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ABSTRACT 

We describe an algorithm for solving nonlinear singular perturbed two-point 
boundary value problems. We use a variable-step Runge-Kutta-Fehlberg method. 
Our method shows a substantial improvement in accuracy over the classical 
fourth-order Runge-Kutta method. 
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I. K. 	Argyros, and M. M. Losta 

AN INITIAL V ALUE METHOD FOR SOLVING SINGULAR 
PERTURBED TWO-POINT BOUNDARY V ALUE PROBLEMS 

1. 	 INTRODUCTION 

Consider the nonlinear singular perturbed two­
point boundary value problem 

£u"(x) + (p(x) u(x»)' +q(x, u(x» =f(x) , 

a =:s. x =:s. b, (1) 

u(a) 	= <x, u(b) = ~, (2) 

where 

£ > 0, 	(p(x)u(x», fE C2(R), q(x, u(x» E C 1(R2) 

and 

aq(x, u(x»j au =:s. 8 < 0 

hold on [a, b] x R. Under these assumptions the 
problem (1), (2) admits a unique solution that 
displays a boundary layer at the left end of the 
interval [a, b] for small values of £ [1, 2]. Relevant 
work, but using the fourth-order Runge- Kutta 
method, can be found in reference [2]. 

In this paper we present a technique for solving 
nonlinear singular two-point boundary value prob­
lems, which are of great importance in fields such as 
fluid mechanics, electrical networks, chemical reac­
tions, quantum mechanics, aerodynamics, and 
elasticity. A numerical example is also provided that 
compares favorably with earlier results [2]. Our 
results were derived using MATH VAX and Fortran. 

2. INITIAL VALUE METHOD FOR SINGULAR 
PERTURBED NONLINEAR PROBLEMS 

In the following Section we describe an algorithm 
for solving this class of problems. We are following a 
scheme suggested in [2] with different implementa­
tion to improve the results. The second-order 
problem (1), (2) is replaced by an equivalent first­
order problem and is solved as an initial-value 
problem following these steps. 

(i) 	 Set £ 0; then (1) becomes: 

(p(x) u (x» +q(x, u(x» f(x) , (3)I 

and 	its solution is denoted by U(x). 

(ii) 	 Approximate Equation (1) by the following 
boundary value problem: 

£u"(x) + (p(x)u(x»)' + q(x, U(x» = f(x) , (4) 

u(a) = <x, u(b) = ~, 

in which we replace u(x) by U(x) in the term 
q(x, u(x». If the Equation (1) does not contain 
this term, we skip steps (i), (ii) and integrate 
the problem directly. . 

(iii) 	In Equation (4) we set 

V' (x) = q(x, U(x». (5) 

Substituting (5) into (4) 	we get: 

£u"(x) + (p(x) u(x» I + V' (x) = f(x). (6) 

(iv) 	 We integrate (6) to get: 

£u I (x) + (p(x) u (x» + V' (x) = F(x) + C (7)I 

where C is the constant of integration to be 
determined and 

F(x) = Jf(x) dx. (8) 

In order to determine C, we require that Equa­
tion (7) with £ 0 satisfy u(b) = ~, that is 

C =p(b)~+ V(b) - F(b). 	 (9) 

(v) 	 Finally, we solve the following initial-value 
problem 

£u'(x)+p(x)u(x) + V(x) 

= F(x) +p(b) ~ + V(b) - F(b), (10) 

u(a) = <X. 	 (11) 

In order to solve the initial-value problem (10), with 
the condition (11) we make use of a variable-step 
Runge-Kutta-Fehlberg (RKF) method [3]. As far 
as we know we are the first to use this method with 
Runge - Kutta - Fehlberg for this class of problems. 
The use of RKF is justified since the refip.ement of 
the mesh size is desirable especially near the bound­
ary layer region. Our results, which we present in 
the next section, show substantial improvement in 
accuracy over the classical fourth-order Runge­
Kutta method used in [2]. 

3. NUMERICAL RESULTS 

As a test example, we have considered the 
following equation: 

£u"(x) -2u' (x)-e", O=:s.x=:s.l, (12) 
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U(O) = 0, u(l) = O. (13) 

For comparison, we used Bender's [4] uniformly 
valid approximate solution given by 

U(x) = log[2/(I+x)]-exp(-2x/E)log(2). (14) 

To implement the method described above we set 
E = 0; then the reduced problem is given by: 

2u' (x) + eU = 0, 0::5 X ::5 1, (15) 

u(l) = 0, 

whose solution is denoted by: 

U(x) = log[2/(1 +x)]. 

Using Step (ii) we approximate (12) by the following: 

EU"(X) = -2u'(x) - [2/(1 +x)]. (16) 

Integrating (16) we get: 

EU'(X) = -2u(x) -2Iog(1 +x) + C. (17) 

Following Step (iv) we use Equations (8) and (9) to 
determine C, that is: 

C = 2Iog(2). 

As a result of substituting the value C in (17) we get 
the initial value problem 

EU'(X) = 2[-u(x)+log(2/(I+x))], 

{ u(O) = O. 	 (18) 

Table 1. Numerical Results for E = 10-2
• 

Approximate Uniform 
x h 

Solution u(x) Solution 

0.0 0.0100 0.0 0.0 
0.0005 0.0005 0.0701 0.0696 
0.0021 0.0005 0.2455 0.2437 
0.0066 0.0006 0.5074 0.5037 
0.0105 0.0008 0.6029 0.5985 
0.0467 0.0039 0.6521 0.6473 
0.0846 0.0066 0.6165 0.6118 
0.2059 0.0069 0.5100 0.5058 
0.4068 0.0076 0.3553 0.3518 
0.6053 0.0076 0.2229 0.2197 
0.7092 0.0080 0.1599 0.1570 
0.9014 0.0086 0.0531 0.0505 
0.9966 0.0092 0.0042 0.0017 
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We have solved Equation (18) using the Runge-
Kutta - Fehlberg scheme, the computational results 
are shown in Tables 1 and 2 for E = 10-2 and 
E = 10-3

• The numerical results show that this 
method is accurate and easy to implement. 

Table 2. Numerical Results for E = 10-3
• 

Approximate Uniform 
x h 

Solution u(x) Solution 

0.0 0.01000 0.0 0.0 
0.00003 0.00003 0.04039 0.04036 
0.00008 0.00002 0.10814 0.10806 

0.00021 0.00003 0.24013 0.24001 

0.00042 0.00003 0.39421 0.39392 

0.00061 0.00004 0.48934 0.48899 
0.00082 0.00004 0.55899 0.55858 
0.00100 0.00004 0.59969 0.59925 
0.00309 0.00013 0.68913 0.68863 
0.00574 0.00036 0.68790 0.68740 

0.00680 0.00052 0.68685 0.68636 
0.00822 0.00067 0.68545 0.68495 
0.01066 0.00084 0.68303 0.68254 
0.03055 0.00095 0.66353 0.66304 
0.05236 0.00096 0.64258 0.64210 
0.07236 0.00079 0.63374 0.62328 
0.09106 0.00094 0.60645 0.60599 
0.20011 0.00098 0.51114 0.51072 
0.40037 0.00111 0.35676 0.35640 
0.60386 0.00109 0.22103 0.22072 
0.90033 0.00106 0.05137 0.05111 
0.99999 0.00086 0.00025 0.00000 
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