

where $(., .)_{N,}$ is the inner product in $L_{2}^{N,}\left(Q_{r 1}\right)$.
Suppose that $\theta=1, a=N+1$ (in case $\theta<1$, the proof is analogous). Let $s_{0} \in(0,1)$ be a fixed number. Denote $U=U_{1}$,
$R_{Q}^{k}=R_{Q 1}^{k}, \tilde{x}(t)=(U x)\left(t, s_{0}\right) \in \dot{H}=\prod_{l=1}^{N+1} \dot{H}^{1}(0, T)$,
$\tilde{v}(t)=(U v)\left(t, s_{0}\right) \in \dot{H}$,
$\tilde{f}(t)=(U f)\left(t, s_{0}\right) \in L_{2}^{N+1}(0, T)$.
If $x(t, s)$ is a solution of (15), then for almost all $s_{0} \in(0,1) \tilde{x}(t)$ is a solution of the system of the ordinary differential equations in $(0, T)$:

$$
\begin{gather*}
\left(\tilde{x}_{t}, \tilde{v}_{t}\right)^{N+1}+\left(R_{Q}^{1} \tilde{x}_{t}, \tilde{v}\right)^{N+1}+\left(R_{Q}^{2} \tilde{x}, \tilde{v}\right)^{N+1}=(\tilde{f}, \tilde{v})^{N+1}, \\
\forall \tilde{v} \in \dot{H}, \tag{17}
\end{gather*}
$$

where $(\ldots .)^{N+1}$ is the inner product in $L_{2}^{N+1}(0, T)$.
In the same way as for the proof of Lemma 1 , Section 1, IV in reference [5], one can prove that Equation (17) is equivalent to the equation:

$$
\begin{equation*}
C y \triangleq B y+y=\Psi \tag{18}
\end{equation*}
$$

in the Hilbert space $\stackrel{\circ}{H}$ with the inner product $(y, v)_{\circ} \triangleq\left(y_{t}, v_{t}\right)^{N+1}$, where $B: \stackrel{\circ}{H} \rightarrow \stackrel{\circ}{H}$ is a compact operator, and Ψ is defined by the formula

$$
\begin{equation*}
(\Psi, \tilde{v})_{0}=(\tilde{f}, \tilde{v})^{N+1} \quad(\forall v \in \stackrel{H}{H}) \tag{19}
\end{equation*}
$$

Since B is a compact operator, C is normally solvable (see Theorem 4.23 of reference [8]).
(2). We now show if $\Psi=(U F)\left(t, s_{0}\right) \in \operatorname{Im}(C)$ for almost all $s_{0} \in(0,1)$ then $F \in \operatorname{Im}(W)$. We use Theorem 2.3 of reference [7]:

Result. The closed operator $A(y=A x)$ is normally solvable if and only if $\forall y \in \operatorname{Im}(A)$ $\exists x \in D(A): y=A x,\|x\| \leq k\|y\|, k=$ const >0.

Suppose that $\Psi \in \operatorname{Im}(C)$. Since C is normally solvable $\quad \exists \tilde{x} \in \stackrel{\circ}{H}: \Psi=C \tilde{x}, \quad\|\tilde{x}\|_{\circ} \leq k\|\Psi\|_{\text {o }}$, $k=$ const $>0, k$ does not depend on Ψ and s_{0}. Then for x and F such that $(U x)\left(t, s_{0}\right)=\tilde{x}(t)$, $(U F)\left(t, s_{0}\right)=\Psi(t)$ for almost all $s_{0} \in(0,1)$, $\|x\|_{1} \leq k\|F\|_{1}$. Therefore, using (14), (16), (19), we get $W x=F$ i.e. $F \in \operatorname{Im}(W)$.

It follows from the above that for any $F \in \operatorname{Im}(W)$ there exists $x \in H$ such that $W x=F$ and $\|x\|_{1} \leq k\|F\|_{1}$; therefore, using the Theorem 2.3 of reference [7] we obtain $\overline{\operatorname{Im} W}=\operatorname{Im} W$.

Theorem 1. If Equation (9) has only the zero solution, then for any $f \in L_{2}(Q)$ Equation (8) has a unique solution $x \in H$ and $\|x\|_{1} \leq c\|f\|, c=$ const >0.

If Equation (9) has nonzero solutions then Equation (8) has a solution if and only if

$$
\begin{equation*}
(f, \hat{x})=0 \tag{20}
\end{equation*}
$$

for all solutions of Equation (10) in \hat{x}. In the case the solution spaces of (9), (10) have the infinite dimensions.

Proof. Since the operator W in accordance with Lemma 5 is bounded and defined on all space H, so W is closed. At the same time, from lemma 6 it follows that $\overline{\operatorname{Im} W}=\operatorname{Im} W$. For closed operators normal solvability is equivalent to correct solvability ($\|x\|_{1} \leq c\|F\|_{1}$) (see Theorem 2.1, of reference [7]). From this and the formulae (16), (19) the first part of the theorem follows.

For a normally solvable operator, $\operatorname{Im}(W)$ is an orthogonal complement of $\operatorname{Ker}\left(W^{*}\right)$ (see Theorem 3.2 of reference [7]). Therefore, using (16) and (19) we get (20).

Suppose that (9) has nonzero solutions. We show that the solution spaces of Equations (9) and (10) have infinite dimensions. In this case Equation (19) for $\Psi=0$ also has nonzero solutions and since B is a compact operator the general solution of equation $\tilde{x}+B \tilde{x}=0$ has the form $\tilde{x}(t)=\sum_{i=1}^{m} c_{i} y_{i}(t)$, where c_{i} are arbitrary constants. Then the common solution of Equation (9) has the form $x(t, s)=\sum_{i=1}^{m} U^{-1}\left(c_{i}(s) y_{i}(t)\right)$, where $c_{i}(s) \in L_{2}(0,1)$ are arbitrary functions. We can represent $c_{i}(s)$ in
the form $c_{i}(s)=\sum_{j=1}^{\infty} c_{i j} v_{j}(s), \quad(i=1, \ldots, m)$, where $\left\{v_{j}(s)\right\}_{j=1}^{\infty}$ is the basis set in $L_{2}(0,1)$ and $\sum_{j=1}^{\infty}\left|c_{i j}\right|^{2}<\infty$. Therefore the general solution of Equation (9) $x(t, s)=\sum_{i=1}^{m} \sum_{j=1}^{\infty} c_{i j} U^{-1}\left(v_{j}(s) y_{i}(t)\right)$, i.e. the solution space of Equation (9) has an infinite dimension.

Since the solution spaces dimensions of Equation (9) and (10) are equal, the last assertion of the theorem is proved.

Example 1. Let Equation (6) have the form:

$$
x_{t t}(t, s)+R x(t, s)=f(t, s), \quad(t, s) \in Q
$$

where
$(R x)(t, s)=2 / 3 x(t, s)+1 / 3[x(t, s-1)+x(t, s+1)]$, $Q=(0, \pi) \times(0,2)$.

Then Equation (8) takes the form:

$$
\begin{align*}
& -\int_{Q} x_{t} v_{t} \mathrm{~d} t \mathrm{~d} s+\int_{Q} P_{Q}\left[2 / 3\left(I_{Q} x\right)(t, s)\right. \\
& \left.+1 / 3\left(I_{Q} x\right)(t, s+1)+1 / 3\left(I_{Q} x\right)(t, s-1)\right] v(t, s) \mathrm{d} t \mathrm{~d} s \\
& =\int_{Q} f(t, s) v(t, s) \mathrm{d} t \mathrm{~d} s \tag{21}
\end{align*}
$$

Obviously, $\quad \theta=1, \quad N=1, \quad Q_{1}=(0, \pi) \times(0,1)$, $Q_{2}=(0, \pi) \times(1,2)$. Denote $x_{i}=(U x)_{i}, f_{i}=(U f)_{i}$, $i=1,2$. Equation (21) takes the form

$$
\left\{\begin{array}{l}
\left(x_{1}\right)_{t t}+2 / 3 x_{1}+1 / 3 x_{2}=f_{1} \tag{22}\\
\left(x_{2}\right)_{t t}+1 / 3 x_{1}+2 / 3 x_{2}=f_{2},
\end{array} \quad(t, s) \in Q_{1}\right.
$$

and Equations (9) and (10) take the form:

$$
\left\{\begin{array}{l}
\left(x_{1}\right)_{t t}+2 / 3 x_{1}+1 / 3 x_{2}=0 \tag{23}\\
\left(x_{2}\right)_{t t}+1 / 3 x_{1}+2 / 3 x_{2}=0,
\end{array} \quad(t, s) \in Q_{1}\right.
$$

It is easy to check that (23) has only these nonzero solutions $\hat{x}_{1}^{i}=\hat{x}_{2}^{i}=c_{i} \sin t v_{i}(s) \in H\left(Q_{1}\right)$, $i=1,2, \ldots$, where $\left\{v_{j}(s)\right\}_{j=1}^{\infty}$ is the basis set in $L_{2}(0,1), c_{i}$ - arbitrary constants. Hence Equation (21) has a solution for $f \in L_{2}(Q)$ if and only if $\int_{Q_{1}} v_{i}(s) \sin t\left(f_{1}(t, s)+f_{2}(t, s)\right) \mathrm{d} t \mathrm{~d} s=0, \quad i=1,2, \ldots$, $\left(\left(f_{1}, f_{2}\right)=U f\right) \quad$ or \quad for almost all $\quad s_{0} \in(0,1)$ $\int_{0}^{\pi} \sin t\left(f_{1}\left(t, s_{0}\right)+f_{2}\left(t, s_{0}\right)\right) \mathrm{d} t=0$.

Remark 3. If in Equation (6), the difference operator coefficients depend also on $s: a_{k}^{i}=a_{k}^{i}(t, s)$, then:
(a) operator W is not normally solvable and Theorem 1 can be false even if $a_{k}^{i}=c+\varepsilon \mu(s)$, where $c=\mathrm{const}, \varepsilon=\mathrm{a}$ samll parameter (see Example 2 below);
(b) the condition $\Psi=(U F)\left(t, s_{0}\right) \in \operatorname{Im}(C)$ for almost all $s_{0} \in(0,1)$ is necessary for $F \in \operatorname{Im}(W)$, but generally speaking it is not sufficient.

The same facts apply when a_{k}^{i} cannot depend on s, but the domain Q is nonrectangular.
Example 2. Consider the boundary value problem $x_{t t}(t, s)+\left(\pi(1-\varepsilon)+\varepsilon_{s}\right)^{2} x(t, s)=t\left(\pi(1-\varepsilon)+\varepsilon_{s}\right)^{3}$,
$(t, s) \in Q$,
$x(t, s)=0$,
$(t, s) \in \mathbb{R}^{2} \backslash Q$,
where $\varepsilon>0$ is a small parameter, $Q=(0,1) \times(0,2 \pi)$.
The common solution of the homogeneous equation:

$$
\begin{aligned}
x_{0}(t, s)= & c_{1}(s) \sin \left(\pi(1-\varepsilon)+\varepsilon_{s}\right) t \\
& +c_{2}(s) \cos \left(\pi(1-\varepsilon)+\varepsilon_{s}\right) t, c_{1}(s) \\
& c_{2}(s) \in L_{2}(0,2 \pi)-\text { arbitrary functions. }
\end{aligned}
$$

Using boundary conditions, we get: $x_{0}(t, s)=0$ for $s \neq \pi$ or $x_{0}(t, s)=0$ for almost all $s \in(0,2 \pi)$. If there exists a general solution of (24), then from (b) of Remark 3 it has the form:

$$
\begin{aligned}
x(t, s)= & c_{1}(s) \sin \left(\pi(1-\varepsilon)+\varepsilon_{s}\right) t \\
& +c_{2}(s) \cos \left(\pi(1-\varepsilon)+\varepsilon_{s}\right) t+(\pi(1-\varepsilon) \\
& \left.+\varepsilon_{s}\right) t
\end{aligned}
$$

Using the boundary conditions we get

$$
\begin{aligned}
& x(t, s)=\frac{-\left(\pi(1-\varepsilon)+\varepsilon_{s}\right)}{\sin \left(\pi(1-\varepsilon)+\varepsilon_{s}\right)} \sin \left(\pi(1-\varepsilon)+\varepsilon_{s}\right) t \\
&+\left(\pi(1-\varepsilon)+\varepsilon_{s}\right) t
\end{aligned}
$$

We show that $x \notin L_{2}(Q)$. Denote $\alpha=\varepsilon(s-\pi)$, $v=(\pi+\alpha) t, \quad u=\frac{(\pi+\alpha)}{\sin (\pi+\alpha)} \sin (\pi+\alpha) t$. Then $x=-u+v$. Obviously $\quad v \in L_{2}(Q)$. Therefore $x \in L_{2}(Q)$ if and only if $u \in L_{2}(Q)$. Let us prove that $u \notin L_{2}(Q)$. Indeed,

$$
\begin{aligned}
& \begin{aligned}
&\|u\|^{2}=\int_{0}^{2 \pi} \int_{0}^{1} u^{2} \mathrm{~d} t \mathrm{~d} s=\frac{1}{\varepsilon} \int_{\pi \varepsilon}^{\pi \varepsilon} \int_{0}^{1} u^{2} \mathrm{~d} t \mathrm{~d} \alpha \\
&=\frac{1}{\varepsilon} \int_{\pi \varepsilon}^{\pi \varepsilon} \frac{(\pi+\alpha)^{2}}{\sin ^{2}(\pi+\alpha)} \mathrm{d} \alpha \int_{0}^{1} \sin ^{2}(\pi+\alpha) t \mathrm{~d} t \\
&=\frac{1}{4 \varepsilon} \int_{\pi \varepsilon}^{\pi \varepsilon} \frac{(\pi+\alpha)(2(\pi+\alpha)-\sin 2(\pi+\alpha))}{\sin ^{2}(\pi+\alpha)} \mathrm{d} \alpha \\
&=\frac{1}{4 \varepsilon} \int_{\pi \varepsilon}^{\pi \varepsilon} \frac{(\pi+\alpha)(2(\pi+\alpha)-\sin 2 \alpha)}{\sin ^{2} \alpha} \mathrm{~d} \alpha=\infty, \\
& \text { since } \quad \frac{(\pi+\alpha)(2(\pi+\alpha)-\sin 2 \alpha)}{\sin ^{2} \alpha}=\mathrm{O}\left(\alpha^{-2}\right) \quad \text { for } \\
& \alpha \rightarrow 0, \text { i.e. } u \notin L_{2}(Q) .
\end{aligned} .
\end{aligned}
$$

Therefore $x \notin L_{2}(Q)$ and BVP (24), (25) have no solutions, though the homogeneous BVP has only the zero solution.

SUPPLEMENT

(Proof of Assertion 1).
Denote $L_{Q}=\left\{x \in L_{2}\left(\mathbb{R}^{2}\right) \mid x(t, s)=0,(t, s) \notin Q\right\}$.
Lemma 5. Let R_{1}, R_{2} be the operators in the form (4).

Then the operator $\quad R_{3}: L_{Q} \rightarrow L_{2}\left(\mathbb{R}^{2}\right)$, $R_{3} x=R_{2}\left(R_{1} x\right)$ also is the operator in the form (4).

Proof. Let the operators R_{1}, R_{2} be defined by the formula (4). Consider the operator $\left(R_{3} x\right)(t, s)=\left(R_{2} R_{1} x\right)(t, s)$. Denote $y=R_{1} x$, and, using (3), we obtain

$$
\begin{aligned}
& \left(R_{3} x\right)(t, s)=\sum_{i=-N}^{N} a_{2}^{i}(t) y(t, s+i) \\
& \quad=\sum_{i=-N}^{N} \sum_{j=-N}^{N} a_{2}^{i}(t) a_{1}^{j}(t) x(t, s+i+j) \\
& \quad=\sum_{i=-2 N}^{2 N} a_{3}^{⿺}(t) x(t, s+1)=\sum_{i=-N}^{N} a_{3}^{l}(t) x(t, s+1)
\end{aligned}
$$

where

$$
\begin{equation*}
a_{3}^{\iota}(t)=\sum_{\substack{i, j \\ i+j=\iota}} a_{2}^{i}(t) a_{1}^{j}(t) \tag{26}
\end{equation*}
$$

Lemma 6. Let R be one-to-one operator in the form (4).

Then there exists a unique operator $R^{-1}: L_{2}\left(\mathbb{R}^{2}\right) \rightarrow L_{2}\left(\mathbb{R}^{2}\right)$ in the form (4) such that $\forall x \in L_{Q}\left(R^{-1} R x\right)(t, s)=x(t, s),(t, s) \in Q$.

Proof. Let R_{1} be the operator, defined by (4). We construct the operator R_{2} such that $\forall x \in L_{Q}$ $\left(R_{2} R_{1} x\right)(t, s)=R_{3} x(t, s)=x(t, s),(t, s) \in Q$, i.e. $a_{3}^{1}=0,|\iota| \leq N, \iota \neq 0, a_{3}^{0}=1$. Using (26) we get the system of equations in a_{2}^{i} :

$$
A a_{2}=a_{3}
$$

where $a_{2}=\left(a_{2}^{-N}, \ldots, a_{2}^{N}\right), a_{3}=\left(a_{3}^{-N}, \ldots, a_{3}^{N}\right)$, $A=\left\|a_{i j}\right\|_{i, j=1}^{2 N+1}, \quad a_{i j}=a_{1}^{i-j}, \quad a_{1}^{i}=0, \quad i>N, \quad i<-N$. From (5), the action of the operator R_{1} in $L_{2 Q}$, where $2 Q=(0, T) \times(0,2 a)$, is equivalent to multiplication by matrix A^{*}. Since R_{1} is one-to-one operator so $\operatorname{det} A \neq 0$ and the system has a unique solution.

Lemma 7. Let R be one-to-one operator in the form (4) and $(R x) \in H^{k, 0}(Q), k>0$.

Then $x \in H^{k, 0}(Q)$ and $(R x)_{t}=R_{t} x+R x_{t}$.
The proof is evident.
Using Lemmas 5-7 and multiply Equation (2) by R_{0}^{-1}, we write (2) in the form:
$-x_{t t}(t, s)+\widetilde{R}_{1} x_{t}(t, s)+\widetilde{R}_{2} x(t, s)=\tilde{f}(t, s),(t, s) \in Q$,
$\widetilde{R}_{1}=R_{0}^{-1}\left(R_{2}-\left(R_{0}\right)_{t}\right), \widetilde{R}_{2}=R_{0}^{-1} \mathbf{R}_{2}, \tilde{f}=R_{0}^{-1} f$.

REFERENCES

[1] E. Pinney, Ordinary Differential-Difference Equations. Berkeley and Los Angeles: University of Carolina Press, 1958.
[2] D. Mollison, "Spatial Contact Models for Ecological and Epidemic Spread", J. R. Statist. Soc., 39 (1977), p. 283.
[3] A. Skubachevskii, "The First Boundary Value Problem for Strongly Elliptic Differential-Difference Equations", J. Differential Equations, 63(3) (1986), p. 332.
[4] E.P. Ivanova and G. A. Kamenskii, "On Initial Value Problem for a Differential-Difference Equations", Technical Report No. 63. Kingston, RI, USA: University of Rhode Island, 1991.
[5] V. P. Mihailov, Partial Differential Equations. Moscow: Mir, 1978. [Translated from the Russian].
[6] S. V. Uspenskii, G. V. Demidenko, and V. G. Perepelkin, Enclosure Theorems and Applications for Differential Equations. Novosibirsk: Nauka, 1984. [Russian].
[7] S. G. Krein, Linear Equations in Banach Space. Moscow: Nauka, 1971. [Russian].
[8] W. Rudin, Functional Analysis. New York: McGraw-Hill, 1973.

Paper Received 11 April 1992; Revised 3 January 1993.

