θ-CONNECTEDNESS AND δ-CONNECTEDNESS IN BITOPOLOGICAL SPACES

F. H. Khedr

Department of Mathematics, Faculty of Science University of Assiut Assiut, Egypt

and

S. M. Al-Areefi*

Department of Mathematics, College of Sciences Girls Colleges General Administration P.O. Box 838, Dammam Kingdom of Saudi Arabia

الخلاصــة :

ABSTRACT

In this paper θ -connectedness and δ -connectedness have been introduced in bitopological spaces by utilizing the *ij*- θ -closure and *ij*- δ -closure operators.

^{*}To whom correspondence should be addressed.

θ -CONNECTEDNESS AND δ -CONNECTEDNESS IN BITOPOLOGICAL SPACES

1. INTRODUCTION

The notion of bitopological spaces was introduced by Kelly [1] in 1963. In 1967 Pervin [2] presented the notion of pairwise connectedness for bitopological spaces. In 1987, Banerjee [3] introduced the notion of ij- θ -closure and ij- δ -closure operators in bitopological spaces.

In this paper we present and investigate the notion of a θ -connected (resp. δ -connected) subset relative to a bitopological space (X, T_1, T_2) by utilizing the ij- θ -closure (resp. ij- δ -closure) operators. Then we investigate the relationship between pairwise connected subsets, θ -connected and δ -connected subsets. Moreover, we discuss the behavior of θ -connectedness and δ -connectedness under functions between bitopological spaces. Finally, we compare all these forms of connectedness and investigate their properties in *ij*-almost-regular, *ij*-semi-regular, and *ij*-regular spaces.

Throughout the paper, by a space (X, T_1, T_2) (or for short X), we mean a bitopological space (X, T_1, T_2) . The interior and the closure of a subset A of X with respect to T_i will be denoted by *i*-int A and *i*-cl A, respectively. Also, i, j = 1, 2 and $i \neq j$.

A space (X, T_1, T_2) is called *pairwise connected* if X cannot be expressed as the union of two nonempty subsets A and B such that $(A \cap i - cl B) \cup (B \cap j - cl$ cl A) = \emptyset . A subset K of (X, T_1, T_2) is pairwise connected if the bitopological space (K, T_{1k}, T_{2k}) is pairwise connected, where T_{ik} is the relative topology on K induced by T_i [2]. A point $x \in X$ is called an ij- θ -closure (resp. ij- δ -closure) point of a subset A of (X, T_1, T_2) [3] if $A \cap j$ -cl $U \neq \emptyset$ (resp. $A \cap i$ -int(j $cl \ U \neq \emptyset$) for any *i*-open neighborhood U of x. The set of all ij- θ -closure (resp. ij- δ -closure) points of A is called the ij- θ -closure (resp. ij- δ -closure) of A and is denoted by $ij-cl_{\theta}A$ (resp. $ij-cl_{\delta}A$). If $ij-cl_{\theta}A = A$ (resp. ij- $cl_{\delta}A = A$), then A is called ij- θ -closed (resp. $ij-\delta$ -closed). If the subset A is $ij-\theta$ -closed and $ji-\theta$ closed (resp. *ij*- δ -closed and *ji*- δ -closed) then A is called pairwise θ -closed (resp. pairwise δ -closed). The complement of an ij-θ-closed set (resp. ij-δclosed set) is called ij- θ -open (resp. ij- δ -open). A subset A of a space (X, T_1, T_2) is called *ij*-regular open (ij-r.o) [4] if A = i-int(j-cl A) and it is ij-regular closed (*ij-r.c*) if A = i-cl(j-int A). A is called pairwise r.o (resp. pairwise r.c) if it is both ij-r.o and ji-r.o (resp. *ij-r.c* and *ji-r.c*). Clearly the complement of an *ij-r.o* set is *ij-r.c*.

A space (X, T_1, T_2) is said to be *ij*-regular [1] if and only if for each *i*-open set V of X and each $x \in V$ there exists an *i*-open set U of X such that $x \in U \subset j$ cl $U \subset V$. A space (X, T_1, T_2) is called *ij*-almostregular [4] if and only if for each $x \in X$ and each *i*-open set V containing x, there exists an *i*-open set U such that $x \in U \subset j$ -cl $U \subset i$ -int(j-cl V). A space (X, T_1, T_2) is said to be *ij*-semi-regular [5] if for each $x \in X$ and each *i*-open set V containing x, there exists an *i*-open set U such that $x \in U \subset i$ -int(j-cl U) $\in V$.

A function $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be *pairwise continuous* [2] if and only if the inverse image of each *i*-open set in Y is an *i*-open set in X.

2. SETS θ-CONNECTED RELATIVE TO BITOPOLOGICAL SPACES

Definition 2.1. A pair (A, B) of nonempty subsets of (X, T_1, T_2) is said to be θ -separation (denoted by $[A|B]_{\theta}$) if $(A \cap ij\text{-}cl_{\theta}B) \cup (B \cap ji\text{-}cl_{\theta}A) = \emptyset$.

Definition 2.2. A subset S of a space (X, T_1, T_2) is said to be θ -connected relative to X if it cannot be expressed as the union of two nonempty subsets A and B which form a θ -separation relative to X. The space (X, T_1, T_2) is called θ -connected if it admits no θ -separation relative to X itself.

Lemma 2.3. The collection $T_{i\theta}$ of all ij- θ -open sets in (X, T_1, T_2) is a topology on X.

Proof.

- (i) X and \emptyset are ij- θ -open sets.
- (*ii*) Suppose that A and B are $ij-\theta$ -open sets in (X, T_1, T_2) . Let $x \in A \cap B$, then $x \notin X - (A \cap B) = A^c \cup B^c$ (where $A^c = X - A$ and $B^c = X - B$). Now A^c and B^c are *ij*- θ -closed sets. Thus there exist *i*-open sets U and V of Xsuch that $x \in U$, $j-cl \ U \cap A^c = \emptyset$ and $x \in V$, *j-cl* $V \cap B^c = \emptyset$. Therefore $x \in U \cap V$, j-cl $(U \cap V) \subset j$ -cl $U \cap j$ -clV. Since j-cl $U \subset A$ and *j-cl* $V \subset B$, we have j-cl U∩j $cl \ V \subset A \cap B$. Thus $x \in ij\text{-int}_{\theta}(A \cap B)$ and so $A \cap B$ is an *ij*- θ -open set.
- (iii) Let $\{A_k\}$, $k \in I$, be any family of ij-open subsets of X and $x \in \bigcup A_k$. Then $x \in A_k$ for

some k. Since A_k is an ij- θ -open set, there exists an *i*-open set U such that $x \in j$ -cl $U \subset A_k$ and so $x \in j$ -cl $U \subset \bigcup_{k} A_{k}$. Hence $x \in ij$ -int_{θ} $(\bigcup_{k} A_{k})$ and thus $\bigcup_{k} A_{k}$ is an ij- θ -open set. Therefore the collection of all ij- θ -open sets in (X, T_{1}, T_{2}) is a topology on X.

Theorem 2.4. A space (X, T_1, T_2) is θ -connected if and only if the space $(X, T_{1\theta}, T_{2\theta})$ is pairwise connected.

Lemma 2.5. Let A and B be subsets of a space (X, T_1, T_2) . If $[A|B]_{\theta}, \emptyset \neq A_0 \subset A$ and $\emptyset \neq B_0 \subset B$, then $[A_0|B_0]_{\theta}$.

Proof. Since $[A|B]_{\theta}$ is θ -separation, we have $[A \cap ij-cl_{\theta}B] \cup [B \cap ji-cl_{\theta}A] = \emptyset$. Now $ij-cl_{\theta}B_{\circ} \subset ij-cl_{\theta}B$ and $ji-cl_{\theta}A_{\circ} \subset ji-cl_{\theta}A$. Thus, $[A_{\circ}|B_{\circ}]_{\theta}$ is θ -separation.

Theorem 2.6. For the space (X, T_1, T_2) and a subset S of X the following are equivalent:

(a) S is θ -connected relative to X.

- (b) For each two points x, y of S, there exists a subset D of S such that $x, y \in D$ and D is θ -connected relative to X.
- (c) For any θ -separation $[A | B]_{\theta}$ relative to X such that $S \subset A \cup B$, either $S \subset A$ or $S \subset B$.

Proof.

 $(a) \rightarrow (b)$. It is obvious.

 $(b) \rightarrow (c)$. Let $[A | B]_{\theta}$ be a θ -separation relative to X and $S \subset A \cup B$. Suppose that $a \in A \cap S$ and $b \in B \cap S$. There exists a set D θ -connected relative to X and containing a, b. Let $A_0 = A \cap D$ and $B_0 = B \cap D$ then A_0 and B_0 are disjoint and $A_0 \cup B_0 = D$. By Lemma 2.5, we have $[A_0 | B_0]_{\theta}$. This is a contradiction.

 $(c) \rightarrow (a)$. It is straightforward.

Theorem 2.7. Let (X, T_1, T_2) be a space and S a subset θ -connected relative to X. If $S \subset Z \subset ij\text{-}cl_{\theta}S \cap ji\text{-}cl_{\theta}S$, then Z is θ -connected relative to X.

Proof. Suppose that Z is not θ -connected relative to X. There exists a $[A \mid B]_{\theta}$ such that $Z = A \cup B$. Since S is θ -connected relative to X and $S \subset Z$, by Theorem 2.6, we have $S \subset A$ or $S \subset B$. If $S \subset A$, then we obtain $B = B \cap Z \subset B \cap ji\text{-}cl_{\theta}S \subset B \cap ji\text{-}cl_{\theta}A = \emptyset$. This is a contradiction. The case $S \subset B$ is proved in the same way.

Theorem 2.8. Let (X, T_1, T_2) be a space and S a pairwise θ -closed subset of X. If $[A|B]_{\theta}$ is a

 θ -separation relative to X and $S = A \cup B$, then A is *ji*- θ -closed and B is *ij*- θ -closed.

Proof. Suppose that A is not ji- θ -closed. Let $y \in ji$ cl_{θ}A - A. Since S is ji- θ -closed and $S = A \cup B$, then $y \in B \cap ji$ -cl_{θ}A. This is a contradiction. Thus A must be ji- θ -closed. To prove that B is ij- θ -closed, just use a similar argument.

Corollary 2.9. Let (X, T_1, T_2) be a space. If $[A|B]_{\theta}$ is a θ -separation of X itself, then A is *ji*- θ -closed and B is *ij*- θ -closed.

Lemma 2.10. Let B be a subset of space (X, T_1, T_2) . If B is j-open, then *i-cl* $B = ij-cl_{\theta}B$.

Proof. Let $x \in i\text{-}cl B$, therefore for every *i*-open neighborhood U of x, $B \cap U \neq \emptyset$ and so $B \cap j\text{-}cl \ U \neq \emptyset$, this means $x \in ij\text{-}cl_{\theta}B$ thus *i*-cl $B \subset ij\text{-}cl_{\theta}B$.

Now, let $x \notin i\text{-}cl B$, there exists an *i*-open set U such that $U \cap B = \emptyset$. Since B is *j*-open we get $j\text{-}cl U \cap B = \emptyset$. Thus $x \notin ij\text{-}cl_{\theta}B$, and so $ij\text{-}cl_{\theta}B \subset i\text{-}cl B$.

Theorem 2.11. For a space (X, T_1, T_2) the following properties hold:

- (a) Pairwise-connected subsets are θ -connected subsets relative to X.
- (b) A pair (A, B) of nonempty disjoint subsets of X such that A, $B \in T_1 \cap T_2$ results θ -separation relative to X.

Proof.

- (a) Let $[A|B]_{\theta}$ be a θ -separation relative to X and suppose that $S = A \cup B$. Since $i\text{-}cl Z \subset ij\text{-}cl_{\theta}Z$ for any subset Z of X, we have $A \cap T_{is} - cl B =$ $(A \cap i\text{-}cl B) \cap S \subset A \cap ij\text{-}cl_{\theta}B = \emptyset$ (where T_{is} is the relative toplogy on S induced by T_i and $T_{is}\text{-}cl A$ is the closure of A with respect to T_{is}). Similarly, we have $B \cap T_{is} - cl A = \emptyset$. This shows that the space (S, T_{1s}, T_{2s}) is not pairwiseconnected.
- (b) Since $A \cap B = \emptyset$ and $A \in T_i$ for i = 1, 2, we have $A \cap i\text{-}cl \ B = \emptyset$. Since $B \in T_1 \cap T_2$ we have $i\text{-}cl \ B = ij\text{-}cl_{\theta}B$ and hence $A \cap ij\text{-}cl_{\theta}B = \emptyset$. Similarly, we have $B \cap ji\text{-}cl_{\theta}A = \emptyset$ and so $[A \mid B]_{\theta}$.

Theorem 2.12. Let (X, T_1, T_2) be a space and $\{F_m | m \in I\}$ be a family of sets θ -connected relative to X. If the pair (F_m, F_n) is not θ -separation relative to X for any $m, n \in I$, then $\cup \{F_m | m \in I\}$ is θ -connected relative to X.

Proof. Suppose that there exists a $[A|B]_{\theta}$ such that $\cup \{F_m | m \in I\} = A \cup B$. Since for each $m \in I$, F_{∞} is θ -connected relative to X and $F_m \subset A \cup B$, by Theorem 2.6 $F_m \subset A$ or $F_m \subset B$. Now put $I_r = \{m \in I | F_m \subset A\}$ and $I_s = \{m \in I | F_m \subset B\}$. Then $I_r \neq \emptyset$, $I_s \neq \emptyset$ and $I_r \cup I_s = I$. Let $m_a \in I_r$ and $m_b \in I_s$, then $F_{m_a} \subset A$ and $F_{m_b} \subset B$. By Lemma 2.5, we obtain $[F_{m_a}|F_{m_b}]_{\theta}$. This is a contradiction.

Definition 2.13. [3] A function $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be *ij*- δ -continuous (*ij*- δ -c) if and only if the inverse image of each *ij*- δ -open subset V of Y is an *ij*- δ -open subset of X. Equivalently, for every $x \in X$ and for every *i*-open neighborhood V of f(x), there exists an *i*-open neighborhood U of x such that $f(i\text{-int}(j\text{-cl } U)) \subset i\text{-int}(j\text{-cl } V)$.

Definition 2.14. [6] A function $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be *ij-strongly-\theta-continuous* (*ij-s.* θ .*c*) if and only if the inverse image of each *i*-open subset V of Y is *ij-* θ -open subset of X. Equivalently, for every $x \in X$ and for *i*-open neighborhood V of f(x), there exists an *i*-open neighborhood U of x such that $f(j\text{-}cl \ U) \subset V$.

Lemma 2.15. A function $f: (X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is *ij-s.0.c* if and only if $f: (X, T_{1\theta}, T_{2\theta}) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise continuous.

Theorem 2.16. If $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is *ij-s.* $\theta.c$ and K is θ -connected relative to X, then f(K) is a pairwise-connected subset of Y.

Proof. Follows from Theorem 2.4 and Lemma 2.15.

Corollary 2.17. If $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an *ij-s.* $\theta.c$ surjection and (X, T_1, T_2) is θ -connected, then (Y, σ_1, σ_2) is pairwise-connected.

The following theorem offers a classifying space for θ -connected bitopological spaces.

Theorem 2.18. Let $Y = \{0, 1\}$ and $\sigma_1 = \{Y, \emptyset, \{0\}\}$, $\sigma_2 = \{Y, \emptyset, \{1\}\}$. The space (X, T_1, T_2) is θ -connected if and only if every *ij*-s. θ .c function $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is constant.

Proof.

Necessity: If $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an *ij-s.* $\theta.c$ surjection, then $A = f^{-1}(0)$ and $B = f^{-1}(1)$ form a θ -separation $[A|B]_{\theta}$ of the whole space X, by Lemma 2.10. Therefore (X, T_1, T_2) is not θ -connected.

Sufficiency: Suppose that (X, T_1, T_2) is not θ -connected. There exists a θ -separation $[A|B]_{\theta}$ $X = A \cup B.$ Define a function such that $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ as follows: f(A) = 0 and f(B) = 1.Since $A \cap ij - cl_{\theta}B = \emptyset$ we have $ij-cl_{\theta}(f^{-1}(1)) = ij-cl_{\theta}B = (A \cup B) \cap ij-cl_{\theta}B = B =$ $f^{-1}(1)$. Therefore, $f^{-1}(1)$ is 12- θ -closed where {1} is 1-closed. Similarly, $f^{-1}(0)$ is 21- θ -closed where {0} is 2-closed. This shows that $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is ij-s. θ .c. However, f is not constant.

3. SETS δ-CONNECTED RELATIVE TO BITOPOLOGICAL SPACES

Several proofs of the theorems stated in this section parallel to those of Section 2 and therefore are omitted.

Definition 3.1. A pair (A, B) of nonempty subsets of a space (X, T_1, T_2) is said to be a δ -separation relative to X (denoted by $[A|B]_{\delta}$) if $[A \cap ij\text{-}cl_{\delta}B] \cup [B \cap ji\text{-}cl_{\delta}A] = \emptyset$.

Definition 3.2. A subset S of a space (X, T_1, T_2) is said to be δ -connected relative to X if it cannot be expressed as the union of two nonempty subsets A and B which form a δ -separation relative to X. A space (X, T_1, T_2) is said to be δ -connected if it admits no δ -separation relative to X.

Lemma 3.3. The collection $T_{i\delta}$ of all *ij*- δ -open sets in (X, T_1, T_2) is a topology on X.

Proof.

- (i) X and \emptyset are ij- δ -open sets.
- (ii) Suppose that A and B are ij- δ -open sets in (X, T_1, T_2) . Let $x \in A \cap B$, then $x \notin A^c \cup B^c$. Now A^c and B^c are ij- δ -closed sets. Thus there exist *i*-open sets U and V such that $x \in U$, *i*-*int*(*j*-*cl* U) $\cap A^c = \emptyset$ and $x \in V$, *i*-*int*(*j*-*cl* V) $\cap B^c = \emptyset$. Therefore *i*-*int*(*j*-*cl* U) $\subset A$ and *i*-*int*(*j*-*cl* V) $\subset B$, thus *i*-*int*(*j*-*cl* U) $\subset A$ and *i*-*int*(*j*-*cl* V) $\subset B$, thus *i*-*int*(*j*-*cl* U) $\cap V$ is an *i*-open set, $x \in ij$ -*int*_{δ}($A \cap B$) and therefore $A \cap B$ is an *ij*-open set.
- (iii) Let $\{A_k\}, k \in I$, be any family of ij- δ -open subsets of X and $x \in \bigcup_k A_k$. Then $x \in A_k$ for some k. Since A_k is an ij- δ -open set, there exists an *i*-open set U such that $x \in i$ -int(j-cl $U) \subset A_k$ and so $x \in i$ -int(j-cl $U) \in \bigcup_k A_k$. Hence $x \in ij$ $int_{\delta}(\bigcup_k A_k)$, thus $\bigcup_k A_k$ is an ij- δ -open set. Therefore the collection of all ij- δ -open sets in (X, T_1, T_2) is a topology on X.

Theorem 3.4. A space (X, T_1, T_2) is δ -connected if and only if the space $(X, T_{1\delta}, T_{2\delta})$ is pairwise connected.

Lemma 3.5. Let A and B be subsets of a space (X, T_1, T_2) . If $[A|B]_{\delta}$, $\emptyset \neq A_0 \subset A$ and $\emptyset \neq B_0 \subset B$, then $[A_0|B_0]_{\delta}$.

Theorem 3.6. The following are equivalent for a space (X, T_1, T_2) and a subset S of X.

- (a) S is δ -connected relative to X.
- (b) For each two points x, y of S, there exists a subset D of S such that $x, y \in D$ and D is δ -connected relative to X.
- (c) For any δ -separation $[A | B]_{\delta}$ relative to X such that $S \subset A \cup B$, either $S \subset A$ or $S \subset B$.

Theorem 3.7. Let (X, T_1, T_2) be a space and *S* a subset δ -connected relative to *X*. If $S \subset Z \subset ij\text{-}cl_{\delta}S \cap ji\text{-}cl_{\delta}S$, then *Z* is δ -connected relative to *X*.

Theorem 3.8. Let (X, T_1, T_2) be a space and S be a pairwise- δ -closed subset of X. If (A, B) is a δ -separation relative to X and $S = A \cup B$, then A is *ji*- δ -closed and B is *ij*- δ -closed.

Proof. Since S is pairwise- δ -closed ji- $cl_{\delta}A \subset ji$ - $cl_{\delta}S = S$ and hence we have ji- $cl_{\delta}A = ji$ - $cl_{\delta}A \cap S = (ji$ - $cl_{\delta}A) \cap (A \cup B) = A$. This shows that A is ji- δ -closed. By using the same argument we can show that B is ij- δ -closed.

Theorem 3.9. Let (X, T_1, T_2) be a space and $\{F_m | m \in I\}$ be a family of sets δ -connected relative to X. If the pair (F_m, F_n) is not δ -separation relative to X for any $m, n \in I$, then $\bigcup \{F_m | m \in I\}$ is δ -connected relative to X.

Lemma 3.10. A function $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $ij \cdot \delta \cdot c$. if and only if $f:(X, T_{1\delta}, T_{2\delta}) \rightarrow (Y, \sigma_{1\delta}, \sigma_{2\delta})$ is pairwise continuous.

Definition 3.11. [7] A function $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be *ij-super-continuous* (*ij-sc*) if and only if the inverse of each *i*-open subset of Y is an *ij*- δ -open subset of X. The function f is said to be pairwise-super-continuous if it is both *ij-sc* and *ji-sc*.

Lemma 3.12. A function $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is *ij-sc* if and only if $f:(X, T_{1\delta}, T_{2\delta}) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise continuous.

Theorem 3.13. If $f: (X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an *ij*- δ -continuous function and K is δ -connected relative to X, then f(K) is δ -connected relative to Y.

Proof. Follows from Theorem 3.4 and Lemma 3.10.

Theorem 3.14. If $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is *ij-sc* and K is δ -connected relative to X, then f(K) is pairwise-connected.

Corollary 3.15. If $f: (X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an *ij-sc* surjection and X is δ -connected, then Y is pairwise connected.

Theorem 3.16. Let $Y = \{0, 1\}$, $\sigma_1 = \{Y, \emptyset, \{0\}\}$ and $\sigma_2 = \{Y, \emptyset, \{1\}\}$. Then the space (X, T_1, T_2) is δ -connected if and only if every *ij-sc* function $f: (X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is constant.

Proof.

Necessity: Let (X, T_1, T_2) be δ -connected. Suppose that there exists an *ij-sc* function $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ such that f is not constant. Then f is surjective and hence by Corollary 3.15, Y is pairwise-connected. However, by Theorem 2.11, Y is not pairwise-connected since (Y, σ_1, σ_2) is not θ -connected. This is a contradiction.

Sufficiency: Suppose that (X, T_1, T_2) is not δ -connected. There exists a δ -separation $[A|B]_{\delta}$ such that $X = A \cup B$. Define a function $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ as follows: f(A) = 0 and f(B) = 1. Since $A \cap ij$ - $cl_{\delta}B = \emptyset$ we have ij- $cl_{\delta}(f^{-1}(1)) = ij$ - $cl_{\delta}B = (A \cup B) \cap ij$ - $cl_{\delta}B = B =$ $f^{-1}(1)$. Therefore, $f^{-1}(1)$ is 12- δ -closed where {1} is 1-closed. Similarly, $f^{-1}(0)$ is 21- δ -closed where {0} is 2-closed. This shows that $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is *ij*-sc. However f is not constant.

4. COMPARISONS

Lemma 4.1. For any subset A of a space (X, T_1, T_2) *i-cl* $A \subset ij$ -*cl* $_{\aleph}A \subset ij$ -*cl* $_{\theta}A$.

Proof. Let $x \in i\text{-}cl A$, then for any *i*-open neighborhood U of $x \land A \cap U \neq \emptyset$. Since U is an *i*-open set we have $U \subset i\text{-}int(j\text{-}cl U)$ and so $\land A \cap i\text{-}int(j\text{-}cl U) \neq \emptyset$. This means $x \in ij\text{-}cl_{\delta}A$, hence $i\text{-}cl \land \in ij\text{-}cl_{\delta}A$.

Now let $x \in ij\text{-}cl_{\delta}A$, then for every *i*-open set *U* of *x* we have $A \cap i\text{-}int(j\text{-}cl U) \neq \emptyset$ and therefore $A \cap (j\text{-}cl U) \neq \emptyset$. This means $x \in ij\text{-}cl_{\theta}A$. Thus $ij\text{-}cl_{\delta}A \subset ij\text{-}cl_{\theta}A$ and the lemma is proved.

Theorem 4.2. For a subset of a space (X, T_1, T_2) the following implications hold:

pairwise-connected $\Rightarrow \delta$ -connected $\Rightarrow \theta$ -connected.

Proof. This follows from Lemma 4.1.

Lemma 4.3. If the space (X, T_1, T_2) is *ij*-almost-regular (resp. *ij*-semi-regular), then $ij-cl_{\delta}A = ij-cl_{\theta}A$ (resp. $ij-cl_{\delta}A = i-cl A$), for any subset A of X.

Proof. By Lemma 4.1 we have $ij\text{-}cl_{\delta}A \subset ij\text{-}cl_{\theta}A$. Now, let $x \in ij\text{-}cl_{\theta}A$, then for every *i*-open neighborhood U of x we have $A \cap j\text{-}cl \ U \neq \emptyset$. Since (X, T_1, T_2) is *ij*-almost-regular $A \cap i\text{-}int(j\text{-}cl \ U) \neq \emptyset$ which means $x \in ij\text{-}cl_{\delta}A$. Therefore $ij\text{-}cl_{\theta}A = ij\text{-}cl_{\delta}A$. By the same way if the space (X, T_1, T_2) is *ij*-semiregular we have $ij\text{-}cl_{\delta}A = i\text{-}cl A$.

Theorem 4.4. Let S be a subset of X. If the space (X, T_1, T_2) is *ij*-almost-regular (resp. *ij*-semi-regular) and S is θ -connected (resp. δ -connected) relative to X, then S is δ -connected relative to X (resp. pairwise connected).

Proof. Follows from Lemma 4.3.

Corollary 4.5. Let S be a subset of X. If the space (X, T_1, T_2) is *ij*-regular, then the following are equivalent:

- (a) S is pairwise-connected.
- (b) S is δ -connected relative to X.
- (c) S is θ -connected relative to X.

Proof. Since *ij*-regular space is an *ij*-almost-regular and *ij*-semi-regular space, the proof follows from Theorem 4.2 and Theorem 4.4.

Definition 4.6. [3] A function $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be *ij-almost-strongly-\theta-continuous* (*ij-a.s.* θ .*c*) if for each $x \in X$ and each *i*-open set V containing f(x), there exists an *i*-open set U containing x such that $f(j\text{-}cl U) \subset i\text{-}int(j\text{-}cl V)$.

Theorem 4.7. If $f:(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is *ij-a.s.* $\theta.c$ and K is θ -connected relative to X, then f(K) is δ -connected relative to Y.

Proof. Suppose that f(K) is not δ -connected. There exist nonempty subsets A^* and B^* of f(K) such that $f(K) = A^* \cup B^*$ where $[A^* \cap ij - cl_s B^*] \cup [B^* \cap ji - i]$ $cl_{\delta}A^*] = \emptyset.$ $A = K \cap f^{-1}(A^*)$ Let and $B = K \cap f^{-1}(B^*)$, then $K = A \cup B$. Since K is θ connected relative to X, without any loss of generality we may suppose that $x \in A \cap ij-cl_{\theta}B$. Then $f(x) \in A^* \subset Y - ij - cl_* B^*$. There exists an *ij-r.o* set V containing f(x) such that $V \cap B^* = \emptyset$. Since f is ij-a.s. θ .c, there exists an *i*-open set U of x such that $f(j-cl \ U) \subset i-int(j-cl \ V) = V$. Since $x \in ij-cl_{a}B$, we have $\emptyset \neq j$ -cl $U \cap B \subset j$ -cl $U \cap f^{-1}(B^*)$. Thus we obtain $f(j-cl \ U) \cap B^* \neq \emptyset$. This is a contradiction.

REFERENCES

- J. C. Kelly, "Bitopological Spaces", Proc. London Math. Soc., 3(13) (1963), p. 71-89.
- [2] W. J. Pervin, "Connectedness in Bitopological Spaces", Proc. Kor. Ned. Akad. Van. Wetensch, A70 (Indag. Math. 29) (1967), p. 369-372.
- [3] G. K. Banerjee, "On Pairwise Almost Strongly-θ-Continuous Mappings", Bull. Cal. Math. Soc., 79 (1987), p. 314-320.
- [4] M. K. Singal and A. R. Singal, "Some More Separation Axioms in Bitopological Spaces", Ann. Soc. Sci. Bruxxelles, 84 (1970), p. 207-230.
- [5] A. R. Singal and S. P. Arya, "On Pairwise Almost Regular Spaces", *Glasnik Math.*, 6(26) (1971), p. 335-343.
- [6] S. Bose and D. Sinha, "Pairwise Almost Continuous Map and Weakly Continuous Map in Bitopological Spaces", Bull. Cal. Math. Soc., 74 (1982), p. 195-206.
- [7] F. H. Khedr and A. M. Al-Shibani, "On Pairwise-Super Continuous Mappings in Bitopological Spaces", *Intern. J. Math. & Math. Sci.*, 14(4) (1991), p. 715-722.

Paper Received 23 October 1991; Revised 31 October 1992.